
UTXO based Certificates (UTXOC) ‘you-chi-ock’
MiWCryptoCurrency – miwcryptocurrency@gmail.com

Abstract
Proof of concept cryptocurrency (bitcoin-like) private keys used to generate valid
signed ECDSA with-SHA256 x509 certificates to be used for medium term
authentication within the TLS protocol and other and future applications. These
certificates have additional explicit value by merit that they prove ownership of
decentralised bitcoin-like value. This construction has been formatively titled
Unspent TransaXtion Output Certificate or UTXOC, pronounced ‘you-chi-ock’

Principal
What does this provide in addition to
every-day Trusted CA Certified certificates
we know and love from such trusted
names as Honest Achmed (HA2011) and
Diginotar (BlackTulip 2011)?

This paper argues that by appending a
stored value associated with a prior
bitcoin-like transaction to a private key,
and formalising this binding in an x509
container, the resultant certificate is more
valuable than a standard x509 certificate.

This relationship can be used to formalise
Enhanced Key Usage or Certificate Policies
in x509, high valued keys (e.g.: Internet
Banking https keys) might require a large
stored value to be valid.

The cost of a Man-in-the-middle TLS
certificate substitution attack on UTXOC is
higher than standard certificates. If a client
is expecting a sufficiently valued UTXOC,
and is presented with a lesser valued or
standard certificate this would be
detectable.

It also provides independently verifiable
proof of key compromise in that an
attacker is likely to spend any stored value
associated with a private key if they
compromise a TLS Server Authentication
keys, SSH keys, Client Certificate keys, etc.
An opportunistic thief will take what is left
in plain sight.

In addition, the certificate life validity can
act as a type of cryptocurrency bearer

bond in. (e.g.: For the bond to be valid, the
unspent output in the transaction
referenced in the certificate must remain
unspent).After the valid to date has expired,
this transaction can be claimed and the
value transferred to another address (i.e:
private key) to be used for a new certificate
or spent.

Background – Bitcoin like
cryptocurrencies
Bitcoin is a purely peer-to-peer electronic
cash solution created by Satoshi Nakamoto
(BTC 2008) and released in early 2009. At
the time of writing, the total market
capitalization of Bitcoin is about 8 billion
United States Dollars. The first ‘alt-coin’,
Namecoin, was created using the bitcoin
codebase to implement a decentralised
DNS-like system and light directory.

Experimentation with alternative hash
functions was first tested with the Tenebrix
CryptoCurrency; Although this particular
currency had limited adoption as of 2014, it
paved the way for the second highest
market cap valued cryptocurrency, Litecoin.

Litecoin was created Charlie Lee in 2011.
Like Tenebrix, it offered different time,
reward, and proof-of-work parameters to the
bitcoin model; its project goal was said to be
Silver to Bitcoins Gold.

Litecoin differed from Bitcoin in that it used
a different proof-of-work hash function,
known as SCRYPT (SCRYPT, 2012). This hash
function, more specifically a Key Derivation
Function, (Draft-Scrypt-RFC-2012), was

invented by Colin Percival to help secure
his TarSnap online backup service. SCRYPT
was chosen over the double SHA256 hash
used by Bitcoin because at the time it was
belived that the memory hard nature of
this algorithm would limit the ability for
low cost, commodity mining hardware,
especially with the of the emergence of
specialty bitcoin mining (hashing) ASICS.

The SCRYPT algorithm lead to what was
initially a called a ‘CPU-only’, or at least
‘ASIC-resistant’ coins. Over time, more
efficient SCRYPT hashing kernels were
created to be run on Graphic Processing
Units. For the next few years, PC mining
rigs, or a headless computer system with a
number of high powered graphics cards,
were a popular way to mine Litecoin and
other derivatives.

This in turn encouraged the creation of
countless SCRYPT-based Litecoin
derivatives with alternative parameters for
block time, reward. Commodity SCRYPT
hashing hardware is available from a
number of vendors today. In later 2013,
the currency Dogecoin was launched;
initially as a parody of the multitude of
new cryptocurrency derivatives. By mid
2014, this coin had a market capitalization
of over 50 million USD.

The scrypt-adaptive-n hash function, was
created for the Vertcoin cryptocurrency in
2014. This algorithm differs to from
standard scrypt by having the network
increment the n value in scrypt, to
increase memory requirements of mining
over time.

 Its authors belive that eventually the
memory requirements of a large n value
will make GPU mining cost prohibitive;
returning to CPU based mining on the
relatively cheaper system memory.

While the SCRYPT based cryptocurerncies
were maturing, composite hash function
cryptocurrencies were proposed,
employing a chain of alternative hash
functions in sequence to both increase the
computational complexity of the proof-of-

work function and hedge the bet against
ASIC development targeting a particular
hash function. Popular families of composite
cryptocurrencies include Quark, X11
(Xcurrency, Blackcoin) and X13 (Marucoin);
employing 9, 11 and 13 composite hash
functions respectively.

Bitcoin address generation
An bitcoin address is formed by generating
an EC private key. An EC private key is
defined as an unsigned integer of byte
length l in the range 0 to log2(n), where n is
the order of the curve. The private key, is
also known as at the secret exponent d, is
all that is required to assert ownership of a
bitcoin address.

The generator G, also known as the curve
domain parameters, specifies a point on the
curve. Bitcoin uses the secp256k1 curve, so
valid private key values range between
0x01 and 0xFFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C
D0364141.

Public key Q is defined as a coordinates (x,y)
calculated as multiplication of the generator G
and the private exponent d; or Q = G.d

The standard construction generates an
ECDSA private key and performs a SHA-256
hashing operation on the corresponding
public key. This result is fed into RIPEMD-
160 hash function and stored. A version
byte, 0x00 for the Main Bitcoin Network, is
appended to the head of the RIPEMD-160
hash and this result run through SHA-256
twice. The first 4 bytes of this hash are
stored as the address checksum.

The address checksum is appended to the
RIPEMD-160 hash forming a 25 byte Bitcoin
Address.
For easy use by humans, this address is
Base58Check encoded to a string. Base58
was developed by bitcoin to remove
characters that look optically similar; 0 and
O, I and l.

Assumptions and Discovery
The UTXOC construction can be applied to
any pseudonymous bitcoin-like

cryptocurrencies, (e.g.: Namecoin,
Litecoin, Peercoin, Dogecoin, Primecoin,
Bitshares-PTS).

It is suggested that the hash function used
for the signature on the UTXOC match the
proof-of-work hash function of the
cryptocurrency. (Draft-Scrypt-RFC-2012)
specifies 1.3.6.1.4.1.11591.4.11 as the OID
and ASN1 syntax for parameters.
Microsoft has also developed various OID's
that may be useful for certain policy or
certificate constraints. (MSCryptoOID
2014)

Under certain conditions, it could be
applied to semi-anonymous or 2nd
generation cryptocurrencies. (e.g.: Nxt,
Ripple, Darkcoin, BlackCoin, Mastercoin,
MaidSafeCoin). It is necessary that an
individual transaction, and its status as
being unspent, be queryable for any party
at any time. Depending on the type of
transaction sent within these networks,
this condition may not be satisfiable.

Anonymous cryptocurrencies (e.g.:
CryptoNote [Bytecoin, Monero], Darkcoin
in darksend mode) cannot be used in this
construction as it should not be possible to
inspect the blockchain for an address
balance without the associated private key.
Clients cannot verify the stored value of a
public key or address. Alternative
constructions for binding anonymous
cryptocurrency transactions could be
explored at a later date.

Any reference to Bitcoin can be replaced
by any other appropriate cryptocurrency
without any loss of generality. Future
cryptocurrencies may build this
functionality into the wallet client software.

The stored value of a certificate is a
quantitative value that corresponds to the
final balance of the address associated
with an address. This is calculated by
inspection of the blockchain, or in practice,
requested from a 3rd party blockchain API
service.

This paper suggests that the binding of
bitcoin to x509 be done on the transaction
hash, and thus reference to a single
previous payment event rather than a say
the total balance associated with that
private key. This satisfies the Prior
Transaction component of the certificate, in
that it could not have been generated
without a embedding a previously
committed transaction hash.

This allows further use cases where a
certificate could be formalising a single
transaction event in time for validity (the
private key is spending outputs from
another transaction, e.g.: a single business
transaction) or the presumed secrecy of that
private key (e.g.: Server Authentication keys
in TLS).

It is also suggested that both a self-signed
and trusted root certified model be used
with this construction as each can have be
applied for a different semantic purpose.
(e.g: self-signed can be used to create the
bearer bond type construct and trusted-root
could be used within existing browsers and
commercial CA trust frameworks without too
much modification). Submitting a certificate
signing request containing the plaintext
data of a transaction and public key/address
to a 3rd party permanently
depseudononymizes it when signed.

Future research involving m of n
transactions types in cryptocurrencies could
provide new decentralised trust validity
checks within browsers and other TLS
clients. Use within other models such as
GPG Web Of Trust or Certificate
Convergence could be explored.

At the time of writing, Microsoft Certificate
Viewer did not support the secp256k1
elliptic curve and shows UTXOC as invalid.
Google Chrome TLS also did not support
sec256k1 as a valid curve, returning
ERR_SSL_VERSION_OR_CIPHER_MISMATCH.
Firefox with NSS failed with an
ssl_error_no_cypher_overlap error.

OpenSSL 1.0.1h s_client and s_server was
able to negotiate a channel with a self-
signed UTXOC.
OpenSSL was also able to verify a
UTXOCSR, and self-sign and ca sign the
CSRs.
The default openssl config does not copy
SAN 2.5.29.17 so copy_extensions = copy
should be added in the [CA_default]
section.

openssl s_server -cert utxoc.pem
-key utxoc.key -HTTP -accept 443
-cipher ECDHE-ECDSA-AES256-GCM-
SHA384 –debug

openssl s_client -connect
localhost:443 -debug

It is hoped that future cryptographic
libraries within browsers will support the
secp256k1 curve.

Additional value – Extended
Validation
Building on the concept of ‘Extended
Validation’ (ThawteEV 2014) – a browser
vendor and certificate authority UI
enhancement agreement, by requiring
that a CSR was signed with a private key
with ownership of a certain number of
coins.

Such a CA/browser vendor could require
that the private key proves ownership of a
number of bitcoins at a specific bitcoin
address; or holds the coin in place for a
certain amount of time before the
certificate is signed.

In the event the private key is
compromised, an attacker is more likely to
transfer any explicit value associated with
this address to another private key under
their control.

This acts as a sign of compromise of the
authentication keys to the users of a
Service, which can be validated
independently of the Server manually
revoking the certificate.

Further, this deterrence against compromise
of this key, which can be detected almost
immediately by users, should promote
stronger key protection, as well as more
frequent key rotation by TLS Servers.

Over time, as the value of cryptocurrency
fluctuates, the minimum reserve value to
determine certificate validity for a particular
purpose should be adjusted accordingly.

Additional Cost for an authentication
forgery attack (active MiTM)
Using existing browser pinning mechanisms;
(which are essentially an inverse CRLs; a list
of known popular, valid certificates), a TLS
service operator could assert that a Server
Authentication certificate must be
sufficiently expensive, that is, have a
transferred a minimum balance to a
certificate for its life.

In the event of a Trusted Root compromise,
or an enterprise forgery CA, the
substitution, forged certificates used for in
the MiTM attack would need to reference a
transaction that spent a sufficient amount.

This adds to the cost of the attacker, who
may actually be a friendly party, such as a
corporate https-inspecting Intrusion
Prevention System, who must spend the
same or more cryptocurrency in order to
generate a valid UTXOC on their certificate
substitution root. Not any old ECDSA keys
signed by some authority will do, they
would need to be sufficiently expensive.

This is the additional cost of storing
cryptocurrency value for the lifetime of the
forgery. After the forged certificate is no
longer being presented to clients, its
balance can be claimed and transferred to
another private key under the control of the
forger; so the coin is not lost.

Bearer Bonds
By reserving an address balance for a fixed
period in order to maintain the validity of
the UTXOC, the address owner proves that
the key has not been used to spend the
transaction outputs, wishing to maintain

their validity for the lifetime of the
certificate.

Only the holder of the private key is able
to claim the output, this is the digital
equivalent of the bearer bond. If the
private key is compromised, it is very likely
that the thief will transfer the value to
another private key under their control; to
prevent the owner from doing the same.

Again, this follows the same model as
physical bonds; a thief that takes physical
possession of the bond paper, they have
essentially a right to claim its value; in
practice however, its rightful owner will
prevent it from being converted or
transferred.

The advantage to the holder is that if the
private key is compromised, there is an
independent and verifiable trail showing
where the value was transferred. As the
cryptocurrency networks grow in maturity,
it is expected that value conversion
services – fiat exchanges; alt-coin
exchanges, will have some way to
coordinate information on fraudulent
transactions and blacklist addresss
sources. It may be possible in the future
for honest exchanges to return stolen
funds to their rightful owner, similar to
how the existing regulated financial
industry operates.

Additionally, it allows generation of
signatures without the official client; as
any PKCS#12 supporting Elliptic Curves
can be used to generate these; eg: openssl

Value of compromise - Decentralised
verification
In existing certificate models, the implicit
value in a private key that is used for Server
Authentication in TLS is that it is only known
to the privileged process performing the
authentication.

If this key is compromised, a passive
attacker (one who can watch traffic) in the
data path can decrypt previously captured
TLS sessions, provided a Perfect Forward
Secrecy (PFS) cipher was not used; (ie:
ECDHE or DHE).

An active attacker (one who can modify
traffic) can always compromise future
sessions invisibily, either by subsituting the
PreMasterSecret sent to the Server by the
client, or decrypting the transmitted
PreMasterSecret and deriving the session
keys in the case of Non-PFS ciphers.

Stronger assurance against compromise can
be achieved by storing keys offline or in a
HSM (hardware security module, However
incidents have occurred where this control
has failed. (BlackTulip 2011).

As the user can lookup the balance of any
bitcoin-like address through either direct
inspection of the blockchain from the wallet
software, or from a third party blockchain
parser.

As all UTXOC are associated with at least a
public address, if not an individual
transaction, it is possible to inspect the
balance and validity of the output from
either a 3rd party blockchain service; for
example https://Blockchain.info and
https://chain.com

How to generate a UTXOC
Generate the secp256k1 key with

openssl ecparam –out transaction.key -name secp256k1 -genkey

This will generate an elliptic curve secret exponent (private key), defined over
the curve secp256k1; the curve used by Bitcoin and derivatives.

Remove all the text above and including the line “-----END EC PARAMETERS-----“
from transaction.key

https://Blockchain.info/
https://chain.com/

(strip curve parameters, as the curve ID is included in the EC PRIVATE KEY
section)

Use the tool eckey2coin.py to display the public address of the key.
Pass the key filename with –k or paste from clipboard into standard input

python eckey2coin.py –k transaction.key -q transaction.png

This will calculate the public address associated with the EC private key. It will
also generate a QR code to be used by mobile wallet software.

Initiate a transaction on the cryptocurrency network that pays this public address
some amount greater than zero.

Wait a short while until the transaction is accepted by the network and been
committed to a block.

From either a wallet, or a 3rd party blockchain service, find the transaction hash
corresponding to your transaction. Note the block that this transaction was
included in.

Use uxtocsr.py to generate a certificate singing request. Specify the hash value
of the transaction that has been accepted to the network to your payment
address. This can be done with the -t switch or from stdin.

python utxocsr.py -k transaction.key -f transaction.csr -t
transaction-hash && openssl req -in transaction.csr -text -verify

Once you have a CSR, this can be submitted to a Trusted Root CA for signing, or
self-signed to create a new root or self-signed entity certificate.

Self Sign (make new root of validity 10 years) and verify with openssl:

openssl req -in transaction.csr -out transaction.crt -x509 -days
3650 -key transaction.key && openssl x509 -in transaction.crt -text

Verify the output of the req command generated a certificate with the included
SubjectAlternativeName. You may need to tweak openssl.conf, examples are
included on the github respository.

If you have built an existing CA, you can sign the CSR with your root.

openssl x509 -CA CA.crt -CAkey CA.key -req -in transacton.csr

All python code, as well as the 0.01 BTC Root Certificate should be available on
the MiWCryptoCurrency github mirror:
https://www.github.com/MiWCryptoCurrency/UTXOC

You will need the following software dependancies to run these scripts:

python2, pycoin, pyasn1, pyasn_modules, qrcode

Conclusion
One can generate a UTXOC, or unspent transaction output based certificate,
using an arbitrary, valid ECDSA key on the curve used by the associated
cryptocurrency. By generating an x509 certificate that uses this key, one can
explicitly reference the transaction in which some value was transered to this
address. By ensuring that the transaction is not claimed (spent) for the lifetime
of the certificate, clients have an independently verifiable way of detecting key
compromise; as well as increasing the cost for active attacks against TLS.

Additionally it provides a bearer bond type construction that can be used with
existing x509 infrastructure and devices such as elliptic curve smart cards; and
proof of ownership signatures can be made without the official wallet software.

References

(BlackTulip 2011) ‘Interim Report – Rijksoverheid.nl, Fox-It
http://www.rijksoverheid.nl/bestanden/documenten-en-
publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-
operation-black-tulip-v1-0.pdf, 2011

(BTC2008) https://bitcoin.org/bitcoin.pdf, Satoshi Nakamoto, 2008

(BTCProto 2009) ‘Protocol specification’, Bitcoin Wiki,
https://en.bitcoin.it/wiki/Protocol_specification

(Draft-Scrypt-RFC-2012) Scrypt KDF RFC, http://tools.ietf.org/html/draft-josefsson-
scrypt-kdf-00, 2012

(HA2011) Add Honest Achmed's root certificate, Honest Achmed,
https://bugzilla.mozilla.org/show_bug.cgi?id=647959, 2011

(MSCryptoOID 2014) ‘Object IDs associated with Microsoft Cryptography’
Microsoft, https://support.microsoft.com/kb/287547, 2014

(SCRYPT 2009) ‘Stronger Key Derivation Via Sequential Memory Hard Functions',
Colin Percival, https://www.tarsnap.com/scrypt/scrypt.pdf, 2009

(ThawteEV 2014) Extended Validation FAQ
http://www.thawte.com/resources/getting-started/extended-validation-ssl-faq/

http://www.thawte.com/resources/getting-started/extended-validation-ssl-faq/
https://www.tarsnap.com/scrypt/scrypt.pdf
https://support.microsoft.com/kb/287547
https://bugzilla.mozilla.org/show_bug.cgi?id=647959
http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
https://bitcoin.org/bitcoin.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf

	UTXO based Certificates (UTXOC) ‘you-chi-ock’
	Abstract
	Principal
	Background – Bitcoin like cryptocurrencies
	Bitcoin address generation
	Assumptions and Discovery
	Additional value – Extended Validation
	Additional Cost for an authentication forgery attack (active MiTM)
	Bearer Bonds
	Value of compromise - Decentralised verification
	How to generate a UTXOC
	Conclusion
	References

