
ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices
Chirag Gupta1, Arun Sai Suggala12, Ankit Goyal13, Harsha Vardhan Simhadri1,

Bhargavi Paranjape1, Ashish Kumar1, Saurabh Goyal4, Raghavendra Udupa1, Manik Varma1, Prateek Jain1

1Microsoft Research, India, 2Carnegie Mellon University, 3University of Michigan, Ann Arbor, 4IIT Delhi, India
Abstract

I Problem: Can we perform machine learning locally on tiny devices with
puny storage (<2kB) and computational capacity?

Case in point: Internet-of-Things (IoT)
I For example, an Arduino uno with 2kB RAM, 32kB

flash.
I State of the art: IoT devices just collect data and send it

to the cloud for prediction.
I Factors to consider: battery, latency, privacy

I ProtoNN improves k-Nearest Neighbours on critical metrics:

Metric k-Nearest Neighbours ProtoNN (Prototype-based
Nearest Neighbours)

Model size Size of the entire training
data

Often smaller than the size of
a single training point

Prediction
time Few seconds Few milliseconds

Distance
metric Must be specified a-priori Learnt as part of training

I ProtoNN stays within 2% of the best accuracy on most datasets!
I ProtoNN seamlessly generalizes to multi-label, multi-class, ranking

problems. Our implementation also scales to large datasets.

ProtoNN model

Smooth k-NN prediction ProtoNN prediction

ŷ = ρ

 n∑
i=1

σ(y i)K (x ,x i)

 ŷ = ρ

 m∑
j=1

z jK (Wx ,bj)


I Sparse low dimensional projection (W ∈ Rd×D):

I reduces the space we work in
I gives us a handle over the metric to use for the data

I Prototypes (B = [b1,b2, ...bm]):
I each bi is in the low dimensional space
I B is a representative sample of training points in projected space
I Labels (Z = [z1, z2, ...zm]): each bi has an associated label vector z i

I K is the Gaussian kernel: K (x , y) = exp{−γ2‖x − y‖2
2}

I ρ is a selector function: the highest ranked label for binary and multi-class
problems. Can be easily extended to ranking or multi-label problems.

I Joint optimization:
I we learn B, Z , and W jointly
I explicit sparsity constraints are imposed during the optimization itself

Learning algorithm

We minimize squared `2 loss, with explicit sparsity constraints:

Remp(Z ,B,W ) =
1
n

 n∑
i=1

∥∥∥∥∥∥y i −
m∑

j=1

z jK (Wx i,bj)

∥∥∥∥∥∥
2

2


Minimize Remp(Z ,B,W ),

s.t .‖Z‖0 ≤ sZ , ‖B‖0 ≤ sB, ‖W‖0 ≤ sW

I Alternating minimization over the 3 parameters:
I We take e epochs each over Z , B, W one by one
I We perform this entire process for T iterations.

I In each epoch, we do mini-batch stochastic gradient descent:
I Nesterov’s accelerated SGD with tail-averaging

I Hard-Thresholding after each SGD step to satisfy sparsity constraints
I Step size: ηt = η√

t
. η is selected using the Armijo rule

Analysis

I A simple generative model for the data:
I Mixture of two well-separated spherical Gaussians with centers µ+, µ−
I Points from the µ+, µ− Gaussians are positive, negative respectively

I Informally, we show that with constant probability, the 2 prototypes of
ProtoNN converge to the centers of these Gaussians at a geometric rate.

Theorem (simplified)

I Set W = I, Z = [e1, e2] and let b+,b− be the prototypes.
I Define µ̄ := µ+ − µ−, R = E[Remp].
I Suppose:

I (b+ − µ+)
T µ̄ ≥ −‖µ̄‖

2

4
I d ≥ 4‖µ̄‖2

I ‖b+ − µ+‖ ≥ 8‖µ̄‖exp
{
−‖µ̄‖

2

4

}
I Consider the update b′+ = b+ − η∇b+

R, with appropriate η ≥ 0
Then with constant probability:

‖b′+ − µ+‖2 ≤ ‖b+ − µ+‖2

(
1− 0.01 exp

{
−‖µ̄‖

2

4

})

Comparison with compressed baselines

Figure: Model size (kB, X-axis) vs Accuracy (%, Y-axis) plots.

Comparison with uncompressed baselines

Dataset ProtoNN kNN SNC BNC GBDT 1-hidden NN RBF-SVM

character recognition model size (kB)
accuracy

15.94
76.14

6870.3
67.28

441.2
74.87

70.88
70.68

625
72.38

314.06
72.53

6061.71
75.6

eye model size (kB)
accuracy

10.32
90.82

14592
76.02

3305
87.76

1311.4
80.61

234.37
83.16

6401.56
90.31

7937.45
93.88

mnist model size (kB)
accuracy

15.96
96.5

183750
96.9

4153.6
95.74

221.35
98.16

1171.87
98.36

3070
98.33

35159.4
98.08

usps model size (kB)
accuracy

11.625
95.67

7291
96.7

568.8
97.16

52.49
95.47

234.37
95.91

504
95.86

1659.9
96.86

ward model size (kB)
accuracy

15.94
96.01

17589.8
94.98

688
96.01

167.04
93.84

1171.87
97.77

3914.06
92.75

7221.75
96.42

cifar model size (kB)
accuracy

15.94
76.35

78125
73.7

3360
76.96

144.06
73.74

1562.5
77.19

314.06
75.9

63934.2
81.68

Dataset ProtoNN
(64kB) kNN SNC BNC GBDT 1-hidden

NN
RBF
SVM

letter-26 model size (kB)
accuracy

63.4
97.10

1237.8
95.26

145.08
96.36

31.95
92.5

20312
97.16

164.06
96.38

568.14
97.64

mnist-10 model size (kB)
accuracy

63.4
95.88

183984.4
94.34

4172
93.6

220.46
96.68

5859.37
97.9

4652.34
98.44

39083.7
97.3

usps-10 model size (kB)
accuracy

63.83
94.92

7291.4
94.07

568.8
94.77

51.87
91.23

390.62
94.32

519.53
94.32

1559.6
95.4

curet-61 model size (kB)
accuracy

63.14
94.44

10037.5
89.81

513.3
95.87

146.70
91.87

2382.81
90.81

1310
95.51

8940.8
97.43

Dataset FastXML DiSMEC SLEEC ProtoNN
mediamill
n = 30993
d = 120
L = 101

model size
P@1
P@3
P@5

7.64M
83.65
66.92
52.51

48.48K
87.25
69.3
54.19

57.95M
86.12
70.31
56.33

54.8K
85.19
69.01
54.39

delicious
n = 12920
d = 500
L = 983

model size
P@1
P@3
P@5

36.87M
69.41
64.2
59.83

1.97M
66.14
61.26
56.30

7.34M
67.77
61.27
56.62

925.04K
68.92
63.04
58.32

eurlex
n = 15539
d = 5000
L = 3993

model size
P@1
P@3
P@5

410.8M
71.36
59.85
50.51

79.86M
82.40
68.50
57.70

61.74M
79.34
64.25
52.29

5.03M
77.74
65.01
53.98

Actual implementation on an Arduino Uno

Energy (mJ) = (0.2455 J/s) * Prediction time (ms)

Library for machine learning on the Edge (EdgeML)

I ProtoNN and Bonsai [Kumar et al., ICML ’17] will be made publicly
available as part of a general machine learning library for tiny devices.

I https://aka.ms/EdgeML
I We are also working on more algorithms like anomaly detection.

Mail: asuggala@andrew.cmu.edu, prajain@microsoft.com


