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ABSTRACT
Equation-based modelling languages adopt a declarative modelling
approach, focused on writing the model equations in a clear way
and leaving the task of deriving efficient simulation code to the tool.
One aspect of declarative modelling is that the use of dimensionally
consistent SI units for the physical variables is preferrable; however,
in many application areas this can lead to implicit nonlinear systems
of equations which are badly scaled from a numerical point of
view. This paper shows the negative impact of not dealing with
this aspect on a benchmark test case, and then shows how the
same performance of manually scaled models can be recovered by
suitably exploiting information about the scaling of variables that
can be declared by the modeller.
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1 INTRODUCTION
Equation-based, object-orientedmodelling languages (EOOLs), such
as Modelica [5] or gPROMS [1], were introduced at the end of the
’90s and are now widely used for system-level dynamic modelling
of engineering systems of various nature.

EOOLs follow a declarative approach to modelling, where the
focus is put on describing how the physical process works by only
writing the process equations, rather than focusing on how these
equations will be solved. From this point of view, there is a very
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strong incentive at always using SI units for all equations and
variables, because this ensures equations are always dimensionally
consistent, without the need of introducing error-prone and weird-
looking numerical factors. If this convention is taken, modelling
tools can also perform dimensional consistency analysis and detect
modelling errors during the development phase of equation-based
component models. For these reasons, always using SI units in
physical equations is the standard convention taken by theModelica
community.

The downside of this choice is that extremely badly scaled sys-
tems of equations can arise, with potentially dire consequences on
the robustness of the numerical solvers employed to solve them, and
on their performance in general. For example, the model of a large
1 GW power plant will contain variables related to the mechanical
power balance on the generation unit with values around 109 W,
while the flow coefficient Av (which is expressed in m2) of some
control valves in the same plant model could be as small as 10−4.
The unknown variables of the model will thus span thirteen orders
of magnitude, which is dangerously close to the machine-epsilon
precision of the floating point representation of real numbers in
double precision, about 2 ·10−16, which is the standard in numerical
simulation software.

Another example is the device-level model of a transistors in
modern integrated circuits, where currents may be as small as 10−9
A, while voltages can have magnitudes around 10 V, thus spanning
ten orders of magnitude in the same model.

When these equations are processed by the EOO tool for their
solution, it is often the case that implicit nonlinear systems need to
be solved, using iterative solvers that are usually based on Newton-
Raphson’s method. In some cases, e.g., the steady-state initialization
of large models, these systems can have significant sizes, possibly
well above one thousand equations.

In general, these systems of equations can be expressed in com-
pact form as f (x) = 0, where x is the vector of the unknown
variables and f (·) is a vector-valued function, each component
being the residual of one equation in the system.

Numerical solvers for nonlinear equations rely on several heuris-
tic rules, governing decisions such as how large should be the ∆x
to compute the system Jacobian ∂f

∂x by finite differences (if ana-
lytical Jacobians are not available), when the Jacobian should be
recomputed, and, most importantly, when is the solution accurate
enough to stop the iteration. The termination criterion often in-
volves the norm of the residual being less than some threshold, i.e.,
| | f (x)| | < ϵ .

Even though this is usually not declared explicitly in the liter-
ature and in the documentation about these solvers, the implicit
assumption taken by their developers is that the unknowns of the
problem have an order of magnitude close to unity or at least not
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too far from that, e.g. in the range 10−3−103 so that, e.g., ∆x = 10−8
is a good choice to compute a numerical approximation of a deriva-
tive, and ϵ = 10−8 or possibly ϵ = 10−12 are reasonable choices for
the iteration termination criterion.

It is apparent from the above-mentioned examples that these
assumptions do not hold if the equations of the EOO model are
handed over as such to the solver without any scaling process.

The consequences can be potentially fatal: if the termination cri-
terion for the iterative Newton-Raphson solver is | | f (x)| | < 10−12,
one of the equations is a power balance in a 1 GW plant, and SI
units are used for all variables, this implies asking for a relative
accuracy of the component of f (x) containing the power balance
equation of 10−12/109 = 10−21, which is five orders of magnitude
less than the machine-epsilon of double-precision floating point
numbers and thus hardly attainable. Conversely, if a current bal-
ance in a circuit involving an integrated circuit transistor is solved
with a 10−12 accuracy, the relative accuracy of the solution will be
10−12/10−9 = 10−3, that is, 0.1%, which would be rather poor.

Unfortunately, for some reason, this topic is considered of little or
no academic interest, so there is actually scant literature referring
to it. In fact, the authors could only find a couple of references
on the related topic of non-linear optimization solvers, for which
the numerical solution is even more sensitive to bad scaling than
the solution of algebraic equations. In [4], the authors attempted
to devise a method for automatic scaling, which however did not
provide consistently good performance, while in [2] the authors
discussed the impact of correct scaling on the convergence of some
nonlinear programming problems. To the authors’ knowledge, no
references exist on this problem in the context of EOOLTs.

On the other hand, some numerical routines for the numerical
solution of nonlinear equations do provide some options for scaling,
implicitly pointing out that using this feature could be beneficial
for the solver performance. For example, the documentation of
the open-source, state-of-the-art Kinsol solver [3] states that "To
address the case of ill-conditioned nonlinear systems, kinsol allows
prescribing scaling factors both for the solution vector and for the
residual vector"; scaled norms using those factors are then employed
throughout the solver for various purposes.

The goal of this paper is thus manifold. On one hand, to show
that proper scaling is critical for numerical solver perfomance in
equation-based models that turn out to be badly scaled because of
the use of SI units. On the other hand, to show that the appropriate
use of variable scaling information provided by the modeller (e.g.
via the nominal attribute, in the case of the Modelica language) can
fully address this issue, recovering the same simulation performance
of equivalent well-scaled problems. Last, but not least, to raise
awareness on this issue in the EOOLT community and promote the
study of methodologically sound approaches to solve it.

The paper is structured as follows. Section 2 introduces a bench-
mark test model and discusses scaling methods. Section 3 reports
experimental results obtained with the benchmark model using the
Kinsol solver in the OpenModelica tool. Section 4 concludes the
paper with final remarks and indications for future research work.

2 METHODOLOGY
The aim of this paper is to answer the two following research
questions:

(1) Can bad scaling of variables and equations stemming from
the use of SI units be critical for nonlinear equation solver
performance in EOO tools?

(2) Is it possible to use scaling information provided by expert
model developers when declaring the model variables to
recover the same performance that would be obtained with
properly scaled (e.g., non-dimensionalized) models?

An equivalent, more abstract formulation of the two research ques-
tion could be the following:

(3) Can the performance of EOO tools be made invariant to the
choice of physical units for its variables, so that SI units can
always be used without any performance penalty?

It is apparent that a negative answer to this question would be a
serious blow to the credibility of a fully declarative EOO approach
to the simulation of physical systems.

2.1 Benchmark test case
In principle, it would be nice to have a large database of real life,
complex test cases to assess the impact of bad scaling and to evaluate
the performance of scaling strategies. Unfortunately, these types
of models tend to be proprietary and/or confidential and usually
quite involved to communicate and understand.

To overcome this problem, in this paper we define a simple bench-
mark test model to assess the performance of an EOOL tool with
respect to scaling problems in systems of implicit nonlinear algbraic
equations. The benchmark model has the following features:

• it has a simple physical interpretation, that also helps build-
ing a mental representation of the problem and understand-
ing how the solution is going to behave;

• it is described by a few equations that can be written down
in plain mathematical notation;

• its scaling and consequent ill-conditioning can be arbitrarily
changed;

• its number of variables can be arbitrarily changed;
• its nonlinear behaviour can be made more or less severe via
some parameeters.

The benchmark model represents the series connections of N pairs
of parallel-connected nonlinear elastic elements, as shown in Fig. 1
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Figure 1: The test case system for N = 3.

for the case N = 3:

d1 = 0 (1)
dN+1 = dtot (2)

s0,a =
d0,a
N

(3)

s0,b =
d0,b
N

(4)

ki = kmin +
kmax − kmin

(N − 1)
(i − 1), i = 1, . . . ,N (5)

di+1 = di + si , i = 1, . . . ,N (6)

si

(
1 +

���� sis0,a

����) kiN = Fi,a i = 1, . . . ,N (7)

si

(
1 +

���� sis0,b

����) kiN = Fi,b i = 1, . . . ,N (8)

Fa,i + Fb,i = Fa,i+1 + Fb,i+1 i = 1, . . . ,N − 1 (9)

where si is the relative displacement of the i-th spring pair, di is
the cumulated displacement of the first i spring pairs, Fa,i and Fb,i
are the forces exerted by the top and bottom spring of the i-th pair,
and ki is the linear stiffness of the springs in the i-th pair.

The linear stiffness coefficients ki of the springs are uniformly
distributed between kmin and kmax along the system, while the
nonlinear behaviour is determined by the parameters d0,a and d0,b .
If d0 ≫ dtot then the term si/s0 in the spring equations is small
and the force-displacement relationship is approximately linear;
conversely, the relationship becomes quadratic, which means that
the stiffness of the spring increases with its load. The total length
of the system is bound to a fixed value dtot .

Note that equations (1)-(5) are explicit and can be solved sequen-
tially, while the rest of the model (6)-(9) constitutes an implicit
nonlinear system of equations that needs to be solved simultane-
ously by an iterative solver.

In the special case kmin = kmax = k , d0,a → ∞, and d0,b → ∞,
the model becomes linear and its analytical solution is

si =
dtot
N

i = 1, . . . ,N (10)

di =
idtot
N

i = 1, . . . ,N (11)

Fa,i = Fb,i = kdtot i = 1, . . . ,N . (12)

By taking finite values of d0,a and d0,b and kmax > kmin , the
problem becomes nonlinear and loses its symmetry, thus becoming
more challenging for the nonlinear solver and thus more repre-
sentative of real-life badly scaled models. On the other hand, if
d0,a and d0,b have the same order of magnitude of dtot and kmax
has the same order of magnitude of kmin , one can expect that the
order of magnitude of the solution will be the same as that of the
ideal solution (10)-(12), which can then be used to estimate sensible
scaling values for the problem.

An important property of this model is its scale invariance. It
is trivial to prove that if one first solves the problem with certain
values of the parameters kmin = k0min , kmax = k0max and then
solves it again using kmin = αk0min , kmax = αk0max , α being a
positive scale parameter, the solution of the second problem has
the same values of si and di , while Fa,i and Fb,i get multiplied by α .
In other words, scaling the stiffness constants by the same factor α
does not change the nature of the problem and its solution, but only
changes the scale of the forces by the same amount. In fact, one
could interpret α as a unit factor, that could take into account the
fact that the forces can bemeasured with different units, e.g. kN/mm
rather than N/m. This property makes it easy to explore the effect
of various degrees of ill-conditioning on the solver performance,
simply by changing the α factor, without otherwise changing the
nature of the system to be solved.

2.2 Scaling Methods
Scaling methods for nonlinear equations stemming from EOO mod-
els require three steps:

(1) specifying the order of magnitude of the unknowns;
(2) specifying the order of magnitude of the equation residuals;
(3) solving the equations by taking these factors into account.

The first step conceptually requires the modeller to specify the
order of magnitude or scaling value xn,i of each scalar unknown xi
of the problem. In Modelica, this is done by declaring the nominal
attribute of Real variables.

A convenient way to do this is to declare types with reasonable
default values and then use them to actually declare the model
variables. For instance, the AbsolutePressure type of the Model-
ica.SIunits library, which has unit Pa, has a nominal value of 106, i.e.
10 bar, which is a reasonable scaling value for most applications not
involving extremely high or extremely low pressures. In other cases,
the appropriate defaults are more application-specific; for example,
currents in modern integrated circuits have order of magnitude
10−9, while currents in typical industrial applications may have
orders of magnitude between 1 and 103.

The second step can be carried out automatically once nominal
values are known, by using the sensitivity information provided by
the Jacobian ∂f

∂x . More specifically, the order of magnitude fn,i of
the i-th residual can then be estimated as | |vi | |, where the vector
vi results from the element-wise multiplication of the i-th row of
the Jacobian with the vector of nominal values xn . Either the 1-
norm (e.g., the summation of absolute values), the 2-norm (e.g. the
Euclidean norm) or the ∞-norm (i.e., the maximum absolute value)
can be taken.

The third step depends on the available solver. If the solver has
provision for variable and residual scaling, the above-mentioned
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Table 1: Solver performance, well-scaled problems

N kmin kmax d0,a d0,b Iter. f -eval Exit

100 1 2 0.5 3 18 47 OK
10 1 2 0.5 3 17 48 OK
1000 1 2 0.5 3 17 46 OK
100 1 2 0.1 1 22 50 OK

information can just be passed to it. If not, the EOO tool should
generate the code corresponding to the scaled problem, pass it to
the solver, and de-scale the solution as a post-processing step. In
other words, defining the scaling factor matrices Dx , Df and the
scaled variables and residuals z and д

Dx = diag
(

1
xn,1
,

1
xn,2
, · · · ,

1
xn,N

)
(13)

Df = diag
(

1
fn,1
,

1
fn,2
, · · · ,

1
fn,N

)
(14)

z = Dxx (15)
д(·) = Df f (·) (16)

the EOO tool can generate the code to compute the residuals (and
possibly the Jacobian) for the scaled problem д(z) = 0, calls the non-
linear solver routine to solve it, and finally computes the unscaled
result as x = D−1

x z.
In this context, tolerances and accuracy provided by the end-user

as simulation parameters should always be interpreted as relative,
non-dimensional values, after the scaling factors have been applied.

3 EXPERIMENTAL RESULTS
In this section, experimental results obtained with the benchmark
test model and the Kinsol solver [3] are reported. The OpenModelica
platformwas employed for the testing. Tearing of nonlinear systems
was disabled, to avoid the possibility that all badly-scaled variables
could be torn out of the system.

Table 1 reports results obtained with a well-scaled model, which
are the reference for solver performance. The values of the model
total displacement is fixed to dtot = 1, while the other parameters
of the model are reported, as well as the number of main iterations
of the Kinsol solver, the number of evaluations of the unknown
vector, and the outcome of the iterative solution process.

The first line is the baseline case. In the second and in the third,
the size of the model is changed, and it seems that this doesn’t
have a relevant impact on the performance of the solver. In the
fourth line, the d0,a and d0,b parameters are reduced, making the
model more strongly nonlinear; as a consequence, the number of
iterations and of f (x) evaluations increases a bit.

The performance obtained with badly scaled models is reported
in Tab. 2, when no scaling is applied and the raw model is directly
passed to the Kinsol solver. The first four cases are the same as
the first four reported in Tab. 1, except that the spring stiffness
coefficients kmin and kmax were multiplied by a factor α = 109.
In the last two, α = 106 and α = 1012 were taken, respectively.
The solver fails in all cases, after a large number of iterations and
function evaluations.

Table 2: Solver performance, badly-scaled problems, no scal-
ing

N kmin kmax d0,a d0,b Iter. f -eval Exit

100 109 2 · 109 0.5 3 97 3657 FAIL
10 109 2 · 109 0.5 3 105 4021 FAIL
1000 109 2 · 109 0.5 3 162 6335 FAIL
100 109 2 · 109 0.1 1 553 23017 FAIL
100 106 2 · 106 0.5 3 534 21551 FAIL
100 1012 2 · 1012 0.5 3 126 5079 FAIL

Table 3: Solver performance, badly-scaled problems, with
scaling

N kmin kmax d0,a d0,b Fn Iter. f -eval Exit

100 109 2 · 109 0.5 3 109 18 47 OK
10 109 2 · 109 0.5 3 109 17 48 OK
1000 109 2 · 109 0.5 3 109 17 46 OK
100 109 2 · 109 0.1 1 109 22 50 OK
100 106 2 · 106 0.5 3 106 18 47 OK
100 1012 2 · 1012 0.5 3 1012 18 47 OK
100 109 2 · 109 0.5 3 106 19 51 OK
100 109 2 · 109 0.5 3 104 19 59 OK
100 109 2 · 109 0.5 3 102 17 57 OK
100 109 2 · 109 0.5 3 100 15 64 OK

Finally, the performance obtained after introducing nominal
values for the forces Fa and Fb , as well as the automatic scaling of
the problem described in the previous section, are reported in Tab.
3. This table also reports the nominal values used to scale the force
variables, reported as Fn . For all other variables, the nominal value
was assumed to be one.

The first six cases are the same as the first six cases reported in
Table 1, except for the values of the stiffness constants, which are
α = 109 times larger; the correct corresponding nominal value of
109 was selected for the force variables. The result, as expected, is
that the performance obtained with the well-scaled model is fully
recovered.

In the last four cases, an underestimated nominal value was
selected for the force variables, three, five, seven and nine order of
magnitude smaller, respectively. By comparing with the baseline
case reported in the first row, an increase in the number of f (x)
evaluation is clearly visible, though the performance degradation
is not dramatic.

The last case, in particular, corresponds to a case where all nomi-
nal values are taken equal to one. The reason why the performance
is still much better than what is reported in the first line of Tab.
2 when no scaling at all is applied, is that in this case the correct
residual scaling happens to be applied to the nonlinear spring equa-
tions (7)-(8), while the residuals of equations (9) are not correctly
scaled. As the latter equations are linear, it seems that they pose
less problems during the solver iteration even if not scaled cor-
rectly, probably because their residuals become very small after
the first iteration. However, it is not always true that equations
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involving large-valued variables are linear, so this behaviour is in
all likelihood model-specific and not general.

The first important conclusion that can be drawn by comparing
Tab. 1 and Tab. 2 is that ignoring the scaling issue completely in the
EOO model and in the EOO solver can lead to unacceptable solver
performance.

Upon getting this performance from an EOO tool, the end-user
may then be tempted to improve the situation by introducing ex-
plicit scaling factors in the equation-based model, e.g., by explicitly
defining normalized variables and then using them to write nor-
malized equations. However, this would not be the right solution
to the problem, because it would be completely against the basic
principle of declarative modelling, i.e., decoupling modelling issues
from solver issues. In fact, the model would unnecessarily get more
cumbersome, error-prone and difficult to read, for reasons which
are exclusively related to the numerical performance of the solver.

The second conclusion can be drawn by comparing Tab. 1 with
Tab. 3, noting that the correct application of scaling methods allows
to recover the same performance obtained with the well-scaled
model also with the one which results to be badly scaled due to the
consistent use of SI units.

It is worth stressing that in this case the principles of declarative
modelling are applied correctly; the modeller is only required to
declare reasonable nominal values for the unknowns (which is
part of the prior knowledge about the problem), not to explicitly
scale the variables nor the equations. The latter task is performed
automatically and transparently by the EOO tool, as it is the case
for all other equation manipulations that are performed to solve
the declarative model efficiently and robustly.

Finally, for the benchmark cases presented here, one may con-
clude that residual scaling ismore important than unknown variable
scaling. However, the authors believe that this is due to the nature
of the equations whose scaling is not correct in this case, namely Eq.
(9). Further investigation, using other test models where equations
that only involve large-valued variables are also nonlinear, should
be carried out to prove or disprove this claim.

4 CONCLUSIONS
EOO models using SI variables can result in nonlinear systems of
equations having very bad variable and residual scaling. Results
obtained on a benchmark test case using a state-of-the-art solver
reveal that not taking this into account can completely jeopardize
the performance of the solver, compared to the case in which equiv-
alent models written with properly scaled variables and residuals
are simulated.

We demonstrated that the same numerical performance that
is obtained with well-scaled models can be recovered if the mod-
eller provides appropriate nominal values for the badly-scaled un-
knowns, and if the EOO tool performs suitable variable and residual
scaling, starting from that information. This approach allows mod-
ellers to safely follow a fully declarative modelling approach, using
consistent SI units without worries about potential numerical prob-
lems caused by bad scaling.

Further work is required to make this approach fully applicable
in an object-oriented modelling context, where models contain-
ing appropriate scaling information could be connected to models

taken from reusable libraries that do not have this provision. For
example, the model of Fig. 1 could be built in a modular way by
connecting customized nonlinear spring models, that declare ap-
propriate nominal attributes for the force variables, with standard
fixed-point models taken from the Modelica Standard Library, that
do not have this provision for the forces declared therein.

In this case, it would be good if the scaling information provided
by the custom spring model could be automatically propagated to
the fixed point model, avoiding the need of modifying the standard
fixed-point model to take into account scaling issues, as well as
the need to explicitly provide scaling values as parameters of the
fixed-point model.

Suitable methods for automatic propagation of scaling informa-
tion are thus required, to minimize the amount of scaling parame-
ters to be provided explicitly by the modeller, as well as to trigger
warnings when a system model turns out to have incomplete scal-
ing information on variables that end up being the unknowns of
implicit nonlinear systems of equations. This could be the subject
of interesting future research, combining structural analysis with
numerical sensitivity analysis.
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