ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices Chirag Gupta¹, Arun Sai Suggala¹², Ankit Goyal¹³, Harsha Vardhan Simhadri¹, Bhargavi Paranjape¹, Ashish Kumar¹, Saurabh Goyal⁴, Raghavendra Udupa¹, Manik Varma¹, Prateek Jain¹ ¹Microsoft Research, India, ²Carnegie Mellon University, ³University of Michigan, Ann Arbor, ⁴IIT Delhi, India Comparison with uncompressed baselines Learning algorithm We minimize squared ℓ_2 loss, with explicit sparsity constraints: Dataset character recognition $\| \boldsymbol{y}_i - \sum \boldsymbol{z}_j K(\boldsymbol{W} \boldsymbol{x}_i, \boldsymbol{b}_j) \|$ eye mnist Minimize $\mathcal{R}_{emp}(Z, B, W)$, $s.t.\|Z\|_0 \leq s_Z, \|B\|_0 \leq s_B, \|W\|_0 \leq s_W$ usps ward Alternating minimization over the 3 parameters: ► We take *e* epochs each over *Z*, *B*, *W* one by one cifar ototype-based ► We perform this entire process for *T* iterations. bours) In each epoch, we do mini-batch stochastic gradient descent: Dataset han the size of Nesterov's accelerated SGD with tail-averaging letter-26 mc point Hard-Thresholding after each SGD step to satisfy sparsity constraints mnist-10^{mc} Step size: $\eta_t = \frac{\eta_t}{\sqrt{t}}$. η is selected using the **Armijo** rule usps-10 ^{mo} of training curet-61 mc Analysis A simple generative model for the data: Datas mediar • Mixture of two well-separated spherical Gaussians with centers μ_+ , $\mu_$ n = 309• Points from the μ_+ , μ_- Gaussians are positive, negative respectively d = 1Informally, we show that with constant probability, the 2 prototypes of L = 1delicio ProtoNN converge to the centers of these Gaussians at a geometric rate. n = 129**Theorem (simplified)** d=50**ProtoNN prediction** L=90Set W = I, $Z = [e_1, e_2]$ and let b_+, b_- be the prototypes. eurle $\hat{\boldsymbol{v}} = \rho \left(\sum \boldsymbol{z}_{j} K(\boldsymbol{W} \boldsymbol{x}, \boldsymbol{b}_{j}) \right)$ n = 155• Define $\bar{\mu} := \mu_+ - \mu_-$, $\mathcal{R} = \mathbb{E}[\mathcal{R}_{emp}]$. d = 50Suppose: L = 399 $\blacktriangleright (oldsymbol{b}_+ - oldsymbol{\mu}_+)^T ar{oldsymbol{\mu}} \geq -rac{\|ar{oldsymbol{\mu}}\|^2}{4}$ • $d \geq 4 \|ar{oldsymbol{\mu}}\|^2$ Actual implementation on an Arduino Uno ullet $\|oldsymbol{b}_+-oldsymbol{\mu}_+\|\geq 8\|ar\mu\|\exp\left\{-rac{\|ar\mu\|^2}{4} ight\}$ • Consider the update $\mathbf{b}'_{+} = \mathbf{b}_{+} - \eta \nabla_{\mathbf{b}_{+}} \mathcal{R}$, with appropriate $\eta \geq \mathbf{0}$ Then with constant probability: $\|m{b}'_+ - m{\mu}_+\|^2 \le \|m{b}_+ - m{\mu}_+\|^2 \left(1 - 0.01 \exp\left\{-rac{\|ar{\mu}\|^2}{4} ight\} ight)$ 10 **Comparison with compressed baselines** Character WARD **MNIST** Character Recognition MNIST-10 Sparse Projection

Abstract

- Problem: Can we perform machine learning *locally* on tiny devices with puny storage (<2kB) and computational capacity?
 - Case in point: Internet-of-Things (IoT)
 - ► For example, an Arduino uno with 2kB RAM, 32kB flash.
 - State of the art: IoT devices just collect data and send it to the cloud for prediction.
 - Factors to consider: battery, latency, privacy
- ProtoNN improves k-Nearest Neighbours on critical metrics:

Metric	k-Nearest Neighbours	ProtoNN (Pro Nearest Neight
Model size	Size of the entire training data	Often smaller that a single training
Prediction time	Few seconds	Few millisecond
Distance metric	Must be specified a-priori	Learnt as part o

- ProtoNN stays within 2% of the best accuracy on most datasets!
- ProtoNN seamlessly generalizes to multi-label, multi-class, ranking problems. Our implementation also scales to large datasets.

ProtoNN model

- Sparse low dimensional projection ($W \in \mathbb{R}^{d \times D}$):
- reduces the space we work in
- gives us a handle over the metric to use for the data
- **Prototypes** $(B = [b_1, b_2, ..., b_m])$:
- each \boldsymbol{b}_i is in the low dimensional space
- B is a representative sample of training points in projected space
- Labels ($Z = [z_1, z_2, ..., z_m]$): each b_i has an associated label vector z_i

- ► K is the Gaussian kernel: $K(x, y) = \exp\{-\gamma^2 ||x y||_2^2\}$
- \triangleright p is a selector function: the highest ranked label for binary and multi-class problems. Can be easily extended to ranking or multi-label problems. Joint optimization:
- we learn B, Z, and W jointly
- explicit sparsity constraints are imposed during the optimization itself

$$\mathcal{R}_{emp}(Z, B, W) = rac{1}{n} \left(\sum_{i=1}^{n} \left\| S_{i} \right\| \right)$$

--NeuralNet Pruning --SNC --Decision Jungle --BudgetPrune --BudgetRF

Library for machine learning on the Edge (EdgeML)

100 120

CUReT-61

- https://aka.ms/EdgeML

	ProtoNN	kNN	SNC	BNC	GBDT	1-hidden NN	RBF-SVM
del size (kB)	15.94	6870.3	441.2	70.88	625	314.06	6061.71
accuracy	76.14	67.28	74.87	70.68	72.38	72.53	75.6
del size (kB)	10.32	14592	3305	1311.4	234.37	6401.56	7937.45
accuracy	90.82	76.02	87.76	80.61	83.16	90.31	93.88
del size (kB)	15.96	183750	4153.6	221.35	1171.87	3070	35159.4
accuracy	96.5	96.9	95.74	98.16	98.36	98.33	98.08
del size (kB)	11.625	7291	568.8	52.49	234.37	504	1659.9
accuracy	95.67	96.7	97.16	95.47	95.91	95.86	96.86
del size (kB)	15.94	17589.8	688	167.04	1171.87	3914.06	7221.75
accuracy	96.01	94.98	96.01	93.84	97.77	92.75	96.42
del size (kB)	15.94	78125	3360	144.06	1562.5	314.06	63934.2
accuracy	76.35	73.7	76.96	73.74	77.19	75.9	81.68

	ProtoNN (64kB)	kNN	SNC	BNC	GBDT	1-hidden NN	RBF SVM
odel size (kB)	63.4	1237.8	145.08	31.95	20312	164.06	568.14
accuracy	97.10	95.26	96.36	92.5	97.16	96.38	97.64
odel size (kB)	63.4	183984.4	4172	220.46	5859.37	4652.34	39083.7
accuracy	95.88	94.34	93.6	96.68	97.9	98.44	97.3
odel size (kB)	63.83	7291.4	568.8	51.87	390.62	519.53	1559.6
accuracy	94.92	94.07	94.77	91.23	94.32	94.32	95.4
odel size (kB)	63.14	10037.5	513.3	146.70	2382.81	1310	8940.8
accuracy	94.44	89.81	95.87	91.87	90.81	95.51	97.43

set		FastXML	DiSMEC	SLEEC	ProtoNN
mill	model size	7.64M	48.48K	57.95M	54.8K
993	P@1	83.65	87.25	86.12	85.19
20	P@3	66.92	69.3	70.31	69.01
01	P@5	52.51	54.19	56.33	54.39
ous	model size	36.87M	1.97M	7.34M	925.04K
920	P@1	69.41	66.14	67.77	68.92
00	P@3	64.2	61.26	61.27	63.04
83	P@5	59.83	56.30	56.62	58.32
X	model size	410.8M	79.86M	61.74M	5.03M
539	P@1	71.36	82.40	79.34	77.74
000	P@3	59.85	68.50	64.25	65.01
993	P@5	50.51	57.70	52.29	53.98

Energy (mJ) = (0.2455 J/s) * Prediction time (ms)

ProtoNN and Bonsai [Kumar et al., ICML '17] will be made publicly available as part of a general machine learning library for tiny devices.

We are also working on more algorithms like anomaly detection.

