A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks. It is under the umbrella of the DMTK(http://github.com/microsoft/dmtk) project of Microsoft.
Clone or download
zkurtz and jameslamb Enforce R-package dependencies in build_r.R before compilation begins (
…#1672)

* Enforce R-package dependencies in build_r.R before compilation begins

* Greatly simplify the previous commit
Latest commit 09e651f Sep 23, 2018
Permalink
Failed to load latest commit information.
.ci [docs] run pycodestyle for docs folder (#1687) Sep 21, 2018
.github do not show tips after creating the issue (#1581) Aug 13, 2018
.nuget fix nuget (#1569) Aug 26, 2018
R-package using a different version in master branch, compared with release (#1676 Sep 20, 2018
compute @ 509ebe4 switched to develop branch of boost compute submodule (#1455) Jun 16, 2018
docker Updated wget for GPU docker (#1404) May 30, 2018
docs [docs] run pycodestyle for docs folder (#1687) Sep 21, 2018
examples return self (#1602) Aug 24, 2018
helper [ci] added test for parameters consistency (#1520) Jul 15, 2018
include/LightGBM [doc] Update GPU-Targets.rst (#1609) Sep 16, 2018
pmml [docs][python] made OS detection more reliable and little docs improv… Jun 3, 2018
python-package [python] added possibility to use sklearn splitter classes in cv func… Sep 22, 2018
src updated target LightGBM version in warnings (#1668) Sep 15, 2018
swig update LightGBM SWIG wrapper (#1610) Aug 25, 2018
tests [python] added possibility to use sklearn splitter classes in cv func… Sep 22, 2018
windows Refine config object (#1381) May 20, 2018
.appveyor.yml using a different version in master branch, compared with release (#1676 Sep 20, 2018
.gitignore [R-package] CRAN fixes (#1499) Aug 29, 2018
.gitmodules Initial GPU acceleration support for LightGBM (#368) Apr 9, 2017
.travis.yml using a different version in master branch, compared with release (#1676 Sep 20, 2018
.vsts-ci.yml using a different version in master branch, compared with release (#1676 Sep 20, 2018
CMakeLists.txt Added LightGBM JAVA SWIG wrapper support for windows (#1599) Aug 28, 2018
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md (#803) Aug 18, 2017
LICENSE Add license. Oct 11, 2016
README.md [docs][ci] updated badge to reflect master branch status (#1662) Sep 12, 2018
VERSION.txt using a different version in master branch, compared with release (#1676 Sep 20, 2018
build_r.R Enforce R-package dependencies in build_r.R before compilation begins ( Sep 23, 2018

README.md

LightGBM, Light Gradient Boosting Machine

Azure Pipelines Build Status Appveyor Build Status Travis Build Status Documentation Status GitHub Issues License Python Versions PyPI Version Join the chat at https://gitter.im/Microsoft/LightGBM Slack

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages:

  • Faster training speed and higher efficiency
  • Lower memory usage
  • Better accuracy
  • Parallel and GPU learning supported
  • Capable of handling large-scale data

For more details, please refer to Features. Benefit from these advantages, LightGBM is being widely-used in many winning solutions of machine learning competitions.

Comparison experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the parallel experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

News

08/15/2017 : Optimal split for categorical features.

07/13/2017 : Gitter is available.

06/20/2017 : Python-package is on PyPI now.

06/09/2017 : LightGBM Slack team is available.

05/03/2017 : LightGBM v2 stable release.

04/10/2017 : LightGBM supports GPU-accelerated tree learning now. Please read our GPU Tutorial and Performance Comparison.

02/20/2017 : Update to LightGBM v2.

02/12/2017 : LightGBM v1 stable release.

01/08/2017 : Release R-package beta version, welcome to have a try and provide feedback.

12/05/2016 : Categorical Features as input directly (without one-hot coding).

12/02/2016 : Release Python-package beta version, welcome to have a try and provide feedback.

More detailed update logs : Key Events.

External (Unofficial) Repositories

Julia-package: https://github.com/Allardvm/LightGBM.jl

JPMML: https://github.com/jpmml/jpmml-lightgbm

Get Started and Documentation

Install by following the guide for the command line program, Python-package or R-package. Then please see the Quick Start guide.

Our primary documentation is at https://lightgbm.readthedocs.io/ and is generated from this repository.

Next you may want to read:

Documentation for contributors:

Support

How to Contribute

LightGBM has been developed and used by many active community members. Your help is very valuable to make it better for everyone.

  • Check out call for contributions to see what can be improved, or open an issue if you want something.
  • Contribute to the tests to make it more reliable.
  • Contribute to the documents to make it clearer for everyone.
  • Contribute to the examples to share your experience with other users.
  • Add your stories and experience to Awesome LightGBM.
  • Open issue if you met problems during development.

Microsoft Open Source Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Reference Papers

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". In Advances in Neural Information Processing Systems (NIPS), pp. 3149-3157. 2017.

Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Tieyan Liu. "A Communication-Efficient Parallel Algorithm for Decision Tree". Advances in Neural Information Processing Systems 29 (NIPS 2016).

Huan Zhang, Si Si and Cho-Jui Hsieh. "GPU Acceleration for Large-scale Tree Boosting". arXiv:1706.08359, 2017.