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A Parametric Design Method for Engraving
Patterns on Thin Shells

Jiangbei Hu, Shengfa Wang, Ying He, Zhongxuan Luo, Na Lei, Ligang Liu

Abstract—Designing diverse, lightweight, and physically viable thin-shell structures is challenging for traditional heuristic methods. We
tackle the challenges by developing a novel parametric design framework for engraving regular, irregular, and customized patterns on
thin-shell structures. Our method optimizes the pattern parameters (e.g., size and orientation) to ensure structural stiffness under
specified material consumption. Our method distinguishes itself from the existing techniques in that it works directly for shapes and
patterns represented by functions and can engrave patterns via simple function operations. By completely avoiding the tedious and
expensive remeshing step in the traditional FEM methods, our method is more computationally efficient in optimizing mechanical
properties. It can substantially enrich the diversity of shell structure design. The quantitative evaluation confirms the convergence of the
proposed method. We conduct experiments on regular, irregular, and customized patterns and present 3D printed results to
demonstrate the effectiveness of our approach.

Index Terms—Parametric design, pattern engraving, structural optimization, thin shells

✦

1 INTRODUCTION

THIN-shell structures carry loads with their thin and
curved shapes, which are particularly elegant and effi-

cient. They can be seen in our living environment in a wide
range of dimensions, providing a visual experience of artis-
tic beauty while satisfying mechanical properties [1], [2]. Re-
cently, surface design based on shell structures has received
increased interest from both artists and researchers [3], [4],
[5]. Among them, engraving is a popular way to design
shell structures [6], [7]. After exquisite engraving, the shell
structures can have a higher sense of art and lead to medical
or lightweight applications [8], [9].

The development of modern computer graphics tech-
niques has led to an increasing diversity of engraving
design methods for shell structures, such as those based
on texture synthesis [10], tessellation [3], and repetitive
patterns [11]. Most existing approaches focus on explicit
representation like polygon meshes, which is not conducive
to structural analysis and optimal tuning. As a material
reduction process, the core problem of engraving design is
to maintain the mechanical properties and functions of shell
structures in the design process. Due to the high complexity
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of topology and geometry of engraved shell structures,
it is time-consuming to apply traditional finite element
methods(FEM) [12], [13] to mechanical response analysis.
Moreover, design, analysis, and optimization are often sep-
arated in the existing design techniques, and repetitive re-
meshing is often required at different stages [14]. Due to
a lack of unified representation and effective optimization
techniques, engraving design on shell structures is non-
trivial.

In this paper, we propose an implicit, parametric method
to design lightweight and physically viable thin-shell struc-
tures. As shown in Fig. 1, we complete the design by
distributing repetitive patterns on the input shell and en-
graving them. Furthermore, we optimize the attributes of
patterns, such as sizes and orientations, to improve the
stiffness of the engraved shell structure. We represent the
input shell and patterns as implicit functions that can con-
duct design, analysis, and optimization directly. Since we
avoid explicit model generation and remeshing analysis, our
method can improve efficiency on the premise of sufficient
accuracy compared with the conformal mesh method based
on traditional FEM. In our scheme, the patterns can either be
hollowed or remain solid, and we refer to the latter as a dual
engraving design, as shown in Fig. 1(e). Also, because of the
inherent implicit property of our method, dual design can
be accomplished by simple function modification. We imple-
mented our (dual) engraving design scheme on various shell
models and illustrated the effectiveness and efficiency of the
method through simulations and comparative experiments.

We summarize our contributions as follows:

• We propose a parametric design method for pat-
tern engraving on thin shell structures based on
functions, which can directly represent and design
different types of patterns on shells by executing the
function operations.

• Based on the implicit representation, we adopt effi-
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Fig. 1. We develop a parametric design method for engraving patterns on thin-shell structures. It not only enriches design diversity but also
enables efficient optimization to improve the stiffness of the structures. (a) Given an input shell model with external loads, we generate the Voronoi
tessellation for the medial surface of the shell. (b-d) The optimized shells are (under volume constraint 80%) engraved respectively by regular,
irregular, and customized patterns. We use implicit functions to represent all patterns in our scheme. (e) Our method supports dual engraving
design (remain patterns as solid) via simple function modifications and also guarantees the mechanical properties using the same optimization
frame.

cient modeling and optimization of structural stiff-
ness for engraved thin-shell structures. We solve the
optimization problem directly on the implicit repre-
sentation without remeshing. Computational results
show that our method converges quickly.

• Simple function modifications can yield different de-
sign solutions. Our framework enriches the diversity
of thin-shell structures, which can be applied to
physically viable applications, such as medical gears
and furniture light-weighting.

2 RELATED WORKS

The development of 3D printing has made it possible to
manufacture structures with complex shapes. Meanwhile,
many designing and optimization methods based on the-
ories such as computer graphics and structural mechanics
have been proposed [15], [16], which can be used to design
structures with rich shapes and specific functionalities. The
following discusses approaches that are relevant to our
work.

2.1 Surface Design on Shells

Designing on thin-shell models has always been a common
way for people to create art [17], [18], not only with tra-
ditional techniques like paper-cutting and openwork but
also many delicate and complex design techniques have
appeared recently with the promotion of computer-aided
methodology [19], [20].

Texture synthesis. Mature texture synthesis techniques
can be used naturally for surface design [21]. Dumas et
al. [10] proposed the first method to synthesize textures
along a curved surface for digital fabrication. Chen et al. [4]
took filigree synthesis design as a packing problem, rep-
resenting a surface with a set of specified base elements
and eventually manufacturing fully connected patterns with
good structural performance. In contrast to approaches that
generate textures based on basic pattern elements, Zehnder
et al. [22] adopted to map planar curves to arbitrary sur-
faces, which can create structurally-sound curve networks
over complex surfaces with a wide variety of aesthetic
appeals.

Image carving. Projecting images onto objects and carv-
ing them is a traditional decorative technique, but it has
been developed thanks to modern technologies. Yang et
al. [6] proposed a framework for carving binary images
on 3D surface models, which formulates the image carv-
ing into image details adaption and structure enhancement
problems, and obtains 3D printable and physically-sound
designed models. Such techniques can make ordinary ob-
jects exquisite and elegant [23].

Tessellations. The compact partition of the space results
in a tessellation, a natural and beautiful design shape.
Voronoi diagram is one of the potent tools in surface shell
design. Pietroni et al. [3] study the relation between optimal
anisotropy and density of a grid-shell structure w.r.t. a given
stress field and propose a new method to improve the
static performance of a grid-shell structure by optimizing
its tessellation only. Stadlbauer et al. [7] decomposed the
curved surface into a Voronoi-shaped cellular skeletal struc-
ture which supports a set of covering shells. Zhang et al. [8]
and Rao et al. [9] performed carving designs on personal-
ized orthopedic casts based on Voronoi tessellations, which
comfort patients while ensuring lightweight and mechanical
properties. Similarly, Ahsan et al. [24] designed honeycomb-
like patterns on thin-shell objects. Rib-shell structures based
on polygonal meshes are often used in architecture for
enhanced stability and ornamentation [25]. Peng et al. [26]
present a framework to create mesh patterns that consist of
a hybrid of triangles and quads, based on which the artistic
design of surface shells is carried out.

Repetitive patterns. Like tiling, designing repetitive pat-
terns to be distributed on curved surfaces is one of the
decorative options [19]. The dual shape tiling algorithm
developed by Liu et al. [5] yields new manufacturing appli-
cations such as decorative window blinds and flexible tiling
patterns. Schumacher et al. [11] proposed an automatic
optimization algorithm using stencils to design surface shell
models, which can optimize stencil parameters with both
pattern distribution and stability objectives. Nevertheless,
this method simplifies the computational model substan-
tially at the cost of losing accuracy. Distinctively, we design
and optimize various patterns engraving directly on func-
tion representation. Our engraving framework is different
from existing methods in terms of problem formulation and
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optimization strategy, which is efficient and significantly
enriches the diversity of shell design.

2.2 Structural Optimization

Structural and topology optimization technology has greatly
promoted the development of the design and manufactur-
ing field [27].

Topology optimization. Classic topology optimiza-
tion methods include Homogenization method [28], Solid
Isotropic Material with Penalization (SIMP) [29], level-set
methods [30], and evolutionary methods [31]. However,
these methods usually have high computational costs and a
large number of optimization variables. The Moving Mor-
phable Components (MMC) method [32], [33] based on
implicit functions expression is able to reduce the computa-
tional cost, thereby has attracted more and more attention.
Hu et al. [34] also took advantage of the implicit function
representation of triply periodic minimal surfaces to op-
timize the construction of porous structures. Inspired by
the implicit optimization method, we propose a parametric
design framework for thin-shell structures, which is totally
represented, analyzed, and optimized by implicit functions.

Structural design. Topology optimization methods en-
rich structures’ diversity and complexity and simultane-
ously meet physical properties. There are various struc-
tures with different shapes designed based on struc-
tural optimization, such as frame structure [35], [36], [37],
honeycomb-like structures [38], self-support structures [39],
[40], porous structures [41], [42], and so on. The structures
are optimized to improve the strength of models [43],
the balance [44], or adjust the behaviors [45], [46]. Wu et
al. [47] proposed a bone-like porous structure using the
SIMP method under local volume constraints. Martı́nez et
al. [48] propose a framework based on topology optimiza-
tion, which not only enables the structure to possess de-
sirable physical properties but also controls the appearance
of the structure according to a user-specified pattern. We
also design the appearance and physical properties of shells
based on topology optimization, with the difference that we
use an implicit approach.

3 OVERVIEW

We propose a parametric design method for (dual) en-
graving design on thin-shell structures. The pipeline is
shown in Fig. 2. First, we construct three types of patterns
using function representations, including regular patterns,
irregular patterns, and user-specified personalized patterns.
These patterns have adjustable properties, such as positions,
orientations, and sizes, that can be controlled by parameters
(Sec. 4). Then, the patterns are used for engraving on the
shell structures. Since we represent the input shells by
their signed distance fields, the functional Boolean operation
can be performed between the patterns and shell models.
Finally, to ensure the soundness of the engraved shell struc-
tures, we introduce an optimization model of the structural
mechanics problem. With the minimum strain energy as
the objective and the given volume as the constraint, the
framework can optimize the attribute variables of patterns
according to the structural response analysis. The optimized

(dual) engraved shell structures can be simply represented
by the zero iso-surfaces of functions (Sec. 5). We have
successfully implemented our algorithm on various shell
models and have done multiple sets of experiments to
validate the effectiveness and robustness of our framework
(Sec. 6).

4 PARAMETRIC DESIGN

We use implicit functions in our framework to represent
both input models and patterns. As a result, we transfer the
complex structure optimization into a controllable param-
eters design problem, which can be solved in an efficient,
robust, and extendable manner.

4.1 Patterns

We propose three types of patterns for engraving design
on thin-shell structures, including regular, irregular, and
customized ones, all of which can be represented by implicit
functions.

4.1.1 Regular Patterns

We first consider rotational symmetric regular patterns and
construct them using super-ellipsoid equations,

E(r) =

(
x̂

L1

)p

+

(
ŷ

L2

)p

+

(
ẑ

L3

)p

− 1, (1)

where r = (x, y, z)⊤ ∈ Ω is the design domain in R3, c0 =
(x0, y0, z0)

⊤ is the center coordinates of the super-ellipsoid.
Define r̂ = (x̂, ŷ, ẑ)⊤ = R(r − c0), where R = {Rij}3×3

is the rotation matrix to adjust the orientation of the super-
ellipsoid. L1, L2, and L3 are the three axes of the super-
ellipsoid, respectively, and p > 0 is the shape factor which is
an even number. The super-ellipsoid approximates a cuboid
when p increases.

Multiple super-ellipsoids can constitute rich and com-
plex pattern structures by controlling only a few parameters.
We can rotate one super-ellipsoid around its center point in
the local coordinate system to get a new pattern, as shown
in Fig. 3. Specifically, assuming that a pattern is composed
of n super-ellipsoids {Ei}ni=1, the rotation angle of the k-th
super-ellipsoid should be kπ

n , k = 1, 2, · · · , n. We compute
the orientation of super-ellipsoid Ek by the rotation matrix
Λ(kπn )R, where Λ(θ) is the z-axis rotation matrix

Λ(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (2)

The regular pattern is the Boolean union of these super-
ellipsoids {Ei}ni=1, and it can be functionally expressed as

P (r) = min(E1, E2, · · · , En). (3)

In general, a regular pattern described by
super-ellipsoids possesses designable parameters
{c0, L1, L2, L3,R, n, p}. One can optimize these parameters
according to application requirements to control the artistic
and physical properties of patterns engraved shells.
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(a) Input Shell (b) Pattern Design
and Layout

(c) Initial Engraving (d) Optimized Shell (e) Convergence Curves

Fig. 2. Illustration of the proposed implicit parametric design and optimization scheme for thin-shell models. (a) Input shell model with external loads
and strain energy map. (b) The implicit pattern design and Voronoi tessellation based layout (c) The initial engraved model with regular patterns.
(d) The optimized engraved model that obtained under a given volume(75%) with the objective of strain energy minimization. (e) The convergence
curves of the relative compliance(e/e0) and the volume.

Fig. 3. Regular patterns. The parameters n control the number of super-
ellipsoids, p > 0 the shapes of super-ellipsoids, L1, and L2 = L3 the
size of super-ellipsoids.

4.1.2 Irregular Patterns
Irregular patterns are models with free outlines that contin-
uous functions can express. These patterns are designed for
engraving based on Voronoi tessellation, which is widely
used in various applications. In our method, we utilize B-
splines to represent the irregular patterns, and we set the
vertices of the Voronoi diagram as the initial control points.
As shown in Fig. 4, given a Voronoi cell with vertices
{p0

i }mi=1, centroid c0 = (x0, y0, z0)
⊤, and outward unit

normal n, we can set up the new control points of pattern
as

pi = sp0
i + (1− s)c0, (4)

where 0 < s < 1 is a shift factor.
In order to construct a closed pattern surface using B-

spline, we design the control grid as follows (see Fig. 4(c)),

pi0 = c0 −
h0

2
n, i = 0, 1, · · · ,m,

pi1 = pi −
h0

2
n, i = 1, · · · ,m, p01 = pm1,

pi2 = pi, i = 1, · · · ,m, p02 = pm2,

pi3 = pi +
h0

2
n, i = 1, · · · ,m, p03 = pm3,

pi4 = c0 +
h0

2
n, i = 0, 1, · · · ,m,

(5)

where h0 is the thickness of the input shell structure. Then,
we implicitly represent an irregular pattern as

P (r) = ||r− c0|| − d(u, v) = 0, (6)

where d(u, v) is a distance function that can be interpolated
as

d(u, v) =

∥∥∥∥∥∥
m∑
i=0

4∑
j=0

Ni,ξ(u)Nj,η(v)pij − c0

∥∥∥∥∥∥ , (7)

where ∥·∥ is the Euclidean norm on R3, Ni,ξ(u) and Nj,η(v)
are B-spline basis functions with surface parameters u and
v [49]. We set u ∈ [−π, π], v ∈ [0, π] and adopt uniform
spaced knots. ξ and η are orders of B-spline basis functions.
In our experiments, η = 2 and ξ is used to control the
smoothness of irregular pattern. For irregular patterns, the
designable variables are {c0, s, ξ}.

(a) (b) (c)

(d) (e)

Fig. 4. Irregular patterns. (a) Our method uses a Voronoi cell with normal
to determine the shape of an irregular pattern. The user can adjust the
pattern size by shifting the control points as shown in (b). We show the
control grids in (c), and two examples of irregular patterns with different
smoothness parameters ξ in (d) and (e), respectively.

4.1.3 Customized Patterns
Customized Patterns are models with user-customized per-
sonalized outlines. A customized pattern should be a sheet
flat model whose thickness is related to the thickness of
input shell structures. To construct the customized pattern
in a standardized way, we calculate the minimum circles
that enclose the 2-dimensional outlines of the patterns [50]
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and limit the sizes of patterns by the radius of the circles.
Taking the center of a minimal circle as the center of the local
coordinate system, we can obtain a customized pattern with
thickness h0 by offsetting the plane model along the z-axis.
To unify the functional representation, we fit the customized
patterns using radial basis functions. Similarly, we apply
a scaling factor s = (sx, sy, sz)

⊤ and a rotation matrix R
to control the size and orientation of patterns. Finally, we
represent the customized pattern as the zero isosurface of
the fitted function

P (r) =
m∑
i=1

ωiφ(∥r̂− ri∥) +Q(r̂) = 0, (8)

where r̂ = s⊤R(r−c0), c0 = (x0, y0, z0) is the center coordi-
nates of the pattern, and {ri}mi=1 are the uniform sampling
points in the domain occupied by the pattern (m = 1000
by default), φ(t) = t2 log(t) is the thin-plate spline basic
function, Q(r) = ωm+1x + ωm+2y + ωm+3z + ωm+4, and
{ωi}m+4

i=1 are fitting coefficients.

(a) (b)

Fig. 5. Customized patterns. (a) User-customized sheet flat structures
can construct customized patterns. (b) The standard pattern (left) has
the same thickness as the input shell structure. We then can adjust the
pattern (right) by scaling the standardized pattern, keeping the thickness
unaltered.

As shown in Fig. 5, once a standardized pattern is con-
structed, we scale the pattern with the unaltered thickness.
That is, the scaling factor should satisfy sx = sy and sz = 1.
Therefore, the variables of the customized patterns that can
be designed are {c0, sx,R}.

4.2 Engraving

The problem of engraving patterns on shells is the imple-
mentation of Boolean operations between the input shells
and the patterns. Thanks to the representation based on
functions, the complex Boolean operations can be simplified
to calculate a minimum of functions.

4.2.1 Pattern Parameters
We characterize a pattern by its position, orientation and
size.

Position. It is crucial to distribute the patterns on shell
structures. As shown in Fig. 6 (b), we first compute a
restricted centroidal Voronoi tessellation on the medial sur-
face using Lloyd method [51]. Then, we place the pat-
terns at the centroids of the Voronoi cells with centers
{ci0 = (xi

0, y
i
0, z

i
0)}

Np

i=1, where (xi
0, y

i
0, z

i
0) is the centroid

of the i-th Voronoi cell and Np is the number of patterns.
Voronoi tessellation has been widely used for shell design

and is compatible with the designed irregular pattern. We
can apply our framework to optimize the location of the
patterns. However, the optimized variables and costs will
increase dramatically. Therefore, we exploit the Voronoi dia-
gram to simplify the algorithm’s computation. It is desirable
to explore a more efficient, optimized way to determine the
positions of patterns in the future.

Orientation. The orientation of patterns consists of two
steps: set the z-axis directions and the rotation orientations
on the xy-plane in the local coordinate systems, respectively.
First, we rotate the pattern by the orientation matrix Rz

i so
that the z-axis direction of the local coordinate system is
aligned with the normal vector {ni

c}
Np

i=1 of the correspond-
ing Voronoi cell on the medial surface. Specially, if ni

c = z0,
where z0 = (0, 0, 1)T , the orientation matrix Rz

i = I3×3;
Otherwise, Rz

i can be calculated as

ni
z = ni

c,

ni
x =

ni
x × z0

∥ni
x × z0∥

,

ni
y =

ni
z × ni

x

∥ni
z × ni

x∥
,

Rz
i = (ni

x,n
i
y,n

i
z)

T .

(9)

Then, we determine the orientations of patterns on xy-plane
in the local coordinate systems by rotating the patterns
according to the rotation angles. As a result, the orientation
of patterns can be confirmed by a rotation matrix as,

Ri = Λ(αi)R
z
i , (10)

where {αi}
Np

i=1 are designable rotation angles that can be
optimized. Moreover, our method allows us to determine
the rotation angles by generating a directional field [52], as
shown in Fig. 6 (c). A regular directional field allows for a
more aesthetically pleasing distribution of patterns.

Size. The patterns should be confined inside the cor-
responding Voronoi cells to avoid intersections. Moreover,
the adjacent patterns should not be too close to guarantee
printability and usability. That is, we set the maximum
dimensional length of the i-th pattern as

Li
max = eib − ϵ/2, (11)

where eib is the minimum distance between the current cen-
ter point and the Voronoi cell boundaries and ϵ is the min-
imum printing accuracy. The minimum dimensional length
of the pattern can be specified according to the applications.
In our experiments, we set the minimum dimensional length
Li
min of the i-th pattern as half of the thickness of the input

shell by default.

4.2.2 Engraving on Shells

To design shell structures implicitly, we represent the input
shell models by their signed distance functions ϕshell(r).
The design of engraving on shells is to remove the parts
of the shell. Since both the patterns and the input shell
are represented by functions, we can transfer the complex
Boolean operation into the following simple calculation

ΦE(r) = min(ϕshell(r), P1(r), P2(r), · · · , PNp(r)), (12)
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(a) (b) (c) (d) (e) (f)

Fig. 6. Algorithmic pipeline. (a) Input shell model. (b) The Voronoi tessellation on the medial surface and its corresponding Delaunay triangles. (c)
The specified directional field. (d) Distribution of patterns. (e) and (f) The engraved model and dual engraving design represented using functions,
respectively.

which satisfies

Φ(r)


> 0, if r is inside the designed model,
= 0, if r is on the designed model boundary,
< 0, if r is outside the designed model.

(13)
The engraved shell structure is the zero isosurface of func-
tion Φ(r), as shown in Fig. 6 (e).

4.2.3 Dual Engraving Design

Alternatively, the part of patterns intersecting the shell can
be retained solid rather than hollowed, which we call dual
engraving design. In our study, we implement dual engrav-
ing through simple function modification. All the reserved
solid parts can be expressed as

ϕretain = max(P̃1(r), P̃2(r), · · · , P̃Np
(r)),

P̃i(r) = min(ϕshell(r),−Pi(r)), i = 1, 2, · · · , Np.
(14)

To connect the individual patterns, we construct a set of
truss structures using the edges of the dual Delaunay
triangles of the Voronoi tessellation, as shown in Fig. 6
(b). For opened surface, we also need to add edges to
connect the boundary points of Delaunay triangles and
the boundary points of Voronoi tessellation. Assuming the
Delaunay triangles have edges set {ei}Ne

i=1, we use the super-
ellipsoid equations described in Eq. (1) to construct the truss
structures

ϕtruss = max(Ẽ1(r), Ẽ2(r), · · · , ẼNe(r)),

Ẽi(r) = min(ϕshell, Ei(r)), i = 1, 2, · · · , Ne,
(15)

where {Ei(r)}Ne
i=1 is a series of super-ellipsoids, and we

set the midpoint of each edge as the corresponding super-
ellipsoid’s center. The direction of the edge determine the
rotation matrix R = {Rij}3×3. L2 is set to half of the edge
length, L1 and L3 are released to be optimized to adjust
the thickness of the truss structures locally. For constructing
trusses, we set p = 8. In our experiments, L1 and L3

are assigned according to the strain energy distribution of
the input shell under the external loads. Finally, the dual
engraving can be implicitly represented as

ΦDE(r) = max(ϕretain, ϕtruss). (16)

Similarly, we extract the zero isosurface of the function
ΦDE(r) to get the dual engraving shell structure, as shown
in Fig. 6 (f).

5 FORMULATION AND OPTIMIZATION

The design method described above can be applied to
various physically viable applications, such as furniture de-
sign, medical gear optimization, and lightweight composite
structures. Based on the implicit representation, we adapt an
automatic and efficient optimization directly on functions.
We formulate the modeling and optimization for mechanical
application.

5.1 Problem Formulation

Structure compliance is a physical quantity that measures
the global structural stiffness, often used in classical topol-
ogy and structure optimization [29], [30]. Introducing the
shape description function Φ(r), we define the structure
compliance as

I =

∫
ΩS

H(Φ(r))f · u dV +

∫
Γt

t · u dS, (17)

where ΩS is the region occupied by the input shell model
S, f is the body force, t is the surface traction defined on the
Neumann boundary Γt, u is the displacement, and H(x) is
the regularized Heaviside function [32]

H(x) =


1, if x > η,
3(1−α)

4 (xη − x3

3η3 ) +
(1+α)

2 , if − η ≤ x ≤ η,

α, if x < −η,
(18)

where η and α are the parameters that control the magni-
tude of regularization and the non-singularity of the global
stiffness matrix, respectively. In our experiments, we set
α = 0.001 and η to one-fiftieth of the maximum size of the
input shell model. We take the minimization of the structure
compliance (Eq. (17)) as the objective of optimization under
the volume constraint V ,

V =

∫
ΩS

H(Φ(r)) dV ≤ V , (19)

Considering the static mechanical problem, given the fixed
boundary constraint like

u = u, onΓu, (20)

we write the equilibrium equation in its weak, variational
form as∫

ΩS

H(Φ(r))E : ε(u) : ε(v)dV

=

∫
ΩS

H(Φ(r))f · v dV +

∫
Γt

t · v dS, ∀v ∈ Uad, (21)
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where u is the specified displacement on the Dirichlet
boundary Γu, v is the test functions defined on ΩS , Uad =
{v|v ∈ W 1(ΩS), v = 0 onΓu}, W 1 is a one-order Sobolev
space, ε is the second order linear strain tensor, E is an
elasticity tensor defined by the Young’s Modulus and the
Poisson ratio.

5.2 Computation and Optimization
5.2.1 Discrete Computation.
The shell structure after engraving has complex topology
and geometry, which will lead to high computational com-
plexity. Remeshing (tetrahedral or hexahedral) is needed
in each iteration in traditional finite element based opti-
mization, which is very time-consuming. Thanks to the fact
that the proposed shell structures with engraved patterns
are represented by functions, remeshing is not needed to
represent the models. Only uniform finite elements that
served as the integration domain are required to construct
once, and then we execute the integration and derivative
calculations directly on the functions.

Moreover, we also utilize a super element strategy [53],
[54] to accelerate the calculation. As shown in Fig. 7, we
divide the design domain ΩS uniformly into coarse, regular
hexahedral elements called super elements, which are used
to interpolate the displacement field. Then, we divide each
super element evenly into smaller regular hexahedral ele-
ments called background elements, which are used to pre-
cisely depict the geometry with high resolution. The direct
calculation using functions and the integration domain with
a super element strategy prompt our optimization much
more efficiently than the traditional finite element based
methods (FEM), especially for complex engraved shell struc-
tures.

Fig. 7. Super element strategy. We use super and background elements
to interpolate the displacement field and precisely describe the geome-
try, respectively.

5.2.2 Optimization.
With the above discretization scheme, we reformulate the
optimization problem Eq. (17-21) as

min
Θ

FT U, (22)

s.t.: KU = F, (23)

V =
1

8

Nb∑
j=1

8∑
l=1

H(Φj
l )vb ≤ V , (24)

where Θ is the set of parameters to be optimized. In
our experiments, we use different parameters to deter-
mine the attributes of different patterns, such as Θ =

{{Li
1}

Np

i=1, {αi}
Np

i=1} for regular patterns, Θ = {si}
Np

i=1 for
irregular patterns and Θ = {{six}

Np

i=1, {αi}
Np

i=1} for cus-
tomized patterns. U is the vector of displacements, F is
the nodal force vector, Nb is the number of background
elements, and K is the stiffness matrix with the i-th element

Ki =
Nb∑
j=1

1

8

8∑
l=1

(H(Φij
l ))K

0, (25)

where Φij
l is the value of Φ(r) at the l-th node point of the

j-th background element in the i-th super element, K0 is a
constant matrix in each background element,

K0 = ε0B(rij)T D0B(rij)vb, (26)

where ε0 is the original elasticity modulus, B is the strain
matrix, rij is the coordinate vector of the integration point
associated with the j-th background element in the i-
th super element, and D0 corresponds to the constitutive
matrix of the solid material, and vb is the volume of one
background element. Since we only need to update the
coefficient 1

8

∑8
l=1 H(Φij

l ) in each iteration, the stiffness
matrix K can be assembled efficiently during the response
analysis.

We solve the optimization problem Eq. (22) using
GCMMA [55], [56], which is a gradient-based algorithm
for topology optimization. We compute the gradient of the
objective function and constraint directly on the implicit
representation as

∂I

∂Θ
= −

Ns∑
k=1

UT
k

1
8

Nb∑
j=1

(
8∑

l=1

∂H(Φkj
l )

∂Θ

)
K0

Uk, (27)

∂V

∂Θ
=

1

8

Nb∑
j=1

8∑
l=1

∂H(Φj
l )

∂Θ
vb, (28)

where Θ is the set of parameters to be optimized, Ns and
Nb are the numbers of super elements and background
elements, respectively. All our experiments achieved con-
vergent solutions within 120 iterations.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we conduct numerous experiments to ver-
ify the effectiveness, robustness, and applicability of our
method.

6.1 Validity

To demonstrate the validity of the analysis, we compare the
strain energy maps obtained by the FEM software ANSYS1

and our super elements strategy under the same loading
conditions. We use the default SOLID186 element in ANSYS,
a 20-node solid element exhibiting quadratic displacement
behavior, to mesh the engraved shell structures. Given that
we formulate the structure optimization problem as com-
pliance minimization, we compare the compliance values
of structures under different experimental configurations.
We take the normalized compliance e/e0 as the evaluation
metric for structural stiffness, like Wu et al. [47] did, where

1. https://www.ansys.com/
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Fig. 8. Analysis validity. (a)-(c) Strain energy maps obtained by our method with varying coarse-to-fine ratios (super elements/ background
elements). (d) Strain energy map calculated by ANSYS. (e) The corresponding optimized results under the same volume constraint (66%), where
e0 and e are the total energy of the original shell structure and the optimized structure, respectively. (f) The corresponding convergence curves.

(a) (b) (c) (d)

Fig. 9. Robustness. (a)-(c) The optimized models with different initializa-
tion (pattern size). (d) The corresponding convergence plots.

e0 is the compliance of original shell structure. As Fig. 8
shows, the energy distributions of our results with different
coarse-to-fine ratios (super elements/ background elements)
are all comparable to the result of ANSYS on the same
models. It demonstrate the validity and accuracy of the
super element approach for the compliance minimization
problem. The finer the elements, the more accurate the
results will be, but it will increase the computation time
simultaneously. In Fig. 8 (e), we show the corresponding
optimized results under the same volume constraint (66%)
with different coarse-to-fine ratios (1 : 8, 1 : 27, and 1 : 64).
In the trade-off between accuracy and efficiency, we choose
the coarse-to-fine ratio 1 : 27 by default in our experiments.

6.2 Effectiveness and comparison

The proposed method can achieve convergence efficiently
even with different initial values. As shown in Fig. 9,
the shell models with different initial patterns converge
to similar results under the same loading conditions and
constraints. To verify the robustness of the proposed frame-
work, we test more complex shell models with different
types of patterns, as illustrated in Fig. 10. All the experi-
ments achieved convergence within 120 iterations.

To verify the effectiveness, we demonstrate the effec-
tiveness and efficiency comparison between ANSYS (stan-
dard commercial software using traditional FEM) and our
method in Table 1. Compared with the results of ANSYS,
although there are numerical differences in the energy calcu-
lation results, we can see from Fig. 8 that the relative energy
distribution is comparable. It indicates that our scheme can
accurately find the collapse-prone areas of the structure and
optimize them. Meanwhile, our optimization time is much
less than ANSYS because we omit the time-consuming re-
meshing in each iteration.

We also compare the proposed method with the method
based on discrete triangle elements similar to [11], as
shown in Fig. 11. They propose a parameterized algorithm
for stenciling using an example-based texture synthesis
method, which is an explicit method implemented on the
discrete representation. The strain energy for each trian-
gular cell in their method is constant, which significantly
loses accuracy. Unlike this discrete method, our method
is implemented directly on implicit functions. Benefiting
from this, our approach can be easily controlled by func-
tion parameters, is more diverse, and can be extended to
different optimization problems. For example, we can also
optimize a dual problem to enrich the diversity of thin-shell
structures. Our method generates optimized structures with
greater structural stiffness (smaller compliance ratio e/e0)
than the comparison results under the same volume con-
straint (75%). Because the method in [11] computes struc-
tural deformation with constant strain triangle elements,
it suffers accuracy loss, especially for complex geometry
shells. Moreover, our method has better controllability and
extensibility because it is executed based on the function
representation. As shown in Fig. 10, we extend the implicit
framework to dual engraving design, which enriches the
diversity of shell structures.

6.3 3D Printing and Testing

All the optimized engraved models can be well manufac-
tured by 3D printers, as shown in Fig. 12. To prove the
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(a) I-WP (b) Catenoid (c) Three-Hole Torus

Fig. 10. More results with regular, irregular, customized, and dual patterns, respectively.

TABLE 1
Effectiveness and efficiency comparison between our method and commercial software (ANSYS). ”♯ Parameters” means the number of optimized

parameters, ”♯ Elements” means the amount of background elements (the same resolution in ANSYS), e/e0 is the compliance ratio of the
engraved shell to the original model, ”Time” is the time (minutes) to perform once physical analysis of an engraved shell structure, including

meshing and analysis, ”# Iterations” is the total number of iterations in our method.

Model Pattern Type # Parameters # Elements
Volume (mm3) e/e0 Time (min)

# Iterations
Original Shell Engraved Shell Ours ANSYS Ours ANSYS

Building (Fig. 1) Irregular 150 3,040,000 9.39 7.51 1.09 1.20 0.5 2.5 52

Panton Chair (Fig. 2) Regular 300 2,703,584 8.98 6.72 1.04 1.20 0.8 3.1 60

I-WP (Fig. 10(a)) Regular 250 8,000,000 35.44 26.85 1.12 1.25 2.5 9.8 65

Catenoid (Fig. 10(b)) Customized (dual) 500 5,360,000 46.42 25.85 1.52 1.75 1.7 5.6 95

Three-Holes (Fig. 10(c)) Customized 800 1,329,160 17.22 13.22 1.06 1.18 1.9 6.2 115

(a) e/e0 = 1.43 (b) e/e0 = 1.34

(c) e/e0 = 1.29 (d) e/e0 = 1.10

Fig. 11. Comparison between the discrete triangle element based
method [11] (row 1) and our method (row 2). Our results have higher
structural stiffness (smaller compliance ratio e/e0) under the same
volume constraints.

Fig. 12. 3D printed shell models engraved by regular, irregular, and
customized patterns, respectively.
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Fig. 13. Stress testing of 3D printed models (maximum width 10cm; ma-
terial: PLA; Young’s modulus (GPa):0.03). Our structures can withstand
a high external force (over 500 N ), and the supporting legs do not break
until the testing machine applies force over 800 N .

practicality, we also test a 3D printed model using an RG1-5
microcomputer control electronic universal testing machine,
as shown in Fig. 13. Our structure has a good mechanical
performance. We observe that the structure can withstand a
high external force, and the support legs do not break until
the testing machine applies force over 800 N .

Fig. 14. Applications. (a) Lightweight medical gear. (b) Furniture design.

6.4 Applications

We apply our proposed algorithm to a variety of physi-
cally viable applications. For personalized medical gears,
our engraving design can meet the requirements of light-
weighting and heat dissipation while maintaining the nec-
essary strength, as shown in Fig. 14 (a). We also illustrate
the application in the field of living. Our method not only
achieves the lightweight purpose but also dramatically en-
riches the diversity of furniture and household items, as
shown in Fig. 14 (b).

6.5 Discussions

The proposed computational framework is in the form of
implicit functions for representing, designing, and optimiz-
ing engraved structures. However, in our current implemen-
tation, we compute restricted centroidal Voronoi tessellation
on triangular mesh surfaces to determine the positions of the
patterns. It is worth noting that there are several techniques
that can eliminate the requirement of triangular meshes. For

example, Leung et al. [57] proposed a unified framework
for computing Voronoi tessellations on various types of
3D input, including implicit surfaces, polyhedral surfaces,
and point clouds. Adopting this technique could make our
method completely meshless.

7 CONCLUSIONS

We proposed a new parametric design and optimization for
physically viable thin-shells. Since our method represents
both the shell and patterns by implicit functions, it en-
ables (dual) engraving of regular, irregular, and customized
patterns as function operations. We formulate the design
problem by optimizing the sizes and orientations properties
of patterns and evaluating the parameters to minimize
the strain energy of structures under a specified volume
constraint. Since the engraved structures are represented by
implicit functions, our method can avoid remeshing during
optimization iterations. Through simulation and 3D print-
ing, we show that the proposed method is more effective
than methods based on traditional FEM and enriches the
diversity of shell structure design.

Our approach calls for possible further improvements
that will be addressed in follow-up research. First, we con-
sider only thin shells with constant thickness in our current
implementation. It is desired to take thickness as a variable
in the optimization. Second, we assume the patterns are
flat in this paper. Our method can be extended to curved
patterns. A possible way is to utilize the Local Barycentric
Coordinates technique [58], and we can bend patterns
according to shell curvature by adjusting control grids (like
the control grids shown in Fig. 4(c)). Third, we would like
to investigate support-free pattern engraving in future work
to make our method of 3D printing friendly.
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