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The drift f and the diffusion o of stochastic differential equations of
the form

dXt — f(Xt>dt + O'(Xt)dwt,

can be learned from a single sample trajectory using Gaussian Pro-
cesses and kernels learned from the data [1].

We have access to observations X = (X)), separated by time-steps
At,. We use the Euler-Maruyama dsciretization:

Xnpe1 = X, + f( At -+ O' \/ At fn + En

&0 S N(0,1) is noise inherent to the dynamical system,
en o N(0,)) is noise coming from the discretization error.
Defining Y,, .= X,,.1 — X,,, our model is restated as

Y, = f(X,)At, + o( X))y AL, + €n .

We assume that f and o are distributed according to independent Gaus-
slan processes:

f LGP0, K)
o LGP0, Q).

The kernel functions K, GG are parameterized by the hyper-parameters 6.
We first recover the values of f and ¢ at the data points:

]En = f(Xn)
o, = o(X,)
using Maximum A Posteriori estimation and Bayes' rule

ot = afgfmlnﬁ(f 0) = af%mlnp<wa o X)p(f1X)p(a|X).

For any given &, the minimizer in f of L(f,a) is

1
— K(X, X)A(AK(X, X)A+3+ M) Y.

f*(5) == arg min £(f, 0)
f
Using the representer theorem, we minimize in ¢ the loss:

L(f(a),0).
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We generate 500 points for training and 500 points for testing of the
stochastic differential equation

dX; = sin(2kw Xy)dt + bcos(2kn Xy)dW;  Trigonometric process.

We use the Matérn Kernel with smoothness parameter v = 2
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A sample trajectory of the process.
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Recovery of the drift f (left) and volatility o (right).

Learning the hyper-parameters @ of the kernel functions K and G drasti-
cally improves the recovery of the functions f and o. We use a random-
ized cross-validation approach to learn the kernels from data.

Cross validation: optimize the model on a subset Dy of the data and
measure the performance on a withheld subset Dre.

Randomized: as proposed in [3], sample subsets (Dyy, Drie) randomly
and use a noisy 10ss Ley.

We use of the likelihood of the withheld data Dy as the cross validation
l0ss.

Lov(0; f*,6%, D) = p(Yul|f*, 0%, Xn)

This noisy loss Is optimized with a Bayesian Optimization algorithm.
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Learning the hyper-parameters @ improves both the recovery of f and o
at the training data points and the prediction of future values

dX; = pX,dt + bexp(—X7)dW, Exponential decay volatility.
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Prediction of the volatility: non-learned kernel versus learned kernel.

dX; = uXdt + o X, dW; Geometric Brownian motion.

Volatility test Volatility test

Prediction of the volatility: non-learned kernel versus learned kernel.

This model can be cast as computa- /‘? Aty [
tional graph [2] representing depen- = oo o T
dencies between variables and func- l

V]

tions. Completing the graph using
the data allows to recover the un-

known functions The computational graph

Computational Graph completion offers a general framework to recover
unknown variables and functions, beyond the problem considered here.
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