Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Failed to load latest commit information.
Latest commit message
Commit time
June 2, 2023 09:46
February 8, 2023 14:57
September 30, 2022 08:05
November 25, 2020 15:38
November 19, 2018 16:48
February 12, 2021 00:25
November 19, 2018 16:48
November 10, 2022 10:06

ONNX Runtime is a cross-platform inference and training machine-learning accelerator.

ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. Learn more →

ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Learn more →

Get Started & Resources

Builtin Pipeline Status

System Inference Training
Windows Build Status
Build Status
Build Status
Linux Build Status
Build Status
Build Status
Build Status
Build Status
Build Status
Build Status
Build Status
Mac Build Status
Android Build Status
iOS Build Status
Web Build Status
Other Build Status
Build Status

Third-party Pipeline Status

System Inference Training
Linux Build Status


Windows distributions of this project may collect usage data and send it to Microsoft to help improve our products and services. See the privacy statement for more details.

Contributions and Feedback

We welcome contributions! Please see the contribution guidelines.

For feature requests or bug reports, please file a GitHub Issue.

For general discussion or questions, please use GitHub Discussions.

Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact with any additional questions or comments.


This project is licensed under the MIT License.