

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

One shot learning of stochastic differential equations with Gaussian Processes and computational graph completion.

M. Darcy¹ B. Hamzi^{1,2} G. Livieri³ H. Owhadi¹ P. Tavallali⁴

¹California Institute of Technology

²Johns Hopkins University ³Scuola Normale Superiore ⁴JPL, NASA

ICCOPT July 2022

Table of Contents

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learn from data

Numerical Results

References

Motivation

Computational Graph Completion

3 Kernels learned from data

4 Numerical Results

Problem statement

GPs for SDEs

We consider stochastic differential equation (SDE) of the form:

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

where W_t is a Brownian motion and

 $f: \mathbb{R} \to \mathbb{R}$ drift $\sigma: \mathbb{R} \to \mathbb{R}$ diffusion

 $dX_t = f(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0$

are unknown functions.

Objective

Recover the drift f and diffusion σ given a finite number of observations coming from a single sample trajectory $X := (X_{t_n})_{n=1}^N$ separated by time-steps Δt_n ,

GPs for SDEs

Motivation and challenges

Motivation

Computational Graph Completion

Kernels learneo from data

Numerical Results

References

Motivation

SDEs allow us to model systems subject to random effects and have applications in finance, dynamical systems, engineering ...

The problem we consider is challenging:

- The observations X come from a single trajectory.
- We make few assumptions on f and σ .
- The observations X only provide indirect information on f and σ .
- The sampling time-steps Δt_n introduce a discretization error.

Method summary

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

Our method can be summarized as follows

- **1** Formulate our model as a **computational graph** with unknown functions.
- **2** Recover the functions using Gaussian processes by **completing the graph**.
- **3 Optimize the hyper-parameters** of the Gaussian processes using cross-validation.

Our method allows us to

- **Recover** f, σ at observed points (hard).
- **Forecast** future values of f, σ (harder).

Modeling Assumption

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

Let $X_n := X_{t_n}$. We assume the following discretization, the Euler-Maruyama model given

$$X_{n+1} = X_n + f(X_n)\Delta t_n + \sigma(X_n)\sqrt{\Delta t_n}\xi_n + \varepsilon_n$$

 $\xi_n \stackrel{d}{\sim} \mathcal{N}(0, 1)$ dynamics noise $\varepsilon_n \stackrel{d}{\sim} \mathcal{N}(0, \lambda)$ modeling noise

are independent.

where

Defining $Y_n := X_{n+1} - X_n$, our model can be restated as

$$Y_n = f(X_n)\Delta t_n + \sigma(X_n)\sqrt{\Delta t_n}\xi_n + \varepsilon_n$$

Table of Contents

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learn from data

Numerical Results

References

Motivatior

2 Computational Graph Completion

3 Kernels learned from data

4 Numerical Results

Computational Graph

GPs for SDEs

The model

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

$Y_n = f(X_n)\Delta t_n + \sigma(X_n)\sqrt{\Delta t_n}\xi_n + \varepsilon_n$

can be re-stated as a computational graph:

Computational Graph

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

- Arrows \rightarrow represent functions.
- Nodes \circ aggregate incoming variables.
- X_n and Y_n are input and outputs.
- Blue variables are noise.
- Red variables are unknown functions we wish to recover.

GPs for SDEs

The Computational Graph Approach

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

Computational Graph Completion (CGC) [Owh21] proposes to replace the unknown functions f and σ by Gaussian processes and to recover them by Maximum A Posteriori (MAP) estimation given inputs and outputs of the graph $(X_n, Y_n)_{n=1}^N$.

We "forget" about the underlying model, we consider the data $(X_n, Y_n)_{n=1}^N$ to be inputs and outputs of the graph.

Gaussian process prior

GPs for SDEs

We assume that f and σ are distributed according to **independent** Gaussian processes:

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

$$\begin{aligned} \mathbf{f} &\stackrel{d}{\sim} \mathcal{GP}(\mathbf{0}, \mathbf{K}) \\ \mathbf{\sigma} &\stackrel{d}{\sim} \mathcal{GP}(\mathbf{0}, \mathbf{G}). \end{aligned}$$

Definition

A function f is distributed according to a Gaussian Process with covariance function (kernel) $\mathbf{K} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ if

$$f(X) = (f(X_1), f(X_2), \dots, f(X_n)) \stackrel{d}{\sim} \mathcal{N}(0, \mathcal{K}(X, X))$$

where $K(X,X) \in \mathbf{R}^{n \times n}$ with entries $K(X,X)_{ij} = K(X_i,X_j)$.

The kernel function K is often parameterized by some parameter θ .

Recovery of the drift and diffusion

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

The recovery of f and σ can be separated into two steps

1 Recover the values of f and σ at observed data points $(X_n)_{n=1}^N$.

2 Forecast future values of f and σ using the recovered values.

We use $\bar{f} \in \mathbb{R}^N$ and $\bar{\sigma} \in \mathbb{R}^N$ to denote the function values at the observed data points:

$$\bar{f}_n := f(X_n)$$
$$\bar{\sigma}_n := \sigma(X_n).$$

MAP estimation

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

We must first recover $\bar{f} \in \mathbb{R}^N$ and $\bar{\sigma} \in \mathbb{R}^N$. By Bayes' rule

$$p(\bar{f}, \bar{\sigma}|Y, X) = p(Y|\bar{f}, \bar{\sigma}) \underbrace{\frac{p(\bar{f}|X)p(\bar{\sigma}|X)}{p(Y|X)}}_{p(Y|X)}.$$

As is standard, we consider the negative log likelihood. The recovery of \bar{f} and $\bar{\sigma}$ is given as the solution to the problem

$$\bar{f}^*, \bar{\sigma}^* = \underset{\bar{f}, \bar{\sigma}}{\arg\min} - \ln(p(\bar{f}, \bar{\sigma} | Y, X)).$$
(1)

MAP estimation

GPs for SDEs

Using our graph and our prior on \bar{f} and $\bar{\sigma}$:

$$-\ln p(\bar{f},\bar{\sigma}|Y,X) \propto \mathcal{L}(\bar{f},\bar{\sigma}) := \underbrace{(Y - \Lambda \bar{f})^T (\Sigma + \lambda I)^{-1} (Y - \Lambda \bar{f}) + \sum_{n=1}^N \ln(\bar{\sigma}_n^2 \Delta t_n + \lambda)}_{+\underbrace{\bar{f}^T K(X,X)^{-1} \bar{f}}_{-\ln p(\bar{f}|X)} + \underbrace{\bar{\sigma}^T G(X,X)^{-1} \bar{\sigma}}_{-\ln p(\bar{\sigma}|X)}.$$

where Σ is a diagonal matrix with entries $\bar{\sigma}_n^2 \Delta t_n$, and Λ is a diagonal matrix with entries Δt_n .

The recovery of f, σ is reduced to the minimization of $\mathcal{L}(\bar{f}, \bar{\sigma})$.

Motivation

Computational Graph Completion

Kernels learn from data

Numerical Results

References

Alternative minimization

GPs for SDEs

Representer theorem

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

For any given $\bar{\sigma}$, the minimizer in \bar{f} of $\mathcal{L}(\bar{f},\bar{\sigma})$ is

$$ar{f}^*(\sigma) := rgmin_{ar{f}} \mathcal{L}(ar{f},ar{\sigma}) = \mathcal{K}(X,X) \Lambda \Big(\Lambda \mathcal{K}(X,X) \Lambda + \Sigma + \lambda I \Big)^{-1} Y$$

Using the representer theorem, and plugging $f^*(\sigma)$ into the original loss, the minimization in σ is:

$$\mathcal{L}(\bar{f}^*(\sigma),\bar{\sigma}).$$

The function $\mathcal{L}(\bar{f}^*(\sigma), \bar{\sigma})$ is non-convex and difficult to minimize. We use a gradient descent based method with an adaptive step size and momentum.

Table of Contents

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

Motivation

Computational Graph Completion

3 Kernels learned from data

4 Numerical Results

Motivation

GPs for SDEs

Motivation

Computationa Graph Completion

Kernels learned from data

Numerical Results

References

Learning the hyper-parameters θ of the kernel functions K and G can drastically improve the performance of the recovery and prediction.

Figure: Two forecasts: non-learned kernel (left) and data learned kernel (right).

To this end, we use a randomized cross-validation approach to learn the kernels from data.

General principle

 $\mathsf{GPs}\xspace$ for $\mathsf{SDEs}\xspace$

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

Randomized cross validation for kernel hyper-parameters relies on two principles

- Cross validation: optimize the model on a subset D_Π of the data and measure the performance on a withheld subset D_{Π^c}, using some metric L_{CV}.
- Randomized: as proposed in [OY19], sample subsets (D_Π, D_{Π^c}) randomly and use this noisy loss to optimize the hyperparameters θ.

The use of a random samples often leads to a choice of hyper-parameters $\pmb{\theta}$ which is more robust.

We iteratively sample cross-validation sets and select the best parameters $\boldsymbol{\theta}$ using a Bayesian optimization algorithm to minimize the

$$\mathcal{L}_{\mathsf{CV}}(\boldsymbol{\theta}; \bar{f}_i^*, \bar{\sigma}_i^*, \mathcal{D}_{\Pi_i}) = -\ln p(Y_{\Pi_i} | \bar{f}^*, \bar{\sigma}^*).$$

Table of Contents

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

Motivation

Computational Graph Completion

3 Kernels learned from data

4 Numerical Results

Numerical results

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

For our numerical experiments, we consider several systems

$$\begin{split} dX_t &= \sin(2k\pi X_t)dt + b\cos(2k\pi X_t)dW_t & \text{Trigonometric process.} \\ dX_t &= \mu X_t dt + b\exp(-X_t^2)dW_t & \text{Exponential decay volatility.} \\ dX_t &= \mu X_t dt + \sigma X_t dW_t & \text{Geometric Brownian motion (GBM).} \end{split}$$

We use the Matérn Kernel with smoothness parameter $\nu = \frac{5}{2}$:

$$\mathcal{K}_{\mathsf{Matern}}(x,y) = \sigma^2 \Big(1 + rac{\sqrt{5}||x-y||}{l} + rac{5||x-y||^2}{3l^2} \Big) \exp\Big(- rac{\sqrt{5}||x-y||}{l} \Big).$$

In this case, the parameters are $\boldsymbol{\theta}=(\sigma,l).$

Trigonometric process

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

$dX_t = \sin(2k\pi X_t)dt + b\cos(2k\pi X_t)dW_t$ Trigonometric process.

Figure: The trigonometric process.

GPs for SDEs

Trigonometric process

Computational Graph Completion

Kernels learned from data

Numerical Results

References

Figure: Recovery of the drift and diffusion

Figure: Forecast of the drift and diffusion.

Exponential decay volatility

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learned from data

Numerical Results

References

Figure: Exponential decay volatility process

Exponential decay volatility

GPs for SDEs

Motivation

Computationa Graph Completion

Kernels learned from data

Numerical Results

References

Figure: Forecast: non-learned kernels.

Figure: Forecast: learned kernel.

GBM

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

$dX_t = \mu X_t dt + \sigma X_t dW_t$ Geometric Brownian motion (GBM).

Figure: Geometric Brownian motion

GBM

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

For GBM, the linear kernel

$$K_{\text{linear}}(x,y) = \sigma^2(x^{\mathsf{T}}y + c)$$

is better specified than the Matérn kernel. Optimizing the hyper-parameters yields similar performance to a well specified kernel.

Figure: Forecast: linear kernel, non-learned kernel and learned kernel.

Contributions

GPs for SDEs

Motivation

Computational Graph Completion

Kernels learne from data

Numerical Results

References

The proposed methods

- Provide a general framework to recover the drift and diffusion of SDEs using a small number of observations.
- Provide a framework to optimize the parameters of covariance functions for this problem.

Preprint available (to be updated) [Dar+22]

mdarcy@caltech.edu

Bibliography

GPs for SDEs

Motivation

Computationa Graph Completion

Kernels learne from data

Numerical Results

References

[Dar+22] Matthieu Darcy et al. One-Shot Learning of Stochastic Differential Equations with Computational Graph Completion. Feb. 2022. DOI: 10.13140/RG.2.2.32262.65604. URL: https://www.researchgate.net/publication/358263232_One-Shot_Learning_of_Stochastic_Differential_Equations_with_ Computational Graph Completion.

[Owh21] Houman Owhadi. Computational Graph Completion. 2021. DOI: 10.48550/ARXIV.2110.10323. URL: https://arxiv.org/abs/2110.10323.

[OY19] Houman Owhadi and Gene Ryan Yoo. "Kernel Flows: From learning kernels from data into the abyss". In: Journal of Computational Physics 389 (2019), pp. 22-47. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2019.03.040. URL: https://www.sciencedirect.com/science/article/pii/ S0021999119302232.