Skip to content

MaybeRex/FourBar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FourBar

A node.js program for a fourbar position analysis using the vector method. This library encompasses the angles of all the links and their position vectors along with the transmission angle.

#FourBar Position Analysis

This library makes for quick and easy position analysis of a simple four bar linkage. Positions may be put through a simple derivative to obtain velocities and accelerations. For a better understanding of linkages and how to engineer linked mechanisms, see Robert L. Norton's Design of Machinery. Inside this text are in depth explanations of linkages and their uses.

##Methods

Method call Parameters Description
type N/A 'VectorMethod'
linkageType inputLength, couplerLength, outputLength, groundLength Returns type of linkage
couplerAngle inputLength, couplerLength, outputLength, groundLength, inputAngle Returns and Object with open and crossed configuration angles of coupler link from the positive x-axis based on the input link angle in Radians
outputAngle inputLength, couplerLength, outputLength, groundLength, inputAngle Returns and Object with open and crossed configuration angles of output link from the positive x-axis based on input link angle in Radians
couplerVector inputLength, couplerLength, outputLength, groundLength, inputAngle, deltaAngle Returns Objects of the real and imaginary components of both the crossed and open configurations based on the input angle in Radians + an optional delta as seen below
outputVector inputLength, couplerLength, outputLength, groundLength, inputAngle, deltaAngle Returns Objects of the real and imaginary components of both the crossed and open configurations based on the input angle in Radians + an optional delta as seen below
inputVector inputLength, couplerLength, outputLength, groundLength, inputAngle, deltaAngle Returns the real and imaginary components of the input link + an optional delta

##Parameters

In the image below, input is represented by s, the coupler is p and the output is u. Driving angle is Theta 2 and the deltas are for creating ternary links.

image

##Example

Below is a vary basic example to show how fast calculations can be made

const FourBar = require('fourbar');
const four = new FourBar;


let output;
let coupler;
let transmission;

const link1 = 20;
const link2 = 10;
const link3 = 10;
const link4 = 10;
angle = (75 * (Math.PI/180));


output = four.outputAngle(link2, link3, link4, link1, angle);
coupler = four.couplerAngle(link2, link3, link4, link1, angle);
transmission = four.transmissionAngle(link2, link3, link4, link1, angle);

console.log(`Crossed output angle ${(output.crossed * (180/Math.PI))} \n`);
console.log(`Open output angle ${(output.open * (180/Math.PI))} \n`);
console.log(`Crossed coupler angle ${(coupler.crossed * (180/Math.PI))} \n`);
console.log(`Open coupler angle, ${(coupler.open * (180/Math.PI))} \n`);
console.log(`TYPE: ${four.linkageType(link2, link3, link4, link1, angle)} \n`);
console.log(`Crossed transmission angle ${(transmission.crossed * (180/Math.PI))} \n`);
console.log(`Open transmission angle ${(transmission.open * (180/Math.PI))} \n`);

About

a node.js program for a fourbar position analysis using the vector method

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published