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Main takeway

The drift f and the diffusion σ of stochastic differential equations of

the form

dXt = f (Xt)dt + σ(Xt)dWt,

can be learned from a single sample trajectory using Gaussian Pro-

cesses and kernels learned from the data [1].

Discretization

We have access to observations X := (Xn)N
n=1 separated by time-steps

∆tn. We use the Euler-Maruyama dsciretization:

Xn+1 = Xn + f (Xn)∆tn + σ(Xn)
√

∆tnξn + εn

ξn
d∼ N (0, 1) is noise inherent to the dynamical system,

εn
d∼ N (0, λ) is noise coming from the discretization error.

Defining Yn := Xn+1 − Xn, our model is restated as

Yn = f (Xn)∆tn + σ(Xn)
√

∆tnξn + εn .

Gaussian Process Prior

We assume that f and σ are distributed according to independent Gaus-

sian processes:

f
d∼ GP(0, K)

σ
d∼ GP(0, G).

The kernel functions K, G are parameterized by the hyper-parameters θ.
We first recover the values of f and σ at the data points:

f̄n := f (Xn)
σ̄n := σ(Xn)

using Maximum A Posteriori estimation and Bayes’ rule

f̄ ∗, σ̄∗ := arg min
f̄ ,σ̄

L(f̄ , σ̄) := arg min
f̄ ,σ̄

p(Y |f̄ , σ̄X)p(f̄ |X)p(σ̄|X).

Representer theorem

For any given σ̄, the minimizer in f̄ of L(f̄ , σ̄) is

f̄ ∗(σ̄) := arg min
f̄

L(f̄ , σ̄) = K(X, X)Λ
(
ΛK(X, X)Λ + Σ + λI

)−1
Y.

Using the representer theorem, we minimize in σ̄ the loss:

L(f̄ ∗(σ̄), σ̄).

Numerical example

We generate 500 points for training and 500 points for testing of the

stochastic differential equation

dXt = sin(2kπXt)dt + b cos(2kπXt)dWt Trigonometric process.

We use the Matérn Kernel with smoothness parameter ν = 5
2

KMatern(x, y) = σ2
(
1 +

√
5||x − y||

l
+ 5||x − y||2

3l2

)
exp

(
−

√
5||x − y||

l

)
.

Figure 1. A sample trajectory of the process.

Figure 2. Recovery of the drift f (left) and volatility σ (right).

Learning kernels from data: method

Learning the hyper-parameters θ of the kernel functions K and G drasti-

cally improves the recovery of the functions f and σ. We use a random-

ized cross-validation approach to learn the kernels from data.

Cross validation: optimize the model on a subset DΠ of the data and

measure the performance on a withheld subset DΠc.

Randomized: as proposed in [3], sample subsets (DΠ, DΠc) randomly

and use a noisy loss LCV.

We use of the likelihood of the withheld data DΠc as the cross validation

loss.

LCV(θ; f̄ ∗, σ̄∗, DΠc) = p(YΠ|f̄ ∗, σ̄∗, XΠ)

This noisy loss is optimized with a Bayesian Optimization algorithm.

Learning kernels from data: numerical results

Learning the hyper-parameters θ improves both the recovery of f and σ
at the training data points and the prediction of future values

dXt = µXtdt + b exp(−X2
t )dWt Exponential decay volatility.

Figure 3. Prediction of the volatility: non-learned kernel versus learned kernel.

dXt = µXtdt + σXtdWt Geometric Brownian motion.

Figure 4. Prediction of the volatility: non-learned kernel versus learned kernel.

Going further: computational graph completion

This model can be cast as computa-

tional graph [2] representing depen-

dencies between variables and func-

tions. Completing the graph using

the data allows to recover the un-

known functions. Figure 5. The computational graph

Computational Graph completion offers a general framework to recover

unknown variables and functions, beyond the problem considered here.
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