
DDOS INTERFACE

Masrik Dahir, Vivian Nguyen

Distributed Denial of Service Attack

◦ An attempt to disrupt the normal traffic of a targeted server

◦ Try to impair the ability of a server to respond

◦ Future and current connection requests take higher Round Trip Time (RTT)

to response

◦ As a result, legitimate users are denied access to the server

◦ Therefore it exhausts the system’s resources

◦ Massive DoS attack can crash the server completely

DoS attack in Action

NORMAL CLIENT SERVER ATTACKER CLIENT

Longer RTT

Objectives

◦ The objective of this project is to show how we can overload a TCP/UDP

server by sending an overwhelming multitude of requests from an easy-to-

use interface and causing a denial of service attack.

◦ We will be setting up our own server to attack.

Our Approach

◦ We are creating our frontend interface with PyQt5 libraries in python.

◦ We are using MHDDoS libraries for conducting DDoS attacks on TCP and

UDP servers.

◦ We are using the server codes from Assignment 1 of CMSC 414 and

running them on a virtual machine on VMWare.

◦ We intend to have the server machine overloaded by attacks generated by

our DDoS Interface.

◦ To monitor the Server resource exhaustion, we would create another

interface that monitors the server RTT time with the host by every second.

https://github.com/pyqt/python-qt5
https://github.com/MatrixTM/MHDDoS

TCP Server

◦ We start a TCP server on a Virtual
Machine
◦ IP: 192.168.111.136
◦ PORT: 12002

◦ The Server authenticates with a TCP
handshake

◦ The server receives the Request
message and makes it uppercase

◦ The response message is sent to the
Client

TCP Server Code

import socket
server_port = 12001
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(('', server_port))
server.listen(1)
print ("The server is ready to receive")
while 1:

print ("Waiting ...")
connection_socket, addr = server.accept()
print ("accept")
sentence = connection_socket.recv(2048).decode(encoding = 'iso-8859-1')
print ("Message Received: " + sentence)
modifiedSentence = sentence.upper()
connection_socket.send(modifiedSentence.encode())
connection_socket.close()

TCP Normal Client

◦ We start a Normal TCP Client on the
Host Machine
◦ IP: 192.168.61.1

◦ The Client authenticates with a
TCP handshake

◦ The Client sends a Request message
every second

◦ The Client prints the RTT time on the
console

◦ The Client Interface shows RTT
overtime in an XY graph

TCP Normal Client Code
import matplotlib.pyplot as plt
import socket
import time

server_name = '127.0.0.1'
server_port = 12001

create a socket object
t = [0]
p = [0]
while True:

start = time.time()
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((server_name, server_port))
sentence = "None"
client.send(sentence.encode())
modifiedSentence = client.recvfrom(2048)
print (modifiedSentence[0].decode())
client.close()
end = time.time()
print("Eclipsed time: %f" %(end-start))
time.sleep(1)

t.append(end-start)
p.append(p[len(p)-1] + 100)

plt.plot(t, p)
plt.xlabel('Time (hr)')
plt.ylabel('Position (km)')

Normal Client Interface

◦ RTT Overtime for a Normal (legit)

Client

◦ X-axis = time in millisecond (ms)

◦ Y-axis = RTT time in second (s)

TCP Attacker Client

◦ We start a TCP Attacker Client on the Host Machine

◦ IP: 192.168.61.1

◦ The Attacker Client authenticates with a TCP handshake

◦ The Attacker Client sends an enormous amount of TCP requests to overload the

server

◦ The Attacker Client impedes other legitimate users (i.e., Normal Client) to access

the server

◦ When the Attacker uses a lot of threads, the server crashes

TCP Attacker Client Interface

◦ Layer: The layer of the protocol i.e. Layer 4

◦ Protocol: protocols from the selected layer i.e. TCP, UDP

◦ Thread: sending requests in n threads to multiply the attack intensity

◦ IP: the IP address of the server

◦ Port: the port of the server

◦ Socket: sending requests in the specified socket type

◦ Proxy List: List of proxy IP addresses

Normal Client

Attacker Client

Server

Server Crashed!

Evaluation Results

◦ We have evaluated our tool on a Virtual Machine TCP Server

◦ Our DDoS attacker interface successfully overloaded the TCP Server

◦ The server crashed in the end and closed all connections both with the

Normal Client and the Attacker Client

◦ Therefore, we are successful in Denying service to legitimate clients using

our tool

◦ As a result, DDoS Interface is a legitimate tool for identifying server

vulnerabilities against DDoS attacks

Repository

◦ Configuration

◦ git clone https://github.com/Masrik-Dahir/DDoS_interface.git; # Cloning the Repository

◦ .\requirement.bat; # Installing Required Libraries

◦ python3 tcp_server.py # Starts Server

◦ python3 cl.py # Starts Normal Client

◦ python3 form.py # Starts Attacker Client

GitHub:

https://github.com/Masrik-Dahir/DDoS_interface/
• Programming Language: Python
• Library: PyQt5, Matplotlib

https://github.com/Masrik-Dahir/DDoS_interface.git
https://github.com/Masrik-Dahir/DDoS_interface/

References

◦ Masrik-Dahir. “Masrik-Dahir/DDoS_interface.” GitHub, 23 Apr. 2022,

github.com/Masrik-Dahir/DDoS_interface. Accessed 24 Apr. 2022.

◦ MatrixTM. “MatrixTM/MHDDoS: Best DDoS Attack Script Python3, (Cyber / DDos)

Attack with 53 Methods.” GitHub, 16 Apr. 2022, github.com/MatrixTM/MHDDoS.

Accessed 24 Apr. 2022.

◦ “PyQt5.” PyPI, 29 Oct. 2021, pypi.org/project/PyQt5/. Accessed 24 Apr. 2022.

◦ “Matplotlib — Visualization with Python.” Matplotlib.org, 2022, matplotlib.org/.

Accessed 24 Apr. 2022.

