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Abstract

We propose an approach to instance-level image segmentation that is built on
top of category-level segmentation. Specifically, for each pixel in a semantic
category mask, its corresponding instance bounding box is predicted using a deep
fully convolutional regression network. Thus it follows a different pipeline to
the popular detect-then-segment approaches that first predict instances’ bounding
boxes, which are the current state-of-the-art in instance segmentation. We show that,
by leveraging the strength of our state-of-the-art semantic segmentation models,
the proposed method can achieve comparable or even better results to detect-then-
segment approaches. We make the following contributions. (i) First, we propose
a simple yet effective approach to semantic instance segmentation. (ii) Second,
we propose an online bootstrapping method during training, which is critically
important for achieving good performance for both semantic category segmentation
and instance-level segmentation. (iii) As the performance of semantic category
segmentation has a significant impact on the instance-level segmentation, which is
the second step of our approach, we train fully convolutional residual networks to
achieve the best semantic category segmentation accuracy. On the PASCAL VOC
2012 dataset, we obtain the currently best mean intersection-over-union score of
79.1%. (iv) We also achieve state-of-the-art results for instance-level segmentation.

1 Introduction

Semantic category-level image segmentation amounts to predicting the category of individual pixels
in an image, which has been one of the most active topics in the field of image understanding and
computer vision for a long time. Most of the recently proposed approaches to this task are based
on deep convolutional networks. Particularly, the fully convolutional network (FCN) [1] is efficient
and at the same time has achieved the state-of-the-art performance. By reusing the computed feature
maps for an image, FCN avoids redundant re-computation for classifying individual pixels in the
image. FCN has become the de facto approach to dense prediction, and many methods have been
proposed to further improve this framework, e.g., the DeepLab [2] and the Adelaide-Context model
[3]]. One key reason for the success of these methods is that they are based on rich features learned
from the very large ImageNet [4] dataset, often in the form of a 16-layer VGGNet [5]. However,
currently, there exist much improved models for image classification, e.g., the ResNet [6] [7].

Semantic instance-level segmentation aims to identify the individual instances of different semantic
categories, i.e., simultaneous object detection and segmentation. Instance segmentation is sup-
posed to be only one more step beyond semantic segmentation. However, most recently proposed
approaches [8, 19, [10] to instance segmentation are based on bounding-box detection methods. Gen-
erally speaking, these methods follow the pipeline of a typical object detection method, e.g., Fast
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R-CNN [[L1], to locate instances of semantic objects with bounding-boxes as the first step, and then
predict binary object masks within these boxes via background-foreground segmentation. In spite
of the recent fast development of powerful semantic-category segmentation methods, there is little
work in the literature towards developing an instance segmentation method on top of, and fully
exploiting the power of such methods. One notable work is the proposal-free network (PFN) [12],
which for all pixels predicts semantic scores and instance bounding-boxes, as well as category-wise
numbers of instances per image, based on which a clustering algorithm is applied for post-processing
to locate instances. As pointed out by Uhrig et al. [[13], PFN has a complex architecture with many
interleaved building blocks, which makes training very complex. More importantly, its performance
seemingly depends critically on the correct prediction of instance numbers, which is sometimes
infeasible. Especially, in a complex scene usually there are many small instances, and the number of
training samples per number of instances can be very small, leading to mistakes in their estimation.
Consequently, the available cues for clustering may significantly deviate from the estimated number
of instances. This might be one of the reasons why their performance reported in [[12] is considerably
poorer than most recent results. On the other hand, the concurrent work to ours by Uhrig et al. [[13]
relies on elaborately designed template matching to detect instances, which is very case-specific.
Furthermore, good performance in [13]] heavily relies on accurate depth estimation, which only works
well for indoor/outdoor scene images. Based on the above considerations, here we attempt to develop
a concise and generic yet accurate method of this kind, and show the great potential of the less
explored route.

In summary, we highlight the main contributions of this work as follows:

e We propose a new approach to instance-level segmentation, in which semantic score maps
are transformed into Hough-like maps. We can easily detect the instances of different
semantic objects from these transformed maps.

e We propose an online bootstrapping method for training, and show that it is critically
important in achieving the best performance both for semantic and instance segmentation.

o We extensively evaluate different variations of a fully convolutional residual network (FCRN)
so as to find the best configuration, including the number of layers, the resolution of feature
maps, and the size of field-of-view.

e We introduce dropout regularization to some of the residual blocks in an FCRN, replace the
top-most linear classifier with a multi-layer non-linear one, and adopt the multi-view testing
technique, by which we further improve the performance. Our method achieves the currently
best results on the PASCAL VOC 2012 dataset in terms of semantic segmentation. Our
mean intersection-over-union score reaches 79.1% even though we use only the augmented
PASCAL VOC training data, which is a new recor

e We achieve on par or even better results in terms of instance segmentation on the PASCAL
VOC 2012 dataset, compared with the previous best performers. In particular, we signifi-
cantly improve the mean region average precision at an overlap of 0.7 by 5.1%, from 41.5%
to 46.6%. We empirically show that, as the accuracy of semantic segmentation improves,
our method has the potential to improve by a remarkable margin.

Related work Next we briefly review the most recent developments within four topics, which are
closely related to this paper.

Very deep convolutional networks. The recent boom in deep convolution networks originated when
Krizhevsky et al. [14] won the first place in the ILSVRC 2012 competition [4] with the 8-layer
AlexNet. In the next year, ‘Clarifai’ [4] still had the same number of layers. However, in 2014, the
VGGNets [5] were composed of up to nineteen layers, while the even deeper 22-layer GoogLeNet [15]]
won the competition [4]]. In 2015, the much deeper ResNets [6] achieved the best performance [4]],
showing deeper networks indeed learn better features.

The most impressive part was that, by replacing the VGGNets in Fast RCNN [[11] with their ResNets,
He et al. [6]] won in the object detection task with a remarkable margin. This result showed the
importance of features in image understanding tasks. The main contribution that enabled them to
train such deep networks was that they connected some of the layers with shortcuts. These shortcuts
directly passed through the signals, and thus avoid the gradient vanishing effect, which may be a
problem for very deep plain networks. In a more recent work, they redesigned their residual blocks
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to avoid over-fitting, which enabled them to train an even deeper 200-layer residual network. Deep
ResNets can be seen as a simplified version of the highway network [[16]].

Fully convolutional networks for semantic segmentation. Long et al. [[1] first proposed the frame-
work of fully convolutional networks for semantic segmentation, which was both effective and
efficient. They also enhanced the final feature maps with those from intermediate layers, which en-
abled their model to make finer predictions. Chen et al. [2] increased the resolution of feature maps by
spontaneously removing some of the down-sampling operations and accordingly introducing kernel
dilation into their networks. They also found that a classifier composed of small kernels with a large
dilation performed as well as a classifier with large kernels, and that reducing the size of field-of-view
had an adverse impact on performance. As post-processing, they applied dense CRFs [17] to the
network-predicted category-wise score maps for further improvement. Zheng et al. [18]] simulated the
dense CRFs with an recurrent neural network (RNN), which can be trained end-to-end together with
the down-lying convolution layers. Lin et al. [3] jointly trained CRFs with down-lying convolution
layers. Thus they were able to capture both ‘patch-patch’ and ‘patch-background’ context with CRFs,
rather than just pursuing local smoothness as most of the previous methods did.

Bounding-box detection based approaches to instance segmentation. Most of the best perform-
ers for instance-level segmentation in the literature can be attributed as bounding-box detection based
approaches [8, 9, [10]]. Usually, they were composed of two steps, i.e., first locating objects with
bounding-boxes, and second generating masks from these boxes via foreground segmentation. How-
ever, our method in this paper is built upon semantic image segmentation. An object is detected as a
local maxima on a transformed semantic score map, which has some connections to the generalized
Hough transform based approaches to object detection and segmentation [19].

Online bootstrapping for training deep convolutional networks. There are some recent works in
the literature exploring sampling methods during training, which are concurrent with ours. Loshchilov
and Hutter [20] studied mini-batch selection in terms of image classification. They picked hard
training images from the whole training set according to their current losses, which were lazily
updated once an image had been forwarded through the network being trained. Shrivastava et al. [21]]
in a concurrent work to ours selected hard regions-of-interest (Rols) for object detection. They only
computed the feature maps of an image once, and forwarded all Rols of the image on top of these
feature maps. Thus they were able to find the hard Rols with a small additional computational cost.

The method of [20] is similar to ours in the sense that they both select hard training samples based
on the current losses of individual data-points. However, we only search for hard pixels within the
current mini-batch, rather than the whole training set. In this sense, the method of [21]] is more similar
to ours. Nevertheless, to our knowledge, the method here is the first to propose online bootstrapping
of hard pixel samples for the problems of instance and semantic image segmentation.

2 Proposed method

We first introduce the proposed pipeline for instance segmentation, then demonstrate our online boot-
strapping approach, which is one of the key components in our high-performance fully convolutional
residual networks (FCRNs) for both semantic and instance segmentation, and finally explain how to
build up our FCRNs from residual networks.

2.1 Proposed pipeline for instance segmentation

The pipeline of our approach is illustrated in Fig.[I] During testing, we obtain the instance segmenta-
tion result of an image following the steps shown below.

1) Calculate the category-wise score maps via semantic category segmentation. For clarity, we only
depict the score maps corresponding to the ‘sheep’ category and discard the remaining nineteen
object categories in the figure.

2) Calculate the category-wise transform maps via bounding-box regression. Again, only the
transform map for the ‘sheep’ category is depicted.

3) Apply the obtained transform maps to their corresponding scores maps.

4) Search for local maxima on the transformed maps by non-maximal suppression (NMS), and keep
the obtained maxima as detected instance hypotheses.
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Figure 1: The pipeline of our proposed approach to instance segmentation.

5) Trace back to all of the suppressed pixels and recover a mask for each instance hypothesis.
6) Generate the final instance segmentation result by region based NMS [§]].

We train the two networks separately. The semantic segmentation net is trained with the classic
Logistic regression loss, and the localization network is trained with the smoothed ¢, loss [11]. Our
regression targets include the vertical and horizontal offsets from the current pixel to the bounding-box
center of the instance that it belongs to, and also the height and width of that instance. To balance the
contributions of instances in different sizes, we re-weight their pixels in the training loss according
to their heights and widths. However, we let pixels in the same instance have the same loss weight,
since the central and peripheral pixels are of the same importance in order to reconstruct the whole
instance.

To combine the outputs of both networks during testing, we start by applying the transform maps to
the semantic score maps. Note that we ignore the background and only transform the foreground
pixels, e.g., only those labeled as ‘sheep’ in Fig.[I] To improve the recall rate of instances, we
use top-n ‘sheep’ masks. In other words, we generate n masks per category. The top-n masks are
obtained by keeping the pixels whose scores for the ‘sheep’ category are among their top-n highest
scores.

The next step is to find the instances. We need to detect the modes of transformed pixels in the 2D
spatial image space. To this end, here we resort to a simple off-the-shelf approach, although more
sophisticated clustering methods may lead to improved results. Namely, we apply non-maximum
suppression (NMS) to the bounding-boxes previously predicted by our localization net. The pixels
with locally high semantic scores will be kept as instance hypotheses. For each of them, we view that
pixel and its suppressed pixels as a cluster, and average their semantic scores to compute the confi-
dence of their corresponding instance hypothesis. Note that the above process has some connections
with the generalized Hough transform based approaches to object detection and segmentation [19],
and that predicting bounding-boxes is not an indispensable component but a trivial implementation
of maxima searching in our proposed method. However, in most of the recent methods [8} |9, [10],
bounding-boxes are one of the required inputs for their segmentation components to generate binary
masks for individual instances.

2.2 Online bootstrapping of hard training pixels

When we train an FCRN, depending on the size of image crops, there may be tens of thousands of
labeled pixels to predict per crop. However, sometimes many of them can easily be discriminated
from others, especially those lying at the center of a large semantic region. Continuing to learn
from these pixels cannot improve our objective. For this reason, we propose an online bootstrapping
method, which forces networks to focus on hard (and so more valuable) pixels during training.

We first describe the proposed online bootstrapping in the context of semantic category-level segmen-
tation. Let there be K different categories c; in a label space. For simplicity, suppose that there is
only one image crop per mini-batch, and let there be IV pixels a; to predict in this crop. Let y; denote
the ground-truth label of pixel a;, and p;; denote the predicted probability of pixel a; belonging to
category c¢;. Then, the loss function can be defined as,

N K
1
b=- . ( 1{y; = jand Pij < t} logpij) (1)
SN S 1y = j and pi; < t} z;;

where ¢ € (0,1] is a threshold. Here 1{-} equals one when the condition inside the brackets holds,
and otherwise equals zero. In other words, we drop pixels when they are too easy for the current




model, i.e., their losses are below ¢. However, in practice, we hope that there should be at least a
reasonable number of pixels kept per mini-batch. Otherwise, the computed gradient can become very
noisy. Hence, we increase the threshold ¢ accordingly if our current model performs fairly well on a
specific mini-batch; and decrease if the model does not work well.

The idea to introduce online bootstrapping into our localization network is similar, i.e., to drop
those too easy pixels. However, the definition of ‘easy’ is slightly different. Here, we threshold the
intersection-over-union (IoU) scores between ground-truth and predicted bounding-boxes, rather
than directly thresholding the regression loss. Our intuition is straightforward. We do not care how
accurate the heights, widths or offsets are regressed, but we do care if we can get the correct instances
after the following NMS on transformed score maps. Since NMS is based on IoU scores between
bounding-boxes, our choice is more natural than thresholding regression losses of the four targets
respectively.

Note that this online bootstrapping approach is also capable of automatically balancing biased training
data, which is one of the significant and common problems for a pixel labeling task. Usually, there
are remarkably more background pixels than object pixels. Sometimes, one category has many
more pixels than the others. The mechanism works as follows. As the training process goes on,
our model may become overly-learned for those majority categories. Therefore, pixels belonging
to these categories will become easy to discriminate, which means that the training losses for these
pixels will go down. At the same time, the losses for pixels belonging to minority categories keep
unchanged or even go up. At some point, our bootstrapping approach will find them and keep the
model learning from them until their losses go down to the same level as the majority category pixels.
Similar argument was also presented in a concurrent work to ours by Shrivastava et al. [20].

2.3 Fully convolutional residual network

We initialize an FCRN from the version of ResNet in [6]. We replace the linear classification layer
with a convolution layer so as to make one prediction per spatial location. Besides, we also remove
the 7x7 pooling layer. This layer can enlarge the field-of-view (FoV) [2] of features, which is
sometimes useful considering the fact that we human usually tell the category of a pixel by referring
to its surrounding context region. However, this pooling layer at the same time smoothes the features.
In pixel labeling tasks, features of adjacent pixels should be distinct from each other when they
respectively belong to different categories, which may conflict with the pooling layer. Therefore we
remove this layer and let the linear convolution layer be on top to deal with the FoV.

Up to now, the feature maps below the added linear convolution layer only has a resolution of 1/32,
which is too low to precisely discriminate individual pixels. Long et al. [1] learned extra up-sampling
layers for this issue. However, Chen et al. [2] reported that the hole algorithm (or the atrous algorithm
by Mallat [22]) can be more efficient. Intuitively, the hole algorithm can be seen as dilating the
convolution kernels before applying them to their input feature maps. With this technique, we can
build up a new network generating feature maps of any higher resolution, without changing the
weights. When there is a layer with down-sampling, we skip the down-sampling part and increase the
dilations of subsequent convolution kernels accordingly. See DeepLab [2] for an explanation.

A sufficiently large FoV was reported to be important by Chen et al. [2]]. Intuitively, we need to present
context information of a pixel to the top-most classification layer. However, the features at different
locations should be discriminative at the same time so that the classifier can tell the differences
between adjacent pixels which belong to different categories. Therefore, a natural way is to let
the classifier to handle the FoV, which can be achieved by enlarging its kernel size. Unfortunately,
the required size can be so large that it can blow up the number of parameters in the classifier.
Nevertheless, we can resort to the hole algorithm again. In other words, we use small kernels with
large dilations, in order to realize a large FoV.

Following the above three steps, we design our baseline FCRN for semantic category-level segmenta-
tion. Although the ResNet has shown its advantages in terms of many tasks due to much richer learned
features, we observe that this baseline FCRN is not powerful enough to beat the best algorithm for
semantic segmentation [3[], which is based on the VGGNet [5]. However, we empirically show that
FCRN can achieve the best performance together with our proposed online bootstrapping and a few
modifications. We design our localization networks similarly. We do not regress bounding-boxes for
background pixels, thus there are only eighty channels in the top-most layer.



3 Experiments

In this section, we show that our method achieves the state-of-the-art performance both in terms
of semantic category-level and instance-level segmentation. We implement our algorithm with the
Caffe [23] toolkit throughout all the experiments.

3.1 Semantic category-level segmentation results

We first evaluate the semantic category segmentation component in our method, which is derived based
on the FCN [1]] and the ResNet [6]]. We name it as the fully convolutional residual network (FCRN),
whose hyper-parameters are carefully evaluated, including the network depth, the resolution of feature
maps, the kernel size and dilation of the top-most classifier in the network. For evaluation, we use
three popular and challenging datasets, i.e., the PASCAL VOC 2012 [24], the Cityscapes [25]], and the
PASCAL-Context [26] dataset. We report, 1) the pixel accuracy, which is the percentage of correctly
labeled pixels on a whole test set, 2) the mean pixel accuracy, which is the mean of class-wise pixel
accuracies, and 3) the mean class-wise intersection-over-union (IoU) scores. Also note that we only
show these three scores when it is possible for the individual datasets. For example, we will not
show the first two kinds of scores for the fest set of PASCAL VOC 2012, since only the mean IoU is
available.

PASCAL VOC 2012. This dataset consists of photos taken in human daily life. Besides the
background category, there are twenty semantic categories, including bus, car, cat, sofa, monitor, etc.
There are 1,464 fully labeled images in the train set and another 1,449 in the val set. Ground-truth
labels of the 1,456 images in the fest set are not public, but there is an online evaluation server.
Following the conventional settings in the literature [1} 2], we augment the train set with extra labeled
PASCAL VOC images from the semantic boundaries dataset [27]. So, in total there are 10,582
images in the augmented train set.

According to results on the val set in Table[I] we notice the below three points. 1) Increasing the
depth from 50 to 101 brings a significant improvement. However, we observe no further improvement
when increasing the depth to 152, probably, due to over-fitting. 2) Increasing the resolution of feature
maps is beneficial. 3) Increasing the size of field-of-view (FoV) to more than 224 is also helpful.
Note that 224 is the setting used in FCNs [1]].

The above results suggest using deeper networks, generating high resolution feature maps, and
enlarging the FoV of classifiers. This makes sense because we can obtain richer and finer features,
and classifiers learn from larger context regions. However, it also makes computational cost heavier
and may be limited by the amount of GPU memories. Besides, as for the size of FoV, there is another
important factor to consider. Note that all of the images in PASCAL VOC are no larger than 500 x 500,
and we feed a network with original images (without resizing) during testing. Thus, we have to limit
the size of FoV below 500 pixels on this dataset. Otherwise, the dilated kernels of a classifier will
be larger than the size of feature maps. As a result, the outer part of the kernels must be applied to
padded zeros, which may cause adversarial impact. Similarly, if the size of FoV is larger than the size
of image crops during training, the outer part of the kernels cannot be properly learned. In Table [T}
our largest evaluated size of FoV is 392. No matter what is the depth, networks with this setting
always achieve the best performance. To realize such a large FoV, we can either enlarge the kernel
size of the classifier or increase the dilation of these kernels. However, this dilation should not be too
large, since the feature vector per location can only cover a limited size of area. For example, models
with a dilation of eighteen show no advantages over those with a dilation of twelve.

We compare our method with the previous best performers on the rest set in the bottom part of Table 2]
Being trained with only the augmented PASCAL VOC data, our model outperforms the previous
best performer by 3.8% and wins the first place for 18 out of the 20 object categories. Generally
speaking, our method usually loses for those very hard categories, e.g., ‘bicycle’ and ‘chair’, for
which most of the methods can only achieve scores below 60.0%. Instances of these categories are
usually of large diversity and in occluded situations. More importantly, some of them are given with
quite elaborated annotations, e.g., a bicycle with carefully labeled skeletons. The above facts suggest
that more training data are required for these categories. But unfortunately, this is not the case for
this dataset. Some works [[18, 28| 3] pre-trained their models with the Microsoft COCO [29]] data,
which is composed of about 120k labeled images. In this case, the best previous result is 77.8% [3]].
With this setting, we can only observe a rather limited improvement. It seems like that more efforts



Table 1: Results of our vanilla FCRNs on the val set of PASCAL VOC 2012.

Depth  Resolution Kernel Dilation FoV [ Pixel acc. % Mean acc. % Mean IoU %

50 1/16 3 6 208 92.74 78.68 69.09
50 1/8 3 6 104 92.50 77.60 67.61
50 1/8 3 12 200 93.03 79.51 69.94
50 1/8 3 18 296 93.02 79.28 70.01
50 1/8 5 6 200 92.98 79.34 69.81
50 1/8 5 12 392 93.25 79.84 71.10
50 1/8 7 6 296 93.14 79.54 70.67
101 1/16 3 6 208 93.22 80.16 70.93
101 1/8 3 6 104 93.20 79.87 70.20
101 1/8 3 12 200 93.68 81.29 72.34
101 1/8 3 18 296 93.67 81.15 72.37
101 1/8 5 6 200 93.52 81.00 71.97
101 1/8 5 12 392 93.87 81.87 73.41
101 1/8 7 6 296 93.61 81.34 72.56

Table 2: Comparison of category-wise and mean IoU scores on the test set of PASCAL VOC 2012.
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should be put in domain adaption from COCO to PASCAL VOC. Here, we leave this problem as one
of our future works, and focus on the augmented PASCAL VOC dataset. Nevertheless, even with less
training data, our method still beats the previous best performer by 1.3%.

Cityscapes. This dataset consists of street scene images taken using car-carried cameras. There
are nineteen semantic categories, including road, car, pedestrian, bicycle, etc. There are 2975 fully
labeled images in the train set and another 500 in the val set. Ground-truth labels of images in the
test set are not public, but there is an online evaluation server also. All of the images in this dataset
are in the same size. They are 1024 pixels high and 2048 pixels wide.

We show results on the val set of Cityscapes in Table [3| Most of the observations on this dataset are
consistent with those on PASCAL VOC 2012, as demonstrated previously. Two notable exceptions
are as follows. First, the problem of over-fitting seems less severe. One possible reason is that the
resolution of images in this dataset are higher than those in PASCAL VOC 2012, so the total number
of pixels are actually larger. On the other hand, the diversity of images in this dataset is smaller than
those in PASCAL VOC 2012. In this sense, even less training data can cover a larger proportion of
possible situations, which can reduce over-fitting. Second, 392 seems still smaller than the optimal
size of FoV. Since the original images are in a size of 1024 x2048, we can feed a 50-layer network
with larger image crops during both training and testing. In this case, a network may prefer even
larger FoV. Therefore, to some extent, the ideal size of FoV depends on the size of image crops during
training and testing.

Our best model achieves an IoU score of 74.6% on the val set, as shown in Table which is compared
with the previously reported best result 68.6% [3]].

PASCAL-Context. This dataset is composed of PASCAL VOC 2010 images with extra object and
stuff labels, e.g., bag, food, sign, ceiling, ground and snow. Including the background category, in
total there are sixty semantic categories. At present, labels on the fest set are not released yet. So, we
train networks using the 4,998 images in the train set, and evaluate them using the 5,105 images in



Table 3: Results of our vanilla FCRNSs on the val set of Cityscapes.

Depth  Resolution Kernel Dilation FoV | Pixel acc. % Mean acc. %  Mean IoU %

50 1/16 3 6 208 93.83 74.67 66.41
50 1/8 3 6 104 94.38 74.89 66.58
50 1/8 3 12 200 94.47 7591 67.68
50 1/8 3 18 296 94.53 76.52 68.38
50 1/8 5 6 200 94.48 76.17 68.04
50 1/8 5 12 392 94.61 76.68 68.71
50 1/8 5 18 584 94.64 76.34 68.53
50 1/8 7 6 296 94.58 76.88 68.79
50 1/8 7 12 584 94.64 76.57 68.79
101 1/16 3 6 208 94.11 76.26 67.62
101 1/8 3 6 104 94.68 77.15 68.58
101 1/8 3 12 200 94.78 78.30 69.99
101 1/8 3 18 296 94.82 78.21 70.00
101 1/8 5 6 200 94.75 78.11 69.89
101 1/8 5 12 392 94.87 79.17 71.16
101 1/8 7 6 296 94.75 78.43 70.40
152 1/16 3 6 208 94.26 76.89 68.30
152 1/8 3 6 104 94.82 78.30 69.69
152 1/8 3 12 200 94.94 78.79 70.66
152 1/8 3 18 296 94.93 79.19 70.92
152 1/8 5 6 200 94.88 78.77 70.61
152 1/8 5 12 392 95.00 79.38 71.51
152 1/8 7 6 296 94.91 79.08 70.87

Table 4: Comparison of category-wise and mean IoU scores on the val set of Cityscapes.
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FCRNJ97.4 80.390.8 47.6 53.8 53.158.170.291.259.693.277.1 54.493.067.1 79.4 62.257.372.7|71.5
FCRN+Bs.[97.6 82.091.7 52.356.257.0 65.774.491.7 62.593.8 79.8 59.6 94.0 66.2 83.7 70.3 64.2 75.5|74.6

the val set. For this dataset, we just evaluate the same model as the one used for PASCAL VOC 2012.
Our method outperforms the previous best performers with a clear margin in terms of all the three
kinds of scores, as shown in Table[3}

3.2 Instance-level segmentation results

We now evaluate the whole framework in terms of instance segmentation on the PASCAL VOC
2012 dataset, following the common protocols used in several recent works [8, |9, [10]]. We use the
annotations in SBD [27]]. According to the PASCAL VOC 2012 splits, there are 5,623 images in the
train set and 5,732 in the val set. Since there is no annotation for the zest set, we train models with the
train set and evaluate them with the val set. We report two mean region average precisions mAPj 5
and mAPj -, and also the mean volume region average precisions mAP;, ;, which were proposed by
Hariharan et al. [8]].

We show results on the val set of PASCAL VOC 2012 in Table[6] Our method can finally achieve on
par or even better performance compared with the previous best performers. Especially, in terms
of the mean AP at an overlap of 0.7, our method outperforms the previous best one by 3.1%, which
is a significant improvement. By pre-training the semantic segmentation network using the COCO
dataset [29], we can further improve the performance by 2.0%. In a pilot experiment, we generate
semantic score maps with ground-truth masks, while still compute transform maps with our best
localization network. The performance goes up to 73.0% in mAPj, 5 and 60.6% in mAP( -, which
shows the great potential of our method to benefit from the improvement of semantic category-level
segmentation approaches.



Table 5: Comparison on the val set of PASCAL-Context.

Method Pixel acc. % | Mean acc. % | Mean IoU %
FCN-8s [l1] 65.9 46.5 35.1
BoxSup [31] - - 40.5
UoA-Context [3] 71.5 53.9 43.3
ours 72.9 54.8 44.5

Table 6: Comparison on the val set of PASCAL VOC 2012. Bs. means ‘bootstrapping’.

Method mAPL 5 % | mAP) ;% | mAP!,, %

SDS [8] 49.7 25.3 41.4
Hypercolumn [9]] 60.0 40.4 -
MNC [10] 63.5 41.5 -

50-layer 572 40.5 525

50-layer, Bs. 58.7 42.0 53.8

50-layer, Bs., weighted loss 59.8 43.5 54.7
101-layer, Bs., weighted loss 60.9 44.6 55.5
101-layer, Bs., weighted loss, COCO 61.5 46.6 56.4

3.3 Importance of online bootstrapping of hard training pixels

We show the results of two best models for semantic segmentation in Table[/| In both cases, the best
setting is to keep the 512 most hardest pixels. Particularly, the proposed bootstrapping improves the
mean IoU by 3.1% on Cityscapes, which is a significant margin. The problem of biased data is more
severe on this dataset, since there are clearly much more ‘sky’ and ‘road’ pixels than ‘traffic sign’ in
a street scene. We also show the category-wise results in Tables [2]and @ Generally, the proposed
bootstrapping can clearly improve the performance for those categories which are less frequent in
training data, e.g., ‘cow’ and ‘horse’ on PASCAL VOC 2012, ‘traffic light’ and ‘train’ on Cityscapes.
Similarly, the proposed online bootstrapping also contributes clearly to our localization networks, as
shown in Table

Table 7: Results showing the impact of online bootstrapping.

Depth  Resolution  Kernel Dilation  Bs. | Pixel acc. % Meanacc. %  Mean IoU %

PASCAL VOC 2012
101 1/8 5 12 F 93.87 81.87 73.41
101 1/8 5 12 256 94.11 81.44 74.41
101 1/8 5 12 512 94.23 82.09 74.80
101 1/8 5 12 1024 94.08 81.84 74.17
Cityscapes
152 1/8 5 12 F 95.00 79.38 71.51
152 1/8 5 12 256 95.41 81.37 73.97
152 1/8 5 12 512 95.46 82.04 74.64
152 1/8 5 12 1024 95.38 81.00 73.45

3.4 Qualitative results

We show qualitative results for semantic segmentation in Figs. 2], [3]and 4] as well as for instance
segmentation in Figs.[5] Note that the white borders and regions in the ground-truth in Figs. 2] and 3]
are excluded during evaluation, as well as those black regions in the ground-truth in Fig. 4]

4 Conclusions

In this work, we have built a state-of-the-art fully convolutional residual network for semantic
category-level segmentation. On top of this model, we have proposed a new pipeline for instance-
level segmentation, which is intrinsically different from the currently commonly-used bounding-box
detection based methods. We have also proposed an online bootstrapping approach, which contributes



greatly in both of the above two tasks. Finally, on the PASCAL VOC 2012 dataset, we have achieved
the currently best mean IoU score for semantic segmentation, and the state-of-the-art performance for
instance-level segmentation.
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Image Truth Prediction Image Truth Prediction Image Truth Prediction

Figure 2: The qualitative results of our method on PASCAL VOC 2012 for semantic segmentation.

| W)

Image Truth Prediction Image Truth Prediction Image Truth Prediction

Figure 3: The qualitative results of our method on PASCAL-Context for semantic segmentation.
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Image Truth Prediction Image Truth Prediction

Figure 4: The qualitative results of our method on Cityscapes for semantic segmentation.

Instance prediction Semantic prediction

Figure 5: The qualitative results of our method on PASCAL VOC 2012 for instance segmentation.
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