Thresholding Based Efficient Outlier Robust PCA

Yeshwanth Cherapanamjeri, Prateek Jain, Praneeth Netrapalli

{t-yecher,prajain,praneeth}@microsoft.com

Microsoft Research India

Microsoft[®] COLT 2017 Research

Goal

Design an efficient algorithm for Outlier Robust PCA

PCA and its Brittleness

Given data matrix $X^* = \{x_1, x_2, \ldots, x_n\}$, compute the rank-r subspace that best descries the data:

Three Settings

Recall that we are given $M^* = X^* + C^*$. Let $X^* = L^* + N^*$ where L^* is the rank-r approximation of X^* . We consider three settings based on our assumptions on N^* :

- Noiseless Setting: $N^* = 0$,
- General Noise Setting: N^* is arbitrary,

$$U = \underset{U \in \mathbb{R}^{d \times r}}{\arg\min} \left\| (I - UU^{\top}) X^* \right\|_F$$

However, PCA is extremely brittle to the presence of outliers.

Question

Given sparsely-corrupted data matrix $M^* = X^* + C^*$, recover $PCA(X^*)$.

• Gaussian Noise: N^* is Gaussian.

We also assume to ensure uniqueness of the decomposition:

• L^* is μ -incoherent, i.e $[U^*, \Sigma^*, V^*] = \mathcal{SVD}(L^*)$ with $\|e_i^\top V^*\| \le \mu \sqrt{r}/\sqrt{n}$. • Fraction of corruptions, γ satisfies $\gamma \leq \mathcal{O}\left(rac{1}{\mu^2 r}
ight)$

- Exact recovery of the principal components.
- Time complexity almost matches that of Vanilla PCA.

• [Xu et al, 2010] match the recovery guarantee but have large runtime $\left(\mathcal{O}\left(\frac{n^2d}{\epsilon^2}\right)\right)$ while [Xu et al, 2013] cannot obtain exact recovery guarantees.

General Noise Case

Existing Work

Existing work suffer from high computational cost and weak recovery guarantees.

Therefore, is there an estimator which can:

• Match the running time of Vanilla PCA and

Obtain strong recovery guarantees?

Algorithm - TORP

We, now, allow the noise matrix N^* to be arbitrary.

Theorem

TORP run with $\rho = \frac{1}{128\mu^2 r}$ and $T = \log \frac{20\|M^*\|n}{\epsilon}$, returns U satisfying: $\|\mathcal{P}^U_{\perp}(L^*)\|_F \le 60\sqrt{r} \|N^*\|_F + \epsilon$ in at most $\mathcal{O}\left(ndr\log\frac{1}{\epsilon}\right)$ computational steps.

- Recovery guarantee optimal upto a factor of $\mathcal{O}(\sqrt{r})$.
- [Xu et al, 2010] obtain recovery upto $\mathcal{O}(\sqrt{n} \|N^*\|_F)$.

Gaussian Noise Case

Algorithm 1 TORP

Input: M, r, ρ, T Initialize $CS \leftarrow \{\}$ for t = 0 to t = T do $[U, \Sigma, V] \leftarrow \mathcal{SVD}_r(M_{\backslash \mathcal{CS}})$ $e_i \leftarrow \left\| \Sigma^{-1} U^\top M_i \right\|$ $r_i \leftarrow \left\| (I - UU^{\top}) M_i \right\|$ $CS \leftarrow \{\text{Top } \rho n \ e_i\} \cup \{\text{Top } \rho n \ r_i\}$ end for $[U, \Sigma, V] \leftarrow \mathcal{SVD}_r(M_{\backslash \mathcal{CS}})$ Return: U

Residual Based

Thresholding

Improved recovery guarantees can be obtained in special cases. When each column $i \in [n]$ satisfies $N_i^* \sim \mathcal{N}(0, \sigma I_d)$, we obtain:

Theorem

TORP-G returns U satisfying: $\|\mathcal{P}^{U}_{\perp}(L^{*})\|_{F} \leq 9\sqrt{r\log d} \|N^{*}\|_{2} + \epsilon$ w.h.p when $n = \Omega(d^2)$ in at most $\mathcal{O}(n^2 dr \log \frac{1}{\epsilon})$ computational steps.

- $\mathcal{O}(\sqrt{d})$ improvement over TORP and $\mathcal{O}(\sqrt{nd})$ over [Xu et al, 2010]. • Computational cost: $O(n^2 dr)$, Sample complexity: $\Omega(d^2)$.
- Also holds when N_i^* obeys a Sub-Gaussian distribution with parameter σ .