
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

2006 Microsoft Corporation. All rights reserved.

WPF font
selection
model

Font selection model
used by Windows
Presentation
Foundation:
description and
guidelines.

Mikhail V. Leonov
mikhail.leonov@microsoft.com
David C. Brown
david.c.brown@microsoft.com

2

Contents
1. Background ... 3
2. Font matching process ... 3

Extracting font matching data from OpenType font files ... 4
Step 1. Extracting family name, face name, style, weight and stretch .. 4
Step 2. Font differentiation: resolving conflicts between extracted family name, face name,

style, weight and stretch ... 6
Resolving conflicts across multiple font faces .. 12
Adding simulated font faces ... 13

Adding simulated bold faces to a font family ... 13
Adding simulated oblique faces to a font family ... 14
Finding the closest font face match for an input type face ... 15
Step 1. Finding the font family .. 15
Step 2. Matching a face from the candidate face list. ... 15

3. Localization ... 17
4. Guidelines for font manufacturers .. 17

WWS and non-WWS font families.. 18
5. Font chooser guidelines... 18

3

1. Background

Applications specify fonts they intend to use via a set of attributes that include font family
names and typographic properties such as font weight, width and slope. For example, an
application may ask for a bold version of “Arial” font. The appearance of glyphs from the requested
font depends on multiple factors, such as application itself, operating system and font files installed
on the system. The goal of this document is to describe the font selection model used by Windows
Presentation Foundation (referred as “WPF” in this document) and to provide guidelines for
application developers and font designers to create applications and fonts that work best with WPF.

2. Font matching process

WPF recognizes a typeface by its font family, weight, width, and slope properties, which are
expressed in the WPF API and XAML markup language as FontFamily, FontWeight, FontStretch, and
FontStyle respectively. WPF groups fonts that have the same name but vary in the above font
properties into a logical group of fonts called font family. The concept of a font family is valid in the
scope of a font collection, which is an abstract notion of a font folder. For example, a font collection
can denote all fonts installed on a system, the collection of fonts supplied by an application, or the
collection of fonts from a local or a network folder.

WPF font matching process performs mapping in the context of a font collection from the logical
font description, such as…

{ FontFamily=”Arial”, FontStyle=”Italic”, FontStretch=”Condensed”, FontWeight=”Normal” }
to the physical font description, such as…

{ “H:\Windows\Fonts\arialni.ttf”, no algorithmic emboldening, no algorithmic slant }.
In addition, WPF computes a face name property that can be used to identify a particular

combination of FontStyle, FontWeight and FontStretch properties within a given font family. Face
name is exposed via Typeface.FaceNames property.

It is worth noting that WPF performs font fallback if the requested characters are not supported
by a given typeface. WPF font fallback model is built on top of the WPF font selection model, and
detailed description of the fallback logic is outside of the scope of this document.

WPF preprocesses information from all font files in a font collection in order to find the closest
font match in a speedy and consistent way. The table below illustrates how this classification
process works for faces in the “Arial” font family in the US English environment (please refer to the
“

Localization” section for more on how the family and face names are interpreted in different
languages.)
Font file name FontFamily FaceName FontStyle FontWeight FontStretch
arial.ttf “Arial” “Regular” Normal Normal Normal
arialbd.ttf “Arial” “Bold” Normal Bold Normal
arialbi.ttf “Arial” “Bold Italic” Italic Bold Normal
ariali.ttf “Arial” “Italic” Italic Normal Normal
arialn.ttf “Arial” “Narrow” Normal Normal Condensed
arialnb.ttf “Arial” “Narrow Bold” Normal Bold Condensed
arialnbi.ttf “Arial” “Narrow Bold Italic” Italic Bold Condensed
arialni.ttf “Arial” “Narrow Italic” Italic Normal Condensed
ariblk.ttf “Arial” “Black” Normal Black Normal

Since font matching process is performed multiple times in a typical application lifetime, data
similar to what is shown in the above table is stored in the WPF font cache for quick retrieval.

4

Extracting font matching data from OpenType font files

This section provides information on how WPF computes values of FontFamily, FaceName,
FontWeight, FontStyle and FontStretch properties for a given OpenType font file. General
familiarity with the OpenType specification is assumed. Please refer to
http://www.microsoft.com/typography/otspec/default.htm for more details on the OpenType file
format. The document refers to the following new definitions that are not a part of the OpenType
1.4 specification:

 ‘OS/2’ fsSelection bit 9 to denote oblique font faces.
 'name' table IDs 21 and 22 to denote WWS family and subfamily names. Please see the

“WWS and non-WWS font families” section for more details on WWS families.
 ‘OS/2’ fsSelection bit 8 to denote a WWS only font face.

Step 1. Extracting family name, face name, style, weight and stretch

FontStyle:

If ‘OS/2’ table is present, use ‘fsSelection’:
 if fsSelection bit 9 is set, FontStyle is set to Oblique
 else if fsSelection bit 0 is set, FontStyle is set to Italic
 else FontStyle is set to Normal
else use ‘macStyle’ from ‘head’ table:
 if macStyle bit 1 is set, FontStyle is set to Italic
 else FontStyle is set to Normal

FontStretch:

If ‘OS/2’ table is present, use ‘usWidthClass’ according to the table below:

usWidthClass WPF font stretch name
1 UltraCondensed
2 ExtraCondensed
3 Condensed
4 SemiCondensed
5 Normal
6 SemiExpanded
7 Expanded
8 ExtraExpanded
9 UltraExpanded
else use ‘macStyle’ from ‘head’ table:
 if macStyle bit 5 is set, FontStretch is set to Condensed
 else if macStyle bit 6 is set, FontStretch is set to Expanded
else FontStretch is set to Normal

FontWeight:

If ‘OS/2’ table is present, use ‘usWeightClass’:
 if 1 <= usWeightClass && usWeightClass <= 9, usWeightClass = usWeightClass * 100
 if usWeightClass < 1 || usWeightClass > 999 reject the font file as malformed
 set FontWeight to usWeightClass value (WPF supports all values between 1 and 999).
else use ‘macStyle’ from ‘head’ table:
 if macStyle bit 0 is set, FontWeight is set to Bold
 else FontWeight is set to Normal

http://www.microsoft.com/typography/otspec/default.htm

5

WPF directly supports all numeric font weight values between 1 and 999 in both WPF API and
markup. In addition, WPF provides a set of named constants for commonly used font weight values,
and using such constants is equivalent to using corresponding numeric values.
WPF font weight name OpenType weight value
Thin 100
ExtraLight 200
UltraLight 200
Light 300
Normal 400
Regular 400
Medium 500
DemiBold 600
SemiBold 600
Bold 700
ExtraBold 800
UltraBold 800
Black 900
Heavy 900
ExtraBlack 950
UltraBlack 950

FontFamily:

Please note that ‘name’ table ID in the algorithm below refers to the variant of the OpenType
‘name’ table entry chosen in the following priority order (the top entry is considered first):

1. Platform ID = 3 (Microsoft), valid languageID that corresponds to an existing language.
2. Platform ID = 1 (Macintosh), encoding ID = 0 (Roman), languageID = 0 (English). When

decoding such ‘name’ table entries, 0-127 is identical to Unicode 0-127, 128-255 uses a
mapping specified at
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/ROMAN.TXT

‘name’ table entries with properties other than the ones listed above are ignored. If a font
contains multiple ‘name’ table entries with the highest priority, an entry that appears first in the
font table is chosen.
if ‘OS/2 table’ is present and ‘fsSelection’ bit 8 is set
 if ‘name’ table ID 16 (Preferred Family) is present, assign it to FontFamily
 else if ‘name’ table ID 1 (Family) is present, assign it to FontFamily
 else reject the font as malformed
else
 if ‘name’ table ID 21 (WWS Family) is present, assign it to FontFamily
 else

1
 if ‘name’ table ID 16 (Preferred Family) is present, assign it to FontFamily

 else if ‘name’ table ID 1 (Family) is present, assign it to FontFamily
else reject the font as malformed

FaceName:

if ‘OS/2 table’ is present and ‘fsSelection’ bit 8 is set
 if ‘name’ table ID 17 (Preferred Subfamily) is present, assign it to FaceName
 else if ‘name’ table ID 2 (Subfamily) is present, assign it to FaceName
 else reject the font as malformed

1 Algorithm steps highlighted in green are not supported in the first version of WPF. WPF team will

consider adding support for these steps in a next release of WPF.

http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/ROMAN.TXT

6

else
 if ‘name’ table ID 22 (WWS Subfamily) is present, assign it to FaceName
 else if ‘name’ table ID 17 (Preferred Subfamily) is present, assign it to FaceName
 else if ‘name’ table ID 2 (Subfamily) is present, assign it to FaceName
 else reject the font as malformed

Step 2. Font differentiation: resolving conflicts between extracted family name, face
name, style, weight and stretch

After extracting family name, face name, style, weight and stretch from an OpenType font file, WPF
runs an algorithm that resolves potential conflicts between these values. This process is called font
differentiation. Since existing fonts may contain weight, style or stretch values that either don’t
reflect font appearance or conflict with the values from other faces within the same font family,
WPF performs font differentiation by default. However, font manufacturers may direct WPF to
bypass the font differentiation process by either setting ‘OS/2’ fsSelection bit 8 or providing ‘name’
table IDs 21 and 22 (section “Guidelines for font manufacturers” provides more details on this
bypass process.)
All string manipulations in the algorithm below are case insensitive and they are performed using
invariant culture. When the term match is used, string patterns are matched only when there are
separator characters (whitespace, ‘.’, ‘-’ or ‘_’) surrounding them. The end of a string is also treated
as a separator character for matching purposes, but the beginning of a string is not, therefore string
patterns at the beginning of a string are not matched. When a match is removed, the separator
characters are removed as well. If the match is surrounded by other words on both sides, a single
space is inserted in place of the match to make sure the words that surround it are still separated.
Patterns are tested in the order given in the tables, so that, for example, the whole pattern “extra
bold” is matched before the pattern “bold”.

A. Build combined family and face name

Remove leading and trailing spaces from FamilyName and FaceName strings. Build a combined
family and face name string from the modified FontFamily and FaceName strings as follows:
1. Remove the rightmost occurrence of a regular face name (please refer to the “Regular/upright

face patterns” table below) from FaceName, and keep track of it as the correct term for a regular
font in case it needs to be concatenated back later.
Regular/upright face patterns
Book
Normal
Regular
Roman
Upright

2. Append FaceName to FontFamily, unless FontFamily already includes the same text as

FaceName (case-insensitive) as a substring surrounded by separator characters. A couple of
fonts do this, for example:
FontFamily FaceName
Albertus Extra Bold Bold
DecoType Naskh Swashes Swashes
BenjaminCaps Caps:001.001 Caps:001.001
The resulting combined family and face name string (combined string) is used in the subsequent

algorithm steps.

7

B. Extract terms for style

Match backward from the end of the combined string any known name for italic or oblique
styles (please refer to the “Font style patterns” table below) and remove it. The patterns are
matched in order they are listed in the table, and once a pattern is matched, the search for
subsequent patterns is not performed.

Font style patterns FontStyle
ita Italic
ital
italic
cursive
kursiv
inclined Oblique
oblique
backslanted
backslant
slanted

C. Extract terms for stretch

Match backward from the end of the combined string any known name for a font stretch (please
refer to the “Font stretch patterns” table below) and remove it. The patterns are matched in order
they are listed in the table, and once a pattern is matched, the search for subsequent patterns is not
performed. Spaces inside the patterns correspond to zero or more separator characters.

Font stretch patterns FontStretch
extra compressed UltraCondensed
ext compressed
ultra compressed
ultra condensed
ultra cond
compressed ExtraCondensed
extra condensed
ext condensed
extra cond
ext cond
narrow SemiCondensed
compact
semi condensed
semi cond
wide SemiExpanded
semi expanded
semi extended
extra expanded ExtraExpanded
ext expanded
extra extended
ext extended
ultra expanded UltraExpanded
ultra extended
condensed Condensed

8

cond
expanded Expanded
extended

D. Extract terms for weight

Match backward from the end of the combined string any known name for a font weight (please
refer to the “Font weight patterns” table below) and remove it. The patterns are matched in order
they are listed in the table, and once a pattern is matched, the search for subsequent patterns is not
performed. Spaces inside the patterns correspond to zero or more separator characters. The
patterns are allowed to have a “face” suffix, also optionally separated by separator characters from
the pattern name. For example, WPF will treat “Bold Face” the same way as “Bold”, and “Heavyface”
the same way as “Heavy”.

Font weight patterns FontWeight
extra thin Thin (100)
ext thin
ultra thin
extra light ExtraLight (200)
ext light
ultra light
semi bold DemiBold (600)
demi bold
extra bold ExtraBold (800)
ext bold
ultra bold
extra black ExtraBlack (950)
ext black
ultra black
bold Bold (700)
thin Thin (100)
light Light (300)
medium Medium (500)
black Black (900)
heavy
nord
demi DemiBold (600)
ultra ExtraBold (800)

Note that the terms ‘demi’ and ‘ultra’ are matched alone at the end of the list. While these are

most often used in conjunction with another weight or stretch name, if used alone they are assumed
to refer to a weight. For example:

FontFamily FaceName
Eurostile Demi
Franklin Gothic Demi Italic
Some fonts use abbreviated suffixes to denote font weight characteristics, such as “H” for

“Heavy”. Since matching short words and numbers like "M", "H" and "W3" can yield many false
positives, WPF restricts the matching to the set listed in the “Abbreviated weight patterns” table
below. In addition, the following conditions must be satisfied:

9

1. Suffixes must match the FaceName string.
2. FontWeight value extracted in Step 1. Extracting family name, face name, style,

weight and stretch must closely match the suffix meaning. The weight difference in
OpenType weight units must not exceed 100.

3. Font file must have ‘name’ table IDs 1, 2, 16, and 17 present, and combined IDs 16 and
17 should equal the value of ID 1.

4. No other weight matches have been detected in this font.
Abbreviated weight patterns FontWeight
EL ExtraLight
EB ExtraBold
SB SemiBold
B Bold
L Light
M Medium
R Regular
H Heavy
UH ExtraBlack
U UltraBold
Wnnn Weight value nnn. If nnn is between 1 and 9,

nnn is multiplied by 100.

E. Determine resolved weight

If no weight was extracted in the step D above, the resolved weight is the font weight extracted
in Step 1. Extracting family name, face name, style, weight and stretch. Otherwise, the weight
value in the step D (extracted weight) may not match the weight value specified by the font (font
specified weight). The following observations were made about existing fonts to determine how to
resolve such mismatches:

 Incorrect font weight values are often set to 400 (Normal), 500 (Medium) or 700 (Bold)
to make fonts work with existing applications and operating systems, and conversely, if
a font weight value is not set to one of these three values, it is likely to be correct.

 Values of 400 (Normal) and 500 (Medium) are often used interchangeably.
 Correct weight values are usually on the same side of Normal weight axis as the

corresponding descriptive names from the ‘name’ table.
 Correct weight values are usually not very far apart from the corresponding descriptive

names from the ‘name’ table.
The following algorithm takes the observations above into account to determine which value
should be used by WPF.
If both the font specified weight and the extracted weight are lighter than Normal
(400), use the font specified weight.

Otherwise, if both the font specified weight and the extracted weight are heavier
than Medium (500) and the font specified weight is not Bold, use the font specified
weight. Example:

FamilyName FaceName Extracted weight (ignored) Font file weight (used)
Bookman Old Style Bold 700 (Bold) 600 (Semi Bold)
Segoe Black 900 (Black) 800 (Extra Bold)
Otherwise, if both the font specified weight and the extracted weight are either of
Normal or Medium, use the font specified weight. Example:

FamilyName FaceName Extracted weight (ignored) Font file weight (used)

10

Helvetica Medium 500 (Medium) 400 (Normal)
OCRA Medium 500 (Medium) 400 (Normal)
Otherwise, if the font specified weight and the extracted weight differ by no more
than 150, and the font specified weight is neither normal, nor medium, nor bold, then
use the font specified weight. Example:

FamilyName FaceName Extracted weight (ignored) Font file weight (used)
Lucida Sans Typewriter Bold 700 (Bold) 600 (Semi Bold)
Hobo ATT Medium 500 (Medium) 600 (Semi Bold)
Otherwise, use the extracted weight. Example:

FamilyName FaceName Font file weight (ignored) Extracted weight (used)
Arial Black 400 (Normal) 900 (Black)
Garamond Light 400 (Normal) 300 (Light)

F. Determine resolved stretch

If no stretch was extracted in the step C above, the resolved stretch is the font stretch extracted
in Step 1. Extracting family name, face name, style, weight and stretch. Otherwise, the stretch
value in the step C (extracted stretch) may not match the stretch value specified by the font (font
specified stretch). The following algorithm determines which value should be used by WPF.

If both the font specified stretch and the extracted stretch are narrower than normal, use the
font specified stretch. Example:
FamilyName FaceName Extracted stretch (ignored) Font file stretch (used)
Arial Narrow 4 (Semi condensed) 3 (Condensed)
Univers Condensed 3 (Condensed) 1 (Ultra condensed)

If both the font specified stretch and the extracted stretch are heavier than normal, use the font
specified stretch. For example:
FamilyName FaceName Extracted stretch (ignored) Font file stretch (used)
Microstyle ATT Extended 7 (Expanded) 8 (Extra expanded)

In all other cases, use the extracted stretch. For example:
FamilyName FaceName Font file stretch (ignored) Extracted stretch (used)
Segoe Condensed 5 (Normal) 3 (Condensed)
Monotype Modern Wide 5 (Normal) 6 (Semi expanded)

G. Determine resolved style

If no style was extracted in the step B above, the resolved style is the font style extracted in Step
1. Extracting family name, face name, style, weight and stretch. Otherwise, the style value in the
step B (extracted style) is used instead of the style value specified by the font (font specified style).
Example:
FontFamily FaceName Font file style (ignored) Extracted style (used)
Lucida Handwriting Italic Normal Italic
Lucida Typewriter Oblique Italic Oblique

H. Extract numbers that describe font style, weight and stretch from face names.

Some popular font families use special numbering schemes to identify their faces. The face
numbers typically correspond to style, weight and stretch combinations. WPF matches a possible
face number (furthermore denoted as candidateFaceNumber) from the beginning of the FaceName
string, and requires the number to be followed by either a separator character or the end of the
string. When candidateFaceNumber corresponds to font style, weight and stretch determined by

11

steps E – G, candidateFaceNumber is removed from the combined string, so that the resulting font
family matches the font designer intent. WPF supports the following two numbering schemes:

1. Double digit numbering system used in fonts such as http://www.linotype.com/6-1823-
6/neuehelvetica.html. The face number consists of two or three digits that describe the font
weight, style and stretch. The last digit to the right (candidateFaceNumber % 10) describes
font style and stretch, and WPF interprets its value the following way:

candidateFaceNumber % 10 Accepted FontStretch and FontStyle values
3 fontStretch > Normal
4 fontStretch > Normal && fontStyle != Normal
5 fontStretch == Normal
6 fontStretch == Normal && fontStyle != Normal
7 fontStretch < Normal
8 fontStretch < Normal && fontStyle != Normal
9 fontStretch < Condensed

The remaining digits to the left correspond to candidateFaceNumber / 10, and denote font
weight. WPF interprets the latter as shown in the table below:
candidateFaceNumber / 10 Accepted fontWeight values
2, 3, 4 fontWeight < Normal
5 fontWeight >= Normal && fontWeight <= Medium
6,7,8,9,10 fontWeight > Normal

2. Three digit numbering system described at http://www.linotype.com/6-1805-6-
15548/numeration.html. The face number consists of three digits that describe the font
weight, style and stretch. The first digit (candidateFaceNumber / 100) denotes weight and is
interpreted as shown in the table below:

candidateFaceNumber / 100 Accepted fontWeight values
1, 2, 3 fontWeight < Normal
4, 5 fontWeight >= Normal && fontWeight <= Medium
6,7,8,9 fontWeight > Normal

The second digit ((candidateFaceNumber % 100) / 10) denotes stretch and is interpreted as
shown in the table below:
(candidateFaceNumber % 100) / 10 Accepted fontStretch values
1, 2 fontStretch < Normal
3 fontStretch == Normal
4 fontStretch > Normal

The third digit (candidateFaceNumber % 10) denotes style and is interpreted as shown in the
table below:
candidateFaceNumber % 10 Accepted fontStyle values
0 fontStyle == Normal
1 fontStyle != Normal

If candidateFaceNumber doesn’t match font style, weight and stretch values according to any of
the supported numbering schemes, the face number remains in the combined string.

I. Determine final FontFamily and FaceName

Compare the original FontFamily value with the final combined string.
If they are the same, consider the original FontFamily value to be correct, and use the font

provided values for FontFamily and FamilyName.

http://www.linotype.com/6-1823-6/neuehelvetica.html
http://www.linotype.com/6-1823-6/neuehelvetica.html
http://www.linotype.com/6-1805-6-15548/numeration.html
http://www.linotype.com/6-1805-6-15548/numeration.html

12

If they differ, instead use the combined string as a FontFamily instead, and construct a new
FaceName string as the concatenation of strings representing the extracted stretch, weight and
style as described below:

a) Determine resolved weight name.
if the extracted weight was used as a resolved weight in lieu of the font weight

use the weight name pattern that was matched
else if the font weight value is Normal
 use an empty string
else if the weight value corresponds to a known FontWeight value from the ‚Font
weight patterns‛ table

use the font weight name
else

use the string conversion of a decimal representation of the font weight value

b) Determine resolved stretch name.
if the extracted stretch was used as a resolved stretch in lieu of the font stretch

use the stretch name pattern that was matched
else if the font stretch value is Normal
 use an empty string
else

use a FontStretch name from the ‚Font stretch patterns‛ table

c) Determine resolved style name.
if the extracted style was used as a resolved style in lieu of the font style
 use the style name pattern that was matched
else if the font style value is Normal
 use an empty string
else
 use a FontStyle name from the ‚Font style patterns‛ table

d) If weight, style and stretch names are all empty, then the FaceName is set to the regular
face name extracted in the step A-1. If no regular face was extracted, FaceName is set to
“Regular”.

Resolving conflicts across multiple font faces

It is possible for a single font collection to contain multiple font files that define the same values
of font family, face name, weight, style and stretch, therefore creating duplicate font faces.

Where two faces in the same font family have the same stretch, weight and style, one is
discarded by WPF. The following tests are made in order to determine which is kept:

• If the versions differ, the highest version is kept. WPF determines the font version using the
following algorithm:

i. Select the version string from the ‘name’ table:
Obtain the list of localized strings with ‘name’ table ID 5. The ‘name’ table entries
are chosen using the priority logic described in ‚Step 1. Extracting family name,
face name, style, weight and stretch‛.
If an entry with LanguageId 0x409 (en-US) exists, use that entry as the version
string.
Otherwise, use an entry with the highest language ID.

ii. Convert the version string to the version number:
Starting from the beginning of the version string, find the first floating point
number in the decimal, en-US, mantissa-only format.
Convert this number to a floating point value to be used as a version number.

• If the version string doesn’t contain a valid floating point number, the version number is set
to 0.

13

• If the file last modification times differ, the latest modified file is kept.
• If the file Uri’s differ, the alphabetically greater file is kept. String comparison is done using

invariant culture and ignoring the case.
• If the face indices (in a .ttc file) differ, the higher face index is kept.

Adding simulated font faces

Adding simulated bold faces to a font family

When a font family doesn’t contain bold font faces for all combinations of style and stretch, WPF
adds simulated bold faces to the family using the following process:
1. The faces in the family that have the same style and stretch are combined into individual

collections and sorted by weight.
2. For each such collection, find the heaviest weight present.
3. If the heaviest weight is at least 350, and no more than 550, add a new face based on the face

with the heaviest weight, with a weight of Bold (700), and FaceName the same as the FaceName
of the identified heaviest face with the word “Bold” added.

Before adding “Bold” to the face name, any existing weight or term for regular in the face name is
removed using the pattern matching and extraction rules from the “

14

Extracting font matching data from OpenType font files” section.
First, the “Regular/upright face patterns” list is scanned in order and the first match removed

from the FaceName.
Then, the “Weight simulation patterns” list below is scanned in order and the first match

removed from the face name:
Weight simulation patterns
extra light
ext light
ultra light
semi bold
demi bold
bold
thin
light
medium
demi

Adding simulated oblique faces to a font family

Where a font family doesn’t contain matching oblique font faces for all regular font faces, WPF
adds simulated oblique faces to the family using the following process.
1. The faces in the family that have the same weight and stretch are combined into individual

collections and sorted by style.
2. For each such collection, find a regular style.
3. If a regular style is available and an oblique style is not available, add a new face based on the

regular style with a style of Oblique, and a face name the same as the regular style with the
word “Oblique” added.
Before adding “Oblique” to the face name, any existing term for regular in the face name is

removed using the pattern matching and extraction rules from the “

15

Extracting font matching data from OpenType font files” section. This is done by scanning the
“Regular/upright face patterns” list from the subsection “Build combined family and face name”
above in order and removing the first match from the FaceName.

Finding the closest font face match for an input type face

This section describes how WPF selects the closest matching font face from a font collection
given the logical font description.

User input:
 FontFamily string, e.g. “Arial”
 FontWeight value, e.g. SemiBold.
 FontStyle value, e.g. Italic.
 FontStretch value, e.g. Condensed.
 Font collection identifier (e.g., Uri of a font folder)

Internal font collection:
 A pre-created list of font face structures in the following format { FontFamily,

FaceName, FontWeight, FontStyle, FontStretch } that corresponds to all font faces in a
font collection.

Output:
 A font face from the internal data that is the best match for the user input.
 Implied font face flag that describes whether the input FontFamily string identifies a

complete type face and not just a font family.

Step 1. Finding the font family

If the input FontFamily exactly matches a FontFamily value in the internal font collection,
identify all font faces that have this FontFamily value and save them as a candidate face list. Proceed
to Step 2. Matching a face from the candidate face list.

Otherwise, find the longest substring beginning from the start of the input FontFamily string
that matches an existing face in the internal font collection. Identify all font faces whose FontFamily
value exactly matches this substring. Compare the non-matched remainder of the input FontFamily
string with FaceName values of such font faces. If the remainder exactly matches the FaceName
value of a font face, such font face is considered to be an exact match for the input request, the
implied font face flag is set to true and the algorithm completes. If the remainder doesn’t match any
FaceName values, the font face algorithm terminates with no matching face found.

Step 2. Matching a face from the candidate face list.

The task at this step is reduced to finding the best { FontWeighti, FontStylei, FontStretchi }
combination from the candidate face list to match the input { FontWeight, FontStyle, FontStretch }.
The algorithm uses a notion of font attribute vector, which for a given combination of { weight, style,
stretch } is computed using the following formulae,
FontAttributeVector.X = (stretch - 5) * 11.0;
FontAttributeVector.Y = style * 7.0;
FontAttributeVector.Z = (weight – 400) / 100.0 * 5.0;

where weight is measured in the same units as the OpenType ‘OS/2’ usWeightClass value, and
stretch is measured in the same units as the OpenType ‘OS/2’ usWidthClass value.
WPF uses the following method to determine whether a candidate font attribute combination
matches an input font attribute combination better than another font attribute combination:
bool IsCandidateBetterMatchThanOther(
 FontAttributeVector candidate,
 FontAttributeVector other,

16

 FontAttributeVector input)
{
 double distanceBetweenCandidateAndInput = VectorDistance(candidate, input);
 double distanceBetweenOtherAndInput = VectorDistance(other, input);

 // Shorter distance from the input vector is a better match.
 if (distanceBetweenCandidateAndInput < distanceBetweenOtherAndInput)
 return true;
 if (distanceBetweenCandidateAndInput > distanceBetweenOtherAndInput)
 return false;

 double dotProductBetweenCandidateAndInput = VectorDotProduct(candidate, input);
 double dotProductBetweenOtherAndInput = VectorDotProduct (other, input);

 // Stronger projection onto the input vector is a better match.
 if (dotProductBetweenCandidateAndInput > dotProductBetweenOtherAndInput)
 return true;
 if (dotProductBetweenCandidateAndInput < dotProductBetweenOtherAndInput)
 return false;

 // Stronger X component is a better match.
 if (candidate.X > other.X)
 return true;
 if (candidate.X < other.X)
 return false;

 // Stronger Y component is a better match.
 if (candidate.Y > other.Y)
 return true;
 if (candidate.Y < other.Y)
 return false;

 // Stronger Z component is a better match.
 if (candidate.Z > other.Z)
 return true;
 if (candidate.Z < other.Z)
 return false;

 // All components are equal, the candidate is no better match than other.
 return false;
}

This matching algorithm has the following properties:
1. Matching of weight and stretch are monotonic, for example if the requested weight is

increased from ultra light to extra bold, the faces matched will get progressively heavier.
2. Priority order is: stretch, style, weight. Stretch is considered most important in choosing an

alternate face because it has most effect on overall layout. Style is next because algorithmic
italicization is typically less desirable in terms of appearance than algorithmic emboldening.
Therefore, the error distance between requested and available stretch is counted worse
than the difference between requested and available styles, and in turn than requested and
available weights.

3. Regular style on each axis acts as an “anti-magnet”. For example, if a bold weight is
requested, WPF will choose any weight heavier than regular before considering regular or a
lighter weight.

17

3. Localization

Generally, WPF supports font family and face names specified in multiple languages
independent of system language settings.

One important exception is font differentiation. Since the font differentiation process is based
on English name parsing, it requires the primary language name from the font ‘name’ table ID 1
(Family) to have its main language ID
(http://www.microsoft.com/typography/otspec/name.htm#lang3) set to English, i.e. (LCID &
0x3ff) == 0x09. If this is not the case, the font differentiation process is bypassed. If there are
multiple entries with main language ID set to English, the language is obtained in the following
priority order:
if there is a name table entry for LanguageId 0x409 (en-US), use that entry
else sort the name table names by LanguageId in numerical order, and use the first
language.

 The chosen language is called primary language. If ‘name’ table doesn’t contain IDs 16 and 17 in
the primary language, the font is treated as not having IDs 16 and 17.

If the font differentiation process is performed, the generated FamilyName affects the font
name localization in the following way:

1. If the resulting FamilyName is the same as the FamilyName per ‘name’ table ID 16
(Preferred Family), the FamilyName localizations from ‘name’ table ID 16 and FaceName
localizations from ‘name’ table ID 17 (Preferred Subfamily) or, in case ‘name’ table ID 17 is
not present in the font, ‘name’ table ID 2 (Subfamily), are supported by WPF.

2. Otherwise, if the resulting FamilyName is the same as the FamilyName per ‘name’ table ID 1
(Family), the FamilyName localizations from ‘name’ table ID 1 and FaceName localizations
from ‘name’ table ID 2 (Subfamily) are supported by WPF.

3. Otherwise, since FamilyName is modified from its original value, all original localizations of
FamilyName and FaceName are discarded and only primary language versions are
supported.

4. Guidelines for font manufacturers

This section outlines recommendations for font manufacturers to create fonts that work best
with the WPF font selection model.

1. Fonts should set typographically appropriate and unambiguous stretch, weight and
style values in the ‘OS/2’ table. A font family should increase usWeightClass values for
its faces monotonically as the font weight gets heavier, and a font family should increase
usWidthClass values for its faces monotonically as the font stretch gets wider. There
should be no duplicate combinations of font weight, style and stretch values within the
same font family (please see the “WWS and non-WWS font families” subsection below
for an important clarification.) Fonts are encouraged to differentiate between italic and
oblique styles by setting fsSelection bits 0 and 9 respectively.

2. Fonts should support the same set of name table localization languages for all faces in
the same font family.

3. Fonts are encouraged to include native bold and oblique faces to achieve better
appearance compared to the simulated bold and oblique.

http://www.microsoft.com/typography/otspec/name.htm#lang3

18

WWS and non-WWS font families

WPF definition of a font family is different from the preferred family definition from the
OpenType specification. WPF font families are composed of font faces that differ only in weight,
style and stretch, whereas fonts that have the same value of the preferred family property can have
the same weight, style and stretch, but differ in other traditional attributes, such as “handwriting”,
“Caption”, “Subheading”, “Display”, “Optical” etc.

Font families that conform to the former definition of a font family are called WWS font families
(WWS stands for traditional typographic terms ‘weight’, ‘width’ and ‘slope.’)

Font families that use the latter, broader, definition of a font family are called non-WWS font
families.

Fonts should clearly specify whether they are a part of a WWS or a non-WWS font family:
1. Font that is a part of a WWS font family should set ‘OS/2’ ‘fsSelection’ bit 8.
2. Font that is a part of a non-WWS font family should unset ‘OS/2’ ‘fsSelection’ bit 8, and

provide ‘name’ table IDs 21 and 22 that include other differentiating attributes, such as
“handwriting”, “Caption”, “Subheading”, “Display” and “Optical”, as a part of the ‘name’ table
ID 21. ‘name’ table ID 22 should reflect only style, weight and stretch attributes of the font.

5. Font chooser guidelines

It is recommended that applications provide font choosing user interface built on top of the
WPF System.Windows.Media.Fonts object. Using this method guarantees that all available typefaces
will be presented to the user as a part of the appropriate font family, and the selected type face will
be represented unambiguously in the XAML markup. Here is an example of possible font chooser
dialog:

19

Please note that the dialog combines all Arial faces into a single font family. In addition, the

following techniques used in the dialog above are encouraged:
1. Once a font family is selected, any type face from it can be selected using a single mouse

click. This exposes the full range of available typefaces to the customer.
2. Simulated font faces appear visually distinct from font faces that correspond to font

files. This enables customers to choose higher quality font faces for their applications
and documents.

3. Physical font location and version available for diagnostic purposes.
4. Font license information is available.
5. It is possible to display preview text in the variety of languages, sizes and colors.

