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Abstract

The OpenMonkeyChallenge [1] (OMC) is a benchmark
challenge proposed to apply pose tracking algorithms to
Non-Human Primates (NHP) using a new dataset contain-
ing over 100,000 annotated images of primates in natural
habitats. The annotations contain 17 body landmarks on
data covering a wide variety of 26 species of monkeys. Our
project outlines an adapted model for this challenge featur-
ing Enhanced CPM with U-Net Architecture, and compares
that model against two established baselines, the Simple
Baselines for Human Pose Estimation [2], and the Open-
Pose model using a Convolutional Pose Machine [3]. Our
Enhanced CPM model, despite being significantly less effi-
cient than the CPM baseline in terms of training time, was
able to extract higher resolution features from our data, and
outperformed the baseline by a significant margin.

1. Introduction

The OMC serves to expand a growing sector of com-
puter vision research focused on tracking body landmarks
in animals [4]. This type of research provides many useful
tools to related fields in ecology, conservation, biomedicine,
neuroscience, and psychology. Despite the usefulness of
this type of research on primates, NHPs remain an outlier
among species regarding this task, as their homogeneous
body texture and wide array of body positions pose a chal-
lenge for the available pose classification models [5]. Previ-
ous research in this field has either been limited to smaller
and less expansive datasets, or the datasets used have been
in less useful clinical settings, rather than in more natural
backgrounds. With this new larger dataset, we aim to beat
the previous baseline of classification tools on this new data.
Models solving the problem are evaluated on three key met-

rics: mean per joint position error (MPJPE) [6], probability
of correct keypoint (PCK) [7], and average precision (AP)
based on object keypoint similarity (OKS) [8]. The entries
are then ranked on a leaderboard

2. Related Work

The goal of the OMC is to achieve performance bench-
marks on NHPs that are comparable to human pose recog-
nition. When evaluating that goal we first acknowledge that
the most successful state-of-the-art pose recognition mod-
els that exist today focus on humans, with some advanced
models training 2D and 3D pose models simultaneously [9].
Some of the most promising existing methods include con-
volutional pose machines [3], and CNNs combined with
an expressive deformable mixture of parts [10]. There are
also top-down models including Simple Baselines for Hu-
man Pose Estimation [2], DeepLabCut with ResNet [11],
and HRNet-W32 [12]. Other models use adaptive point
calculation to reduce computation times [13], and some
more specialized models implement video tracking com-
bined with inertial sensors to create a real-time model of
active movements [14], or generate full mesh representa-
tions of pose movements [15]. When transitioning from
the many available human pose recognition models to NHP
pose recognition, we focus on the ones extracting simple
two-dimensional pose landmarks, among which current re-
search finds Deep Neural Networks are among some of the
most effective techniques [16]. Models built from ImageNet
training data, which includes more animals and variety in
pose structures, tend to perform better on nonhuman sub-
jects [17]. We also observe that some of the most successful
advancements in human pose recognition have come from
self-supervised learning methods [18], and that a key piece
of closing the performance gap between human and NHP
pose recognition might be in improving the self-supervised
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learning algorithms for this type of problem [19]. Some al-
gorithms such as DeepLabCut, have already been explored
for non-human pose estimation in other species of animals
and insects [20], but an extensive study of this algorithm has
not been conducted on NHPs.

3. Baselines

3.1. Simple Baselines for Human pose Estimation
and Tracking

In this section we will explore the Simple Baseline for
Human Pose Estimation and Tracking, as published by Bin
Xiao et. al. through Microsoft Research in 2018. [2]. We
will be looking specifically at the ResNet101 implementa-
tion of the model.

High-resolution representation learning plays an essen-
tial role in many vision problems, e.g., pose estimation and
semantic segmentation. In this paper, the authors attempt
to build upon this concept by introducing a simple yet ef-
fective modification to the existing process. Unlike pre-
vious implementations where only the representation from
the high-resolution convolution was augmented, the authors
of this paper take it a step further by augmenting the high-
resolution representation by aggregating the upsampled rep-
resentations from all of the parallel convolutions instead. It
is trivial to see why this was chosen as the ”simple” imple-
mentation, as one can safely say that this model provides
the best ease of generating heatmaps over both deep and
low resolution features.

We implemented a modified version of the Simple Base-
line ResNet 101 architecture designed to train a network on
the OpenMonkey data. Making the necessary changes to
this model proved challenging, as at the beginning of this
project we were relatively inexperienced with deep learning
frameworks. The entire data loading/processing pipeline
had to be reworked, the structure of the network altered to
accept the new configuration and number of joints that were
being tracked, and the accuracy calculations added to com-
pare to the rest of the tested models. After implementing
these modifications, it was successfully trained on the data,
producing the accuracy metrics outlined in Table 1 below.

MPJPE PCK@0.2 PCK@0.5 mAP
0.093 0.851 0.965 0.654

Table 1: Simple Baseline ResNet101 Performance Evalua-
tion

In Figure 1, we can see an example image of predicted
points against the ground truth labels, we can see in this ex-
ample that the points for the tail, hind legs, and eyes strug-
gle the most. This makes sense in regards to the model as
these are the points that differ the most from pose tracking

on humans. The overall uniform color distribution of the
monkeys combines with the more complicated pose struc-
tures seem to pose a significant challenge for the Simple
Baseline model.

Figure 1: A selection of joint heat map predictions com-
pared to the ground truth values [21]

In Figure 2, it’s once again clear that the prediction loca-
tions for certain joints are completely incorrect, but also that
the generated heatmap prediction area is often not very pre-
cise, with the range of prediction areas spread widely over
the monkey’s body. Our proposed model tackles this prob-
lem head on by extracting more precise higher dimensional
heatmaps from the image, which will be discussed in a later
section.

Figure 2: A selection of joint heat map predictions com-
pared to the ground truth values [21]

3.2. Convolutional Pose Machines

A state-of-the-art approach in the trend of using deep
learning to improve pose estimation, convolutional pose
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machines (CPMs) uses a pose machine framework [22] that
utilizes convolutional neural networks to learn spatial mod-
els of the relationships between parts [10]. Convolutional
pose machines have competitive results on standard datasets
including the MPII, LSP, and FLIC datasets.

Classical approaches in pose estimation have tradition-
ally involved the pictorial structures model which expresses
the spatial correlations between body parts with a graphi-
cal tree model [23]. The authors of CPMs stray away from
this approach, stating that this model is prone to occlusion
errors, limited in its ability to capture poses with its tree
structure, and less flexible. Instead, CPMs builds upon the
pose machines model and uses belief maps to develop an
expressive non-parametric method that gives probabilities
of the locations of the parts of the body at each coordi-
nate of the image with a sequential prediction framework
that refines the estimates with each stage [22]. The key dif-
ference between CPMs and pose machines is convolutional
pose machines recognize the power of convolutional neu-
ral networks to learn implicit spatial models of each part
of the pose and employs these models to refine the belief
maps at each stage of the sequential prediction framework.
This results in a powerful model that is capable of encoding
complex spatial relationships without priors or a parametric
form.

One limitation of CPMs is the vanishing gradient prob-
lem. Because CPM is a composition of multiple convo-
lutional neural networks, we deal with a model containing
many layers which leads to diminishing strength in weights
in the backpropagation. For our paper specifically, we faced
issues with our parameters not being optimized enough, and
coupled with the fact that we had some limitations on the
hardware we were using to train our model. This also led
to us not being able to match the author generated model.
In the paper, they had an accuracy of about 0.074 MPJPE
or 0.761 PCK@0.2, but we were only able to achieve about
0.105 MPJPE or 0.872 PCK@0.2. Figure 3a and 3b show
our qualitative result from the CPM implementation.

MPJPE PCK@0.2 PCK@0.5 mAP
0.105 0.872 0.978 0.590

Table 2: CPM Baseline Performance Evaluation

4. Initial Approach
Our first idea for a proposed method in primate pose es-

timation addresses the vanishing gradients problem in CPM
[10] during training by providing a natural learning objec-
tive function that enforces intermediate supervision. More-
over, CPM is a human pose estimation model and we can
see that it doesn’t perform very well when annotating pri-
mates because of it low generalizability. We planned to

(a) Keypoints (b) Feature Heatmaps

Figure 3: CPM Baseline Generated Keypoints and
Heatmaps

approach this problem using CPM as the backbone net-
work and modify the training procedure to include self-
supervised learning inspired from [21]. The algorithm for
the training process was planned to be as follows:

Figure 4: Training procedure for pseudo label training [21]

1. Execute a fully supervised training on a small, in-
domain labeled dataset Dlabeled.

2. Use early stopping to select the weights of the epoch
with the best score on the validation set.

3. Next, generate pseudo labels which are created from
the network itself.

4. Based on the selected weights, pseudo labels are gen-
erated for all unlabeled images of the training set, re-
sulting in the pseudo label dataset DPL,1 for the first
iteration. [21]

5. Afterwards, start the first self-supervised training itera-
tion by training a new neural network on the generated
pseudo label dataset DPL,1, starting from pretrained
weights from the OpenMonkeyChallenge dataset.

6. Again, the best weights according to the validation
score are selected.

7. In the next step, fine-tuning based on the selected
weights with Dlabeled. The best weights according to
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the validation results are determined and used to gen-
erate updated pseudo labels DPL,2.

8. Then, the next self-supervised training iterations are
executed similar to the first one as indicated in Figure
1.

After performing this routine, the network can be fur-
ther improved by introducing pseudo labels mentioned in
Table 1 by selecting the best pseudo labels[21] using the
predictions generated with the raw images and add predic-
tion results of a horizontally flipped image and results from
randomly chosen augmentations to the prediction set. Pre-
dictions with low confidence score are discarded. The mean
squared error (MSE) in pixels between the base prediction
and augmented predictions is calculated. Now, we select
the predictions with the lowest MSE for the pseudo label
dataset per keypoint, resulting in an equal number of pre-
dictions for each keypoint. As pseudo labels, the base pre-
dictions are used instead of the mean over all predictions,
as single outliers could shift the mean enormously and the
predictions on augmented images are less accurate as they
are harder for the model.

The implementation of Enhanced CPM with Self-
Supervised Learning was expected to cut down training
time significantly and make already existing CPM model
more efficient and generalized, however, while implement-
ing the self-supervised learning model, our team observed
that the model is too complicated and does not produce the
expected result from [21] when trained on the OMC data
set. Furthermore, Self-Supervised learning model did not
fix the generalizability issue of most proposed models [1].
For the sake of time to produced a plausible results, we
switch our implementation from a self-supervised learning
model to a Enhanced CPM with U-Net Architecture.

5. Proposed Approach
In the CPM model, there is a module in the architecture

that is composed of three successive pairs of a convolutional
layer and a pooling layer to learn the convolutional feature
map used to predict the belief maps at each stage. Seeing
that this feature map is downsampled to a shape eight times
smaller than its original dimensions, we believe a lot of in-
formation from the high-resolution representations is lost.
Taking inspiration from HR-Net [24], we wanted to use a
design that would incorporate both high-resolution and low-
resolution features in learning important convolutional fea-
tures for predicting the belief maps.

We utilize U-Net [23] to build upon the CPM model.
We modify and extend this architecture such that it works
with the OpenMonkeyChallenge training features to obtain
more precise predictions. The main idea is to replace the
part of the CPM model that learns the convolutional feature

map with the U-Net architecture which preserves the origi-
nal shape of the input.

Therefore, these layers improve the output resolution.
High resolution characteristics from the contracting route
are merged with the upsampled output to localize. Based on
this knowledge, a subsequent convolution layer can learn to
create a more exact result. One significant change in our
design is that we now have a large number of feature chan-
nels in the upsampling section, allowing the network to pass
context information to higher resolution layers.

As a result, the expanding path is roughly symmetrical to
the contracting path, resulting in a u-shaped structure. The
network employs just the valid component of each convo-
lution, i.e., the segmentation map only comprises the pix-
els for which the whole context is accessible in the input
picture. By using an overlap-tile method, this strategy en-
ables for the smooth segmentation of arbitrarily huge pic-
tures (see Figure 2). The missing context is extrapolated by
mirroring the input picture to forecast the pixels in the im-
age’s border region. This tiling method is necessary for ap-
plying the network to huge pictures, as the resolution would
otherwise be restricted by GPU memory.

Separating contacting items of the same class is another
issue in many cell segmentation tasks. To achieve this, we
propose using a weighted loss function, in which the sepa-
rating background labels between contacting cells are given
a high weight in the loss function.

Figure 5: U-net Architecture [23]

The network design, as shown in Figure 4, consists of
a contracting path (left side) and an expansive way (right
side) (right side). The convolutional network’s contracting
route follows the standard architecture. Following [23], our
model consists of two 3x3 convolutions (unpadded convo-
lutions) performed twice, each followed by a rectified linear
unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling.

The number of feature channels doubles with each down-
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sampling step. An upsampling of the feature map is fol-
lowed by a 2x2 convolution (”up-convolution”) that halves
the number of feature channels, a concatenation with the
proportionally cropped feature map from the contracting
route, and two 3x3 convolutions, each followed by a ReLU.
The loss of boundary pixels in each convolution necessitates
cropping. Each 64-component feature vector is mapped to
the required number of classes using a 1x1 convolution at
the final layer.

6. Results

6.1. Heatmaps Generated

(a) CPM (b) CPM U-Net

Figure 6: Comparison of Generated Heatmaps Between
CPM and CPM + U-Net

(a) CPM (b) CPM + U-Net

Figure 7: Another Comparison of Generated Heatmaps Be-
tween CPM and CPM + U-Net

We see that there is a large difference in the level of pre-
cision present in the heatmaps that are generated, specif-
ically apparent in the sections like Right Ankle, Tail and
Left Wrist in Figure 6, we can see that the CPM + U-Net
model has an error that is more localised than the CPM
based model. From this result we can conclude that our
higher resolution belief maps resulted in a more precise and
localized prediction for the pose estimation.

The result appears to corroborate our hypothesis that the
predictions are made more accurate due to the larger size of
the belief map generated by the CPM + UNet model, being

much larger than that of CPM, which also contributes to the
computational complexity and runtime.

6.2. Data Accuracy

From the data below, we see that the CPM + U-Net
model beats our baselines in every category. Most notably,
we see that the mean per joint position error (MPJPE) and
the mean average precision (mAP) metrics are quite larger
than the baselines. We believe this can be attributed to
the shape preserving nature of the CPM + U-Net model as
well as being able to incorporate high-resolution and low-
resolution representations to predict the belief maps.

Method MPJPE PCK 0.2 PCK 0.5 mAP
ResNet101 0.093 0.851 0.965 0.654

CPM 0.105 0.872 0.978 0.590
CPM + U-Net 0.071 0.939 0.991 0.786

Table 3: Performance Evaluation Comparison Between
Baselines (ResNet101, CPM) vs Proposed Enhanced CPM
with U-net

7. Future Work
Looking forward we want to optimize the Enhanced

CPM with U-net architecture to train faster with a more
reasonable time on OMC dataset to annotate primate’s
poses and surpasses performance of other proposed meth-
ods based on the criteria mentioned in the OMC. Additional
tests on generalizability will be performed and compared
with the two established baselines: [2] and [3]. We can try
to tune the hyper-parameters better in order to ensure higher
accuracy. We also aim to develop better model to integrate
high and low resolution features, but without the computa-
tional expense. It would be possible for us to improve the
network performance with pseudo labels that were earlier
mentioned in Table ones by better selecting the ones that
we choose to employ in our network.

8. Conclusion
By storing and training on high resolution heatmap our

model captures a more precise representation of the ex-
tracted image features used to locate the points of the es-
timated post. Because of this higher resolution representa-
tion, it also takes significantly longer to run than our CPM
baseline [3], by utilizing U-net, we have to store and train
on high resolution heatmaps to get the benefits of the higher
precision. The final output generated by our model was
trained on an RTX 3080 for 6 days to reach a reasonable
convergence, compared to 8-12 hours for our baselines. The
extracted features, while more detailed, don’t contain fun-
damentally different information than the baseline, as they
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capture a lower definition version of the same belief maps
used to generate the predictions. With our model, we do not
downsample using the U-Net architecture, so it is 30x times
more computationally expensive to train the model, because
of this, our model couldn’t be trained as thoroughly, but still
over-performs our recorded baseline statistics. Overall our
approach to the problem of pose tracking on NHP resulted
in a more accurate and precise model for calculating pose
estimations, but at the cost of a longer training time and
wider data pipelines. In the future we would like to take a
look at optimizing the upsampling methods to make them
more efficient, to allow this architecture to close the gap in
training times compared to traditional CPM. We hope the
advances made in our testing can help to further research
efforts in the field.

9. Group Responsibility
Reese Kneeland: Implementing Simple Baseline, imple-

menting data pipeline and heatmap generation for CPM U-
Net model, wrote abstract, introduction, related work, and
Simple Baseline sections.

Matthew Choi: Implemented the CPM Baseline model,
proposed the CPM U-Net variant architecture, wrote the
CPM U-Net model code, wrote the training and prediction
modules of the model, contributed to the convolutional pose
machines, proposed approach, and heatmaps sections.

Ninh Tran: Attempt to implement Self-Supervised
Learning on top of CPM, wrote part of the proposed ap-
proach section, review and made edits on limitation, future
work, Convolutional Pose Machines sections.

Rijul Mahajan: Background research on baselines and
attempted implementation, developed paper and presenta-
tion slides structure, contributions to proposed approach,
results, future work, related work sections.

10. Code Links and CodaLab Submissions
The finished code for our proposed model can be found

at: https://github.com/MattyChoi/PoseEstimation
The CodaLab submissions for our Baseline models were

submitted under the name choix709, while the results for
our final model were submitted under mahaj068.
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