250 MATHEMATICS

We want to prove that P(k + 1) is true whenever P(k) is true, i.e.,

$$P(k+1): A^{k+1} = \begin{bmatrix} \cos(k+1)\theta & \sin(k+1)\theta \\ -\sin(k+1)\theta & \cos(k+1)\theta \end{bmatrix}$$
$$A^{k+1} = A^k \cdot A$$

Now

Since P(k) is true, we have

$$A^{k+1} = \begin{bmatrix} \cos k \ \theta & \sin k \ \theta \\ -\sin k \ \theta & \cos k \ \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos k \ \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos k \ \theta \cos \theta - \sin k \ \theta \sin \theta & \cos k \ \theta \sin \theta + \sin k \ \theta \cos \theta \\ -\sin k \ \theta \cos \theta - \cos k \ \theta \sin \theta & -\sin k \ \theta \sin \theta + \cos k \ \theta \cos \theta \end{bmatrix}$$

(by matrix multiplication)

$$= \begin{bmatrix} \cos((k+1)\theta) & \sin((k+1)\theta) \\ -\sin((k+1)\theta) & \cos((k+1)\theta) \end{bmatrix}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, P(n) is true for all $n \ge 1$ (by the principle of mathematical induction).

(iii) Proof by cases or by exhaustion

This method of proving a statement $p \Rightarrow q$ is possible only when p can be split into several cases, r, s, t (say) so that $p = r \lor s \lor t$ (where " \lor " is the symbol for "OR"). If the conditionals $r \Rightarrow q$;

and

 $s \Rightarrow q;$ $t \Rightarrow q$

are proved, then $(r \lor s \lor t) \Rightarrow q$, is proved and so $p \Rightarrow q$ is proved.

The method consists of examining every possible case of the hypothesis. It is practically convenient only when the number of possible cases are few.

Example 4 Show that in any triangle ABC,

 $a = b \cos C + c \cos B$

Solution Let *p* be the statement "ABC is any triangle" and *q* be the statement " $a = b \cos C + c \cos B$ "

Let ABC be a triangle. From A draw AD a perpendicular to BC (BC produced if necessary).

As we know that any triangle has to be either acute or obtuse or right angled, we can split p into three statements r, s and t, where