
Plasmonic field enhancement and SERS
in the effective mode volume picture

Stefan A. Maier
Centre for Photonics and Photonic Materials, Department of Physics, University of Bath,

Bath BA2 7AY, UK

S.Maier@bath.ac.uk

Abstract: The controlled creation of nanometric electromag-
netic field confinement via surface plasmon polariton excitations in
metal/insulator/metal heterostructures is described via the concept of an
effective electromagnetic mode volume Veff. Extensively used for the
description of dielectric microcavities, its extension to plasmonics provides
a convenient figure of merit and allows comparisons with dielectric coun-
terparts. Using a one-dimensional analytical model and three-dimensional
finite-difference time-domain simulations, it is shown that plasmonic
cavities with nanometric dielectric gaps indeed allow for physical as well
as effective mode volumes well below the diffraction limit in the gap
material, despite significant energy penetration into the metal. In this
picture, matter-plasmon interactions can be quantified in terms of quality
factor Q and Veff, enabling a resonant cavity description of surface enhanced
Raman scattering.
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1. Introduction

In recent years, the ever-increasing research efforts in the field of plasmonics - the study of
electromagnetic field confinement and enhancement via surface plasmon polaritons (SPPs) -
have led to a number of important advances towards the goal of a nanophotonic infrastructure
for confining and guiding electromagnetic radiation [1]. Recent examples include the creation
of metal nanoparticle plasmon waveguide [2] and other sub-wavelength photonic devices [3],
the fabrication of which is enabled by nanofabrication tools such as electron beam lithography.
However, one of the most prominent application of SPPs and localized plasmons, single mole-
cule surface enhanced Raman scattering (SERS)[4, 5], has up to now not been described in a
context of field enhancement in designed metal nanoscale cavities. The single molecule sensi-
tivity relies on light localization in hot-spots on a roughened silver (Ag) surface where random,
nanometer-sized junctions between surface protrusions are believed to form cavity-like struc-
tures for field enhancement [6]. As a step towards a controlled sensing platform for SERS [7],
here the enhancement process is presented from a waveguide-to-cavity-coupling point of view,
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which requires a careful look at the energetics of plasmonic energy localization in metallic
nanocavities.

Optical cavities in general provide an intriguing way to alter the interaction of light with
matter and have been employed in a wide range of fields from cavity quantum electrodynamics
(cQED) [8] to single-molecule sensing [9]. As is well known from work on dielectric resonant
cavities, a given cavity can be characterized in terms of its quality factor Q, being proportional
to the cavity photon lifetime, and its effective mode volume Veff, quantifying the electric field
strength per photon. Q and 1/Veff can be thought of as the spectral and spatial energy density of
the resonant mode, respectively. Prominent geometries include dielectric spheres [10, 11], mi-
crotoroids [12], microdisks [13], and dielectric photonic crystals [14]. The former can sustain
very high quality factors Q > 108 enabling Q/V̄eff ∼ 105 [12], where V̄eff is the effective mode
volume normalized to (λ0/n)3, the cubic wavelength in the material. Photonic crystal micro-
cavities on the other hand allow Veff to approach the theoretical diffraction limit, corresponding
to a cubic half wavelength in the material [15].

In a quasi-normal mode picture [16], one can quantify the coupling between matter and the
electromagnetic field of a resonant cavity using Q and Veff. The beauty of this approach lies in
the ability to determine simple scaling laws for various processes such as spontaneous emission
[17], strong matter-photon coupling [8] and non-linear optical thresholds [18] in terms of these
two parameters. In order to compare and contrast plasmonic resonant structures with their di-
electric counterparts, here this formalism will be carried over to the description of interactions
between matter and surface plasmon-polaritons. Of critical importance to the mode expansion
analysis is the careful determination of Veff for metallic systems, where the generation of lo-
calized light volumes smaller than the diffraction limit in the dielectric space surrounding a
metallic nanostructure does not in itself imply that Veff is smaller than the diffraction limit. The
applicability of the effective mode volume concept for metallic nanostystems requires careful
account of the dispersive character of the plasmon-polariton excitations and the electromag-
netic energy stored inside the metal, both of which become significant for deep sub-wavelength
confinement. After a discussion of a nanoplasmonic Fabry-Perot type resonator using both a
onedimensional analytical model and threedimensional finite difference time domain (FDTD)
simulations, the advantages of characterizing plasmonic energy confinement in terms of Q and
Veff are demonstrated via a simple model for surface enhanced Raman scattering (SERS), which
has typically been analyzed using scattering-type calculations [19]. The new approach is in
quantitative agreement with full-field calculations for crevices between nearly touching metal-
lic nanoparticles [6], and offers guidance in the design of individually addressable metallic and
dielectric cavities for sensing purposes.

2. Onedimensional model of gap plasmons

Possibly one of the simplest geometries for a plasmonic nanoresonator allowing reproducible
fabrication is that of a thin dielectric layer sandwiched between two metallic claddings (Fig. 1,
left inset). In the vertical z-direction perpendicular to the plane of the dielectric core, the mode
is confined via a coupled surface plasmon-polariton sustained by the metallic boundaries. Lat-
erally, the physical extent of the cavity together with the increased wave vector of the surface
plasmon mode propagating in the x-direction will lead to confinement, while in propagation di-
rection the mode can be confined using reflective walls or indeed a simple air boundary, leading
to Fabry-Perot type oscillations. Before embarking on a numerical analysis of such a cavity, it
is instructive to analytically consider the energy confinement properties of a canonical planar
metal-air-metal heterostructure composed out of an air (ε 1 = 1) core of width 2a surrounded
by two metallic half-spaces (Fig. 1, right inset). As is well known, such a heterostructure can
support two surface modes propagating in the x-direction parallel to the interfaces that are set
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Fig. 1. Dispersion relation of the odd plasmon-polariton gap mode sustained by two infinite
Au half spaces separated by an air gap 2a (inset) for: 2a = 1μm (broken black line), 100
nm (black line), and 50 nm (gray line). Also shown is the dispersion for a single interface
(broken gray line). For large wave vectors, the frequency of the mode approaches the Au/air
surface plasmon frequency (horizontal line).

up by coupling of the surface plasmon-polariton modes of the individual air/metal boundaries
[20]. Here the focus will be on the mode of odd vector parity, which does not have a cut-off
gap size and shows a symmetric scalar field distribution of the dominant electric field compo-
nent, Ez, with respect to the symmetry plane, as depicted in the right inset of Fig. 1 (this is
the lowest order capacitor-type mode). The dielectric response of the metallic half-spaces is
modeled using a Drude fit to the dielectric function ε(ω) for gold (Au) at visible and near-
infrared frequencies [21]. The dispersion of this mode is given by the implicit relation between
the propagation constant β = kx and the dielectric response of the metal cladding and air gap
via

tanh(wa) = − ε1

ε(ω)
u
w

, (1)

where u =
√

β 2 − k2ε(ω) and w =
√

β 2 − k2ε1. The electromagnetic energy stored in the elec-
tric field inside the metal can be calculated using an electromagnetic energy density appropriate
for a highly dispersive, lossy material [22, 23] as

uE =
ε0

2

(
ε1 +

2ωε2

γ

)
|E|2. (2)

Here, ε(ω) = ε1(ω)+ iε2(ω) is the complex dielectric function of a Drude model with damping
contant γ .

Figure 1 shows the dispersion relation of the capacitor-like mode for varying gap sizes. The
dispersion for a single interface is also shown (broken gray line), which is seen to coincide with
the dispersion for large gap sizes. An important point to note here is that large propagation con-
stants β can be achieved even for excitation far below the bulk metal plasma frequency provided
that the gap width is chosen sufficiently small. The ability to access such large wavevectors by
adjusting the geometry indicates, as has been pointed out in previous work on sub-wavelength
guiding structures [24], that localization effects that for a single interface can only be sustained
at excitations near the material plasma resonance, can for this gap structure also be attained
for excitation out in the the mid- and far-infrared. As will be seen below, this highly dispersive
region of the bandstructure has a significant impact upon the effective mode size.

Figure 2(a) shows the evolution of both the real and imaginary parts of the β with varying
gap size for excitation at a free space wavelength of λ0 = 850nm. Both parts are seen to increase
with decreasing gap size, suggesting that the capacitor mode is becoming more electron-plasma
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in character, and that the electromagnetic energy is residing increasingly in the metal half-
spaces. A plot of the fractional amount of energy inside the metal regions is shown in Fig. 2(b)
for excitation at wavelengths λ0 = 600 nm, 850 nm, 1.5 μm, 10 μm, and 100 μm (= 3THz),
reaching e.g. 40% for a gap of 20 nm at λ 0 = 850 nm. For this and all following figures, the gap
size is normalized to the respective free space wavelength, and the results for each wavelength
are plotted over the range of convergence of the analytical model. It can be seen then, that along
with the increased localization of the field to the metal/air interface, either via small gap sizes
or excitation closer to the surface plasmon frequency, comes a shift of the energy into the metal
regions.

3. Electromagnetic energy density and the effective mode volume in plasmonics

In order to get a better handle on the consequences of increasing fractions of the total energy of
the mode entering the metallic cladding upon decreasing size of the dielectric gap, and to deter-
mine the overall effect on the scaling of the electric field strength per photon (more accurately,
per plasmon-polariton excitation) in the air gap as a function of the gap size, one can define in
analogy to the effective mode volume Veff of cQED [25], an effective mode length L eff for this
one dimensional “resonator”,

Leff(z0)uE(z0) =
∫

uE(z)dz. (3)

Here uE(z0) represents the electric field energy density at position z0, corresponding to the
position of interest within the cavity. For the structure of Fig. 1, z 0 resides in the air gap where an
object may be placed to interact with the field. Fig. 2(c) shows the variation of L̄eff (normalized
to the free space wavelength λ0) with normalized gap size for the capacitor mode.

As can be seen, the mode lengths drop well below λ0/2, demonstrating that plasmonic metal
structures do indeed sustain effective as well as physical mode lengths below the diffraction
limit of light. The trend in Leff with gap size tends to scale with the physical extent of the air
gap. For large normalized gap sizes and low frequencies, this is due to the delocalized nature
of the surface plasmon, leading to smaller mode lengths for excitation closer to the surface
plasmon resonance frequency for the same normalized gap size. As the gap size is reduced to a
point where the bandstructure of the capacitor mode turns over (see Fig. 1) and energy begins
to enter the metallic half spaces, the continued reduction in mode length is due to an increase
in field localization to the metal-air surface. In this regime, excitations with lower frequencies
show smaller mode lengths for the same normalized gap size than excitations closer to the
plasmon resonance, due to the fact that more energy resides inside the metal for the latter. Fig.
2(d) further elucidates this effect by showing the contributions of the electric field energy in
air (continuous line) and in the metal (broken line) to the total effective mode length for two
excitation wavelengths.

Note that while the Drude fit to the visible and near-IR dielectric response of Au may not
accurately represent the response at THz frequencies in actual numbers, the general trend that
the imaginary part of the dielectric constant is significantly larger than the absolute value of the
real part in this regime is well modeled, and an analysis using a Drude model more adapted
to the far infrared response of Au [26] yielded mode lengths of similar magnitude. Regarding
application of these results to gaps < 1− 2 nm, in such cases it has been noted [27] that the
effects of local fields due to unscreened surface electrons become important, leading to a further
decrease in Leff which cannot be captured using the dielectric function approach.

The present gap structure can be converted into a three-dimensional resonator, as depicted
in the right inset of Fig. 1, by inserting reflecting walls parallel to the x̂-direction, thus con-
fining the propagation of the odd mode to a cavity length L x. Assuming in a first approxi-
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Fig. 2. (a) Normalized propagation constant β versus gap size at λ0 = 850nm. Both the
real (solid curve) and the imaginary (broken curve, 10x) part of β are seen to increase for
decreasing gap. (b) Fractional electric field energy residing inside the metallic half spaces
as a function of normalized gap size for excitation at λ0 = 600 nm (thick line), 850nm
(black line), 1.5 μm (gray line), 10 μm (broken black line), and 100 μm (broken gray
line). (c) Effective mode length Leff normalized to free space wavelength λ0. (d) Effective
mode length in the air gap (continuous line) and in the surrounding metal (broken line) for
λ0 = 600 nm (black line) and 1.5 μm (gray line).

mation perfectly reflecting cavity walls, the fundamental cavity mode will be excited when
Lx = π/β (λ0,a). If one conservatively assumes a diffraction-limited lateral resonator width
Ly = λ0/2, the cavity mode volume can thus be approximated as Veff ∼ Leff(πλ0/2β ).

Another important parameter for the characterization of a resonant cavity is its quality factor
Q, defined as the ratio of stored energy to loss per cycle. Assuming no radiative losses from the
resonator edges and perfectly reflecting cavity walls, Q is limited by dissipative losses inside
the metal alone: Q = ω0/(2vgrImag(β )), where vgr is the group velocity of the guided mode
between the metal plates. As a cavity figure of merit, Fig. 3 shows the analytically calculated
Q/V̄eff. As can be seen, Q/V̄eff greatly increases for decreasing gap size, due to the fact that
V̄eff decreases much more strongly than Q. For a resonator with 2a = 50nm designed for ex-
citation at λ0 = 850nm, the analytic model predicts a Q ∼ 51 and a normalized mode volume
V̄eff ∼ 0.015, leading to Q/V̄eff ∼ 3400. Excitation at mid- and far-infrared frequencies can yield
Q/V̄eff � 104 for similar gap sizes.

The validity of the analytical approximations employed above was confirmed via 3D FDTD
simulations of this resonator structure. The inset of Fig. 3 shows the calculated mode profiles for
a resonator of the same geometrical parameters employed in the analytic example. The metallic
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excitation wavelengths of Fig. 2. The inset shows a FDTD calculated electric field intensity
of a resonator with 2a = 50nm and λ0 = 980nm.

Au half-spaces were modeled with the same Drude function used in the analytic calculations;
however, the reflecting mirror walls were in this case taken to be non-perfect, consisting also
of Au. As a result, the resonance wavelength shifts from λ 0 = 850nm to 980nm due to the
electric field penetration into the end mirrors. The calculated absorptive Q abs ∼ 40 is of similar
magnitude as the analytic result, and a radiative Q rad ∼ 100 is found due to lateral leakage
of radiation. The FDTD-calculated mode volume V̄eff ∼ 0.009 is also in good agreement with
the analytic model estimate when scaled by the cube of the increase in resonance wavelength.
While these discussions have focused on a planar metal/insulator/metal heterostructure, the
general conclusions regarding Q/V̄eff are also expected to hold for more complicated geometries
involving two metallic surfaces separated by a nanoscale gap, such as e.g. nanoshells.

4. Application to surface-enhanced Raman scattering

One is now in a position to sketch as an example of the usefulness of the effective mode volume
picture to describe plasmonic energy localization its application to SERS. A spontaneous Ra-
man scattering process involves an incoming excitation beam of intensity |E i(ω0)|2/2η (η the
impedance of free space) and frequency ω 0, leading to the emission of Stokes photons at fre-
quency ω through a Raman active molecule. Due to the small Stokes emission shift, one usually
assumes equal enhancement of the exciting field and the outgoing Stokes field, and a commonly
used expression[19] for the enhancement of the Raman cross section is R = |E loc|4/|Ei|4, where
|Eloc| is the local field amplitude at the Raman active site. For this treatment, Q(ω0)=Q(ω)=Q
and Veff(ω0)=Veff(ω)=Veff, and it is thus assumed that both the incoming and the emitted photon
are resonant with the cavity.

With |s+|2 = |Ei|2Ai/2η being the power carried by the incident beam of cross section A i,
the evolution of the on-resonance mode amplitude u inside the cavity can be calculated from
[28], u̇(t) = − γ

2u(t)+ κs+, where u2 represents the total time-averaged energy in the cavity,
γ = γrad + γabs is the energy decay rate due to radiation (γ rad) and absorption (γabs), and κ is
the coupling coefficient to external input which depends on the size and shape of the excitation
beam. κ can be expressed as κ =

√γi, where γi is the contribution of the excitation channel to
the total radiative decay rate [28]. For a symmetric two-sided cavity, in a first approximation
one can estimate γi = (γrad/2)(Ac/Ai), with Ac corresponding to an effective radiation cross-
section of the resonant cavity mode (its radiation field imaged back into the near-field of the
cavity). Note that Ai has been assumed to be larger than Ac in the above relation, and that Ac

can be no smaller than the diffraction limited area Ad , yielding Ad ≤ Ac ≤ Ai. In steady state,
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the mode amplitude can then be expressed as

u =

√
2γradAc/Ai|s+|
γrad + γabs

=
√

γradAc|Ei|√
η(γrad + γabs)

, (4)

which for fixed incoming power is maximum upon spatial mode matching (A c = Ai). For a
dielectric cavity (γrad � γabs), one thus gets u ∝ 1/

√γrad ∝
√

Q, while for a metallic cavity
(γabs � γrad) u ∝ 1/γabs ∝ Q, explaining the different scaling laws for field enhancement in
dielectric [29] and metallic [30] resonators encountered in the literature. From the definition
of effective mode volume one can write the resonant mode amplitude as u =

√
ε0|Eloc|

√
Veff,

which gives for the enhancement of the incoming radiation in a metallic cavity

√
R =

|Eloc|2
|Ei|2 =

γradAc

4π2c2ηε0λ0

Q2

V̄eff
. (5)

A similar scaling law has previously been obtained for plasmonic energy localization in fractal-
like metal nanoparticle aggregates on metal surfaces [31]. Setting A c = Ad yields for our ex-
ample Au resonator, with 2a = 50 nm and λ0 = 980 nm, an estimated SERS cross section
enhancement of R ∼ 1600.

A similar estimate of R for a crevice between two Ag nanoparticles separated by a nanoscale
gap, a configuration which is believed to sustain SERS hot-spots with R∼ 10 11 upon resonance,
can also be obtained using the effective mode volume picture. The crevice can be approxi-
mately modeled using the capacitor-like cavity described above, but with a reduced lateral width
Ly ∼ Lx=π/β . For a 1 nm gap, with λ0 = 400nm, Ac=Ad , and (Q,γrad) estimated from FDTD,
eq. (5) yields R ∼ 2.7×1010, in good agreement with full-field three-dimensional simulations
of the enhancement for this coupled particle geometry [6]. The total observable enhancement
of the Stokes emission can be estimated as the product of the field enhancement of the incom-
ing radiation and the enhanced radiative decay rate at the Stokes frequency. As is well known,
a dipole oscillator placed inside a metallic cavity shows an increase in its total decay rate
γ/γ0 = (3/4π2)(Q/V̄eff)[32]. For collection of light emission outside the cavity, the overall cav-
ity enhancement is weighted with an extraction efficiency, Q/Q rad[33, 34]. Thus, the emission
enhancement at the peak emission frequency of the Stokes line is (3/4π 2)(Q2/V̄eff)(Q/Qrad).
Incorporating the relation for incoming field enhancement from eq. (5), the overall enhance-
ment is estimated to be 1.5×1012 for the crevice example, similar to observed values[5, 4].

5. Conclusion

The description of controlled spatial electromagnetic energy localization via an effective mode
volume - traditionally applied to (non-dispersive) dielectric resonators - has been extended to
metallic cavities sustaining surface plasmon-polaritons and applied to the description of SERS.
Using a simple model of a nanoscale plasmonic resonator with a realistic material dielectric
response function, it has been demonstrated that plasmonic cavities can indeed confine electro-
magnetic energy into both physical and effective mode volumes far below the diffraction limit.
Large Q/Veff values can be achieved for nanometric gap sizes in metal/dielectric/metal het-
erostructures. Furthermore, the field enhancement due to interactions between closely spaced
metallic interfaces of more complicated geometries such as nanoparticles can be estimated in
these terms. This unified description of enhancement effects in both dielectric and metallic
resonators will help in establishing new design principles for nanophotonic devices.
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