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1 Important Announcement
To foster communication between SAM users and make new announcements, a new Yahoo group
has been established. See http://groups.yahoo.com/group/sam-software.

2 Summary of Changes
The following are changes since the initial release of SAM 1.0.

2.1 Changes in SAM 5.0
We built a new web application using Shiny. We have written instructions on how to use this new
application in section 7 and removed instructions for the previous version. Slight changes have
been made when calculating the estimated miss rates, false discovery rate, and q-values. We now
use exact delta values that is specified, rather than an estimated delta value that is closest to it.
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Other results we get from running SAM remains the same as the previous version. Also, SAM no
longer accpets .xls file. Please convert the data into .xlsx before running SAM.

2.2 Changes in SAM 4.0
We have added a new method called SAMSeq, for testing differential expression from RNAseq
data. For this option, there is a new button on the opening SAM screen. The background details
are given in [5]. The main change in SAM to handle sequence data is in the construction of
the SAM score. This construction uses resampling and the nonparametric statistics such as the
Wilcoxon for the two-class case. SAM 4.0 uses the samr package v2.0.

2.3 Changes in SAM 3.03
This version calls the R package samr v1.26. An inconsistency was found in the way that fold
change was computed for logged data. The means in each group were computed on the unlogged
data rather than the logged data. This is now fixed. Note that if the user mistakenly clicks the
unlogged button when the data is actually on a log scale, the resulting fold changes might turn out
to be negative!

2.4 Changes in SAM 3.02
This version calls the R package samr v1.25, in which two bugs were fixed. The standard deviation
in the denominator was not being computed correctly for the quantitative option, and if there were
< 500 genes in the dataset. the input value of the exchangeability factor was not being used.

2.5 Changes in SAM 3.01
A bug in the survival analysis code was fixed and this manual was updated with more information
on the interpretation of time series analysis.

2.6 Changes in SAM 3.0
SAM now has facilities for Gene Set Analysis [2], a variation on the Gene Set Enrichment Analysis
technique of [7]. Details are in section 11.

2.7 Changes in SAM 2.23
Numerous small bug fixes, including parsing of the first row in time course experiments and pre-
vention of overflow in the plot for large datasets.
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The method for estimating the tail strength standard error was changed. The existing method
produced estimates that were generally too small.

2.8 Changes in SAM 2.21
• SAM now reports the overall tail strength for the dataset on the SAM plot. See Taylor and

Tibshirani (1995)- http://www-stat.stanford.edu/ tibs/ftp/tail.pdf for details.

• A bug in the plotting routine that bombed when there were more than 32,000 points (a
limitation of Excel) was fixed.

• Some better error reporting was added.

2.9 Changes in SAM 2.20
• A new facility for assessment of sample sizes has been added!

• For time course data, SAM now uses the internal standard error of the slope or signed area
from each time course (thanks to Kate Rubins for the suggestion).

• As a result, for unpaired time course data, it is now allowable to have only one time course
in one or more classes. SAM computes the gene scores but warns the user than the SAM
plot and FDRs will be unreliable. [Since there is not enough data to carry out permutations].
Similarly for paired and one class time course data.

2.10 Changes in SAM 2.10
• Added more thorough error checking of the input data response row (1)

• Sped up the computation of the significant gene list, and made local FDR computation op-
tional in the controller window. The default is now false, which speeds up the gene list
computation.

• Fixed some small bugs

2.11 Changes in SAM 2.01
Version 2.01 corrects several problems since release 2.0. We believe it is much improved as a
result.

• Fixed One-sample case bug where a large number of samples resulted in large storage allo-
cations
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• Fixed small problem with gene list and qvalues, when only 1 gene called significant

• Fixed problem with q-value, when only positive (or negative ) genes are significant

• Fixed the validation checks when data is in multiple sheets

2.12 Changes in SAM 2.0
This is a major new release of SAM. The numerical computations are now done using the R
package samr version 1.0. In addition there are many new features:

• Facilities for two class, one class and paired time course data

• Non-parametric tests- wilcoxon and rank regression

• Pattern discovery via eigengenes

• Local false discovery rates, and miss rates

• A faster, more accurate imputation engine

• Changes were made in estimation π0 for the multiclass option, and in the score for the
quantitative section. See section 12 for details.

Due to changes in the internals of SAM, results using SAM 2.x will be close to, but not exactly
those obtained with earlier versions of SAM.

2.13 Changes in SAM 1.21
Two bugs were fixed.

• A bug relating to what SAM perceives as a large number of permutations was fixed. The
default was very naive.

• A bug in adding the imputed data sheets for multiple sheets was fixed.

2.14 Changes in SAM 1.20
• SAM can now handle a large number of samples. Input data can span several sheets (con-

tiguous or non-contiguous). An example file, named twoclassbig.xls included with
the distribution.

• A bug in the calculation of FDR for paired data, with a fold change specified, was fixed.

Versions 1.16–1.19 were skipped.
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2.15 Changes in SAM 1.15
Bugfix release. A bug that caused SAM to bomb during the calculation of π̂0 was fixed.

2.16 Changes in SAM 1.13
Bug fix release. A bug was fixed in the calculations for Censored Survival data. Everyone is
advised to upgrade to this version.

2.17 Changes in SAM 1.12
This is mostly a bug fix release. Users of SAM 1.10 should immediately upgrade to this release.

• Bug fix: An error in the calculation of the fold-change was fixed. The criterion for applying
fold-change to significant genes was also corrected. We thank alert users for catching this.

• By popular request, a new column called Fold Change has been added to the significant
genes list. This applies only to Two-class and Paired responses. Where the fold change
cannot be calculated, it is flagged with an NA for “Not Applicable.”

2.18 Changes in SAM 1.10
• Bug fixes: a serious bug in the imputation was fixed. The bug caused some data to be

imputed with the value 65535. A symptom of this bug was that the plot would have a strange
appearance due to the scaling.

• A new facility for block permutations has been added, to handle different experimental con-
ditions such as array batches. See section 5.3.

• In cases where the total number of possible permutations is small, the full set of permutations
is used rather than a random sampling.

• The “threshold” now is replaced by a “fold change” criterion, and now handles logged (base
2) and unlogged data appropriately. The fold change applies only to two-class or paired data.

• We have added a new output column to the significant gene list: the “q-value”: for each gene,
this is the lowest False Discovery Rate at which that gene is called significant. It is like the
well-known p-value, but adapted to multiple-testing situations. Q-values were invented by
John Storey [6].

• The reported False Discovery Rates are now lower and more accurate than in Version 1.0.
They are scaled by a factor 0 ≤ π̂0 ≤ 1, that is now displayed on all output. See Section 12
and reference [6].
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• Significant gene ids are now linked directly to the Stanford SOURCE web database. Several
options for search are provided. Default is by gene name.

• For two-class and paired data, one must now specify whether data is in log-scale or not.

• Stricter checks on response variable values are now performed.

• Several efficiency issues have been addressed.

• The web version of SAM is no longer under development. Hence we have removed it from
this manual. The old version still works for the time being, and the version 1.0 manual
contains documents it.

Due to changes in the internals of SAM, results using SAM 1.10 will be close to, but not exactly
those obtained with SAM 1.0.

We have also updated the FAQ with the latest information. See section 13.

3 Introduction
SAM (Significance Analysis of Microarrays) is a statistical technique for finding significant genes
in a set of microarray experiments. It was proposed by Tusher, Tibshirani and Chu [9]. The
software was written by Michael Seo, Balasubramanian Narasimhan and Robert Tibshirani.

The input to SAM is gene expression measurements from a set of microarray experiments, as
well as a response variable from each experiment. The response variable may be a grouping like
untreated, treated (either unpaired or paired), a multiclass grouping (like breast cancer, lymphoma,
colon cancer), a quantitative variable (like blood pressure) or a possibly censored survival time.
SAM computes a statistic di for each gene i, measuring the strength of the relationship between
gene expression and the response variable. It uses repeated permutations of the data to determine
if the expression of any genes are significantly related to the response. The cutoff for significance
is determined by a tuning parameter delta, chosen by the user based on the false positive rate. One
can also choose a fold change parameter, to ensure that called genes change at least a pre-specified
amount. See section 12.

4 Examples
If you download the SAMR package from CRAN, some examples are stored inside inst folder.
We will upload examples in a separate place for convenience soon. These examples are meant to
familiarize the users with the format in which SAM expects the data.

We briefly describe the examples below.
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Two Class An example of two class, unpaired data.

Two Class (Missing) An example of two class, unpaired data, with missing data.

Two Class (Blocked) An example of two class, unpaired data, with experimental blocks
defined.

Two Class (Big) An example of two class, unpaired data with multiple sheets

Two Class (Unpaired Timecourse) An example of two class unpaired timecourse data

Two Class (Paired Timecourse) An example of two class paired timecourse data

Paired An example of paired data.

One Class An example of oneclass data.

One Class (Timecourse) An example of one class timecourse data

Multi Class An example of multiclass response.

Survival An example of censored survival data. Note the format of the labels in the first row!

Quantitative An example of quantitative data.

Pattern Discovery An example of data for pattern discovery

Two Class Sequence An example of two class, unpaired data from RNA-seq experiments.

Paired Sequence An example of two class, paired datafrom RNA-seq experiments.

Instructions on using SAM on these examples is discussed in section 7.

5 Data Formats
The data should be put in an Excel spreadsheet. The first row of the spreadsheet has information
about the response measurement; all remaining rows have gene expression data, one row per gene.
The columns represent the different experimental samples.

• The first line of the file contains the response measurements, one per column, starting at
column 3. This is further described below in section 5.1.

• The remaining lines contain gene expression measurements one line per gene. We describe
the format below.
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Column 1 This should contain the gene name, for the user’s reference.

Column 2 This should contain the gene ID, for the user’s reference.

Remaining Columns These should contain the expression measurements as numbers. Miss-
ing expression measurements should be noted as either blank or non-numeric values.

For sequencing data, the values are counts and hence must be non-negative.

5.1 Response Format
Table 1 shows the formats of the response for various data types. A look at the example files is
also informative.

Response type Coding
Quantitative Real number eg 27.4 or -45.34
Two class (unpaired) Integer 1, 2
Multiclass Integer 1, 2, 3, ...
Paired Integer -1, 1, -2, 2, etc.

eg - means Before treatment, + means after treatment
-1 is paired with 1, -2 is paired with 2, etc.

Survival data (Time, status) pair like (50,1) or (120,0)
First number is survival time, second is
status (1=died, 0=censored)

One class Integer, every entry equal to 1
Time course, two class (unpaired) (1 or 2)Time(t)[Start or End]
Time course, two class (paired) (-1 or 1 or -2 or 2 etc)Time(t)[Start or End]
Time course, one class 1Time(t)[Start or End]
Pattern discovery eigengenek, where k is one of 1,2,... number of arrays

Table 1: Response Formats

A Quantitative response is real-valued, such as blood pressure. Two class (unpaired) groups
are two sets of measurements, in which the experiment units are all different in the two groups. (i.e.
control and treatment groups with samples from different patients). With a Multiclass response,
there are more than two groups, each containing different experimental units. This is a generaliza-
tion of the unpaired setup to more than 2 groups. Paired groups are two sets of measurements in
which the same experimental unit is measured in each group (i.e. samples from the same patient,
measured before and after a treatment. Survival data consists of a time until an event (such as
death or relapse), possibly censored. In the One class problem, we are testing whether the mean
gene expression differs from zero. For example, each measurement might be the log(red/green)
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ratio from two labelled samples hybridized to a cDNA chip, with green denoting before treatment
and red, after treatment. Here the response measurement is redundant and is set equal to all 1s.

A Time course response means that each experimental unit is measured at more than one
time point. The experimental units themselves can fall into a two class, one class, or a two-class
paired design. SAM summarizes each time course by a slope or a signed area, and then treats
the summarized data in the same way as it treats a two class, one class, or a two-class paired
design. In Pattern discovery, no explicit response parameter is specified. Instead, the user specifies
the eigengene number, eg 1,2, etc. SAM then computes that eigengene (principal component) of
the expression data, and treats that eigengene as if it were a quantitative response. It looks for
genes that are highly correlated with that eigengene and also reports the eigengene itself. The only
difference with a quantitative response is the way in which permutations are generated (details
later).

5.2 Example Input Data file for an unpaired problem
The response variable is 1 = untreated, 2 = treated. The columns are gene name, gene id,
followed by the expression values.

The first row contains the response values.

1 1 2 2 1 1 2 2
GENE1 GENEID101 7.64 -0.50 -1.95 10.12 -10.77 -4.47 -7.65 7.58
GENE2 GENEID102 38.10 4.86 7.87 -13.59 -9.79 -13.46 -8.91 -5.07
GENE3 GENEID103 21.15 5.96 3.20 -4.74 -3.70 -12.35 -10.17 0.63
GENE4 GENEID104 187.21 -23.81 16.76 14.10 -99.76 -89.11 -10.92 5.52

Table 2: Example Dataset for an unpaired problem

Note that there are two blank cells at the beginning of line 1. The gene expression measure-
ments can have an arbitrary number of decimal places.

5.3 Block Permutations
Responses labels can be specified to be in blocks by adding the suffix BlockN, where N is an integer,
to the response labels. Suppose for example that in the two-class data of section 2, samples 1,3,5,7
came from one batch of microarrays, and samples 2,4,6,8 came from another batch. We call these
batches “blocks.” Then we might not want to mix up the batches in our permutations of the data,
in order to control for the array differences. That is, we’d like to allow permutations of the samples
within the set 1,3,5,7 and within the set 2,4,6,8, but not across the two sets. We indicate the blocks
(batches) as follows:
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1Block1 1Block2 2Block1 2Block2 1Block1 1Block2 2Block1 2Block2
GENE1 GENEID101 7.64 -0.50 -1.95 10.12 -10.77 -4.47 -7.65 7.58
GENE2 GENEID102 38.10 4.86 7.87 -13.59 -9.79 -13.46 -8.91 -5.07
GENE3 GENEID103 21.15 5.96 3.20 -4.74 -3.70 -12.35 -10.17 0.63
GENE4 GENEID104 187.21 -23.81 16.76 14.10 -99.76 -89.11 -10.92 5.52

Table 3: Example Dataset for a Blocked unpaired problem

For example, “1Block1” means treatment 1, block (or batch) 1. “1Block2” means treatment 1,
block (or batch) 2. In this example, there are 4! = 24 permutations within block 1, and 4! = 24
permutations within Block 2. Hence the total number of possible permutations is 24 · 24 = 576. If
the block information is not indicated in line 1, all permutations of the 8 samples would be allowed.
There are 8! = 40320 such permutations.

Please note that block permutations cannot be specified with Paired response as there is an
implicit blocking already in force.

5.4 Time course data
Response labels can be specified to be in time course by adding the suffix TimeT, where T is a real
number, to the response labels. Suppose for example that we have experimental units in each of
two classes, and each unit is measured at two or more time points. Here is a typical response line:

1Time1Start 1Time2 1Time3End 1Time1Start 1Time2.5 1Time3.4End 2Time0.5Start 2Time1.2 2Time2.75 2Time3.7End

Table 4: Example Dataset for a unpaired two class time course problem

The first experimental unit is in class 1, and was measured at times 1, 2, and 3. The second
experimental unit is in class 1, and was measured at times 1, 2.5, and 3.4. The third experimental
unit is in class 2, and was measured at times 0.5, 1.2, 2.75, and 3.7. Note that the times can be any
real numbers, and the number of times can be different for each experimental unit (but must be at
least 2). The “Start” and “End” suffixes indicate the first and last arrays for a given experimental
unit. For a paired data, the format is the same. The leading class label is -1 or 1, or -2 or 2, as in
the paired data response format. For oneclass time courses, the leading class label is a 1.

5.5 Normalization of experiments
Different experimental platforms require different normalizations. Therefore, the user is required
to normalize the data from the different experiments (columns) before running SAM. However, for
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convenience SAM v2.0 now offers normalization via simple median centering of the arrays.
For cDNA data, centering the columns of the expression matrix (that is, making the columns

median equal to zero) is often sufficient. For oligonucleotide data, a stronger calibration may be
necessary: for example, a linear normalization of the data for each experiment versus the row-wise
average for all experiments.

6 Handling Missing Data
SAM imputes missing values via a K-Nearest Neighbor algorithm normalization. Full details may
be found in [4] and [8]. The user specifies the number of neighbors k (default=10). Here is how it
works:

1. For each gene i having at least one missing value:

(a) Let Si be the samples for which gene i has no missing values.

(b) Find the k nearest neighbors to gene i, using only samples Si to compute the Euclidean
distance. When computing the Euclidean distances, other genes may have missing
values for some of the samples Si; the distance is averaged over the non-missing entries
in each comparison.

(c) Impute the missing sample values in gene i, using the averages of the non-missing
entries for the corresponding sample from the k nearest neighbors.

2. If a gene still has missing values after the above steps, impute the missing values using the
average (non-missing) expression for that gene.

If the number of genes is large, the near-neighbor computations above can take too long. To
overcome this, we combine the K-Nearest Neighbor imputation algorithm with a Recursive Two-
Means Clustering procedure:

1. If number of genes p is greater than pmax (default 1500):

(a) Run a two-means clustering algorithm in gene space, to divide the genes into two more
homogeneous groups. The distance calculations use averages over non-missing entries,
as do the mean calculations.

(b) Form two smaller expression arrays, using the two subsets of genes found in (a). For
each of these, recursively repeat step 1.

2. If p is less than pmax, impute the missing genes using K-Nearest-Neighbor averaging.
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7 Running SAM
Download the samr package in R. Load in samr library and type in runSAM() to run SAM. Once
the SAM interface is up, upload an .xlsx data file by clicking on the Choose File button. Note
.xls file will not work any more. The data has to follow the format specified in 5. Then, you
need to select the type of response variable, data type (microarray vs. sequencing), analysis type
(individual genes vs. gene sets), and if desired, any of the values of the default parameters. Each of
the response types require different selections and some buttons will appear and disappear based
on the response type. Figure 1 shows different selections for the quantitative option. You need to
provide a .gmt file to perform gene set analysis.

If you press the Run button, a result screen as in figure 2 will appear. Under the SAM Plot
tab, a SAM plot will show up. Positive significant genes are labelled in red and negative significant
genes are in green. The Delta Table tab lists the number of significant genes and the false
positive rate for a number of values of ∆. The Sample Size tab gives information on FDR and
power for various sample sizes.

Once the Run button is clicked, another panel shows up as shown in the figure 3. These
parameters can change the values in plots and tables. For instance, you can change the ∆ parameter
and examine the effect on the false positive rate. If you want a more stringent criterion, you can
try setting a non-zero Minimum fold change parameter (see section 12 for details). Changes
in these parameters is reflected right away in the plots and tables and do not require you to press
the Run button again.

To save the results in excel, you need to specify where you want to save and what you want
to name the file and press the Save button. The default is the current directory and a file name
called result. It takes a few seconds to save plots and tables in an excel format. Note that if there is
already an excel file with the same name, the previous file is replaced with a new file. If you have
any missing data in your data, a new worksheet named Imputed Data containing the imputed
dataset is added to the workbook. This data can be used in subsequent analyses to save time. If
there is no missing data, this worksheet is not added.
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Figure 1: Selecting type of analysis to run
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Figure 3: SAM result control panel
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7.1 Format of the Significant gene list
For reference, SAM numbers the original genes, in their original order, as 1,2,3, etc. In the output,
this is the Row number. The output for the list of significant genes has the following format:

Row number The row in the data sheet.

Gene name The gene name specified in the first column selected data rectangle. This is for the
user’s reference.

Gene id The gene id specified in the second column selected data rectangle. This is for the user’s
reference.

SAM score(d) The T -statistic value.

Numerator The numerator of the T -statistic.

Denominator(s+ s0) The denominator of the T -statistic.

q-value This is the lowest False Discovery Rate at which the gene is called significant based on
the work of John Storey [6] who invented q-values. It is like the familiar “p-value”, adapted
to the analysis of a large number of genes. The q-value measures how significant the gene
is: as di > 0 increases, the corresponding q-value decreases.

Local FDR This is the false discovery rate for genes with scores d that fall in a window around
the score for the given gene. This is in contrast to the usual FDR, which is the false discovery
rate for a list of genes, whose scores exceed a given threshold. For example, if we set ∆ to a
certain value, we might get upper and lower score cutpoints of ±3, yielding 100 genes with
an FDR of 10%. While the local FDR for genes with scores near ±3 is probably > 10%,
the local FDR for genes with the largest scores (say ±6), might be close to zero. Local false
discovery rates are discussed in [3] and [1].

NOTE: In our experience, the local FDR is inherently more difficult to estimate than the
usual (global) FDR. Hence, the usual FDR is a more reliable measure of the accuracy of
the gene list. In particular, we use a window of at least 50 genes to estimate the local FDR
at each point. This means that for the most extreme genes, the window will consist mostly
of genes that are less significant than the target gene. Thus, the reported local FDR will be
too large for these genes, and larger than the global FDR. The local FDR is most accurately
estimated for genes near the middle of the distribution.

For multiclass data, the contrast for each gene in each class, is also shown. This is the stan-
dardized mean difference between the gene’s expression in that class, versus its overall mean ex-
pression, The 2.5 and 97.5 percentiles of this quantity over permutations is shown for reference.
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Thus for a gene that is significant overall, one can determine which class difference(s) caused it to
be significant.

The numerator, denominator and q-value are further explained in the technical section below.
The list is divided into positive and negative genes, having positive or negative score di. Positive
score means positive correlation with the response variable: e.g. for group response 1,2, positive
score means expression is higher for group 2 than group 1.

For a survival time response, SAM computes the Cox score test for each gene. Thus a positive
score (red genes in the SAM plot) means that higher expression correlates with higher risk, i.e.
shorter survival. The reverse is true for negative scores (green genes): a negative score means
higher expression correlates with lower risk, i.e. longer survival.

[ We had this wrong in some earlier versions of this manual]!

7.2 The Miss rate table
In any testing problem, it is important to consider not only false positive rates (i.e. FDRs) but
also false negative rates. For this purpose, a miss rate table is also printed. It gives the estimated
false negative rate for genes that do not make the list of significant genes. For example, suppose
we set Delta to a certain value, giving upper and lower score cutpoints of ±3 and yielding 100
significant genes with an FDR of 10%. The miss rate table might tell us that the miss rate for
scores in the range (2.5, 3) is 40%. That means that 40% of the genes with scores in that range, are
false negatives, i.e. are actually differentially expressed.

8 Interpretation of SAM output
The three panels of figure 4 shows the SAM plots for three different datasets. There are 1000 genes
in each of the datasets, and 8 samples, 4 each in control and treatment conditions. We carried out
SAM analysis using the unpaired (2 class) option. The corresponding false positive tables are
shown in table 5.

In dataset (A), there are number of genes above the band in the upper right and below the band
in the bottom left. Looking at table 5, we chose ∆ = .5. producing about 65 significant genes and
about 5.9 false positives on average. The choice of ∆ is up to the user, depending how many false
positives he/she is comfortable with. The SAM plots can be asymmetric. There can be significant
genes in the top right, but not bottom left, or vice-versa.

In dataset (B), there may be no significant genes. With ∆ = .5 (shown in the plot), there are 2
called genes but about 1.3 false positive genes on average.

In dataset (C), there are many significant genes. If ∆ = 0.3, then nearly 800 genes are called
significant and there are only about 23 false positives on the average. This data was generated as

xij = zij + µij (8.1)
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for gene i = 1, 2, . . . 1000, sample j = 1, 2, . . . 8. The first four samples are from group 1, the
second four from group 2, Here zij ∼ N(0, 1) (standard normal), µij = 0 for j ≤ 4, µij =
θi ∼ N(0, 4) for j > 4. Hence all genes have a true change θi in expression from group 2 vs
group 1, although it may be small. In the interpretation of the SAM results, one should also look
at the score di, which is the standardized change in expression. A value of di = 0.5 (say) may
be called statistically significant in example (C), but is it biologically significant? That is up the
scientist. Another way to address this issue: set a non-zero fold change for calling genes.
With a moderate fold change (say 2), far fewer genes will be called in this example.
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Figure 4: SAM results for 3 different datasets
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(A)
∆ #false pos # called FDR
0.3 11.7 100 0.117
0.4 9.3 76 0.122
0.5 5.9 65 0.091
0.6 4.4 39 0.113
0.7 3.5 33 0.106
0.8 2.1 29 0.072
0.9 1.6 17 0.094
1.0 1.3 16 0.081

(B)
∆ #false pos # called FDR
0.3 4.8 2 2.40
0.4 1.8 2 0.90
0.5 1.3 2 0.65
0.6 0.6 2 0.30
0.7 0.3 2 0.15
0.8 0.2 0 Inf
0.9 0.2 0 Inf
1.0 0.2 0 Inf

(C)
∆ #false pos # called FDR
0.3 23.4 894 0.026
0.4 10.6 840 0.013
0.5 5.0 818 0.006
0.6 3.1 780 0.004
0.7 1.9 741 0.003
0.8 1.6 708 0.002
0.9 1.4 674 0.002
1.0 0.9 636 0.001

Table 5: SAM false positive results for 3 scenarios
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9 Time series data- interpretation of results
For time course data in two groups (unpaired or paired) or in one group, you can choose to summa-
rize each time course by a slope (least squares slope of expression vs time), or a signed area. SAM
then treats the summarized data in the same way as it treats a two class, a one class, or a two-class
paired design. The slope is useful for finding genes with a consistent increase or decrease over
time. The signed area is useful for finding genes that rise and then level off or come back down to
their baseline.

For example, for two class unpaired data, if slope is chosen, SAM summarizes each time series
by a slope. Then the slopes are compared across the two groups. Thus a positive SAM score di
means that the slopes are larger (on average) in group 2 than in group 1; the opposite is true for
a negative di. A positive SAM score could mean that the slopes are positive in both groups, but
larger in group 2, or they could both be negative but less negative in group 2, or finally they could
be negative in group 1 and positive in group 2.

If signed area is chosen, the time course profile is shifted so that it is zero at the first time point.
Then the area under the time course curve is computed, counting positive area above the line and
negative below the line. Then SAM compares the areas across the groups. For example, a positive
SAM score di in the two group case means that the signed area is larger in group 2 than it is in
group 1; the opposite is true for a negative di.

10 More options and ideas
• For one class time course data, you can also use the quantitative option to find genes that

match a given pattern. For example, we can generate expression for 1000 genes over 9 time
points. The last 900 genes can be just standard Gaussian noise. The first 100 genes go down
for the first 3 time points, level off for the next 3, and then increase again for the final 3
time points. The slope of the decrease for the first 3 time points varies from -0.5 to -1.5 for
different genes; similarly the increase for the last 3 time points ranges from 0.5 to 1.5.

To try to find these 100 genes, we set the response row to -3,-2,-1,0,0,0,1,2,3 and then choose
the quantitative option. This did not do a good job of finding the first 100 genes. The reason
is that varying slopes throws off the regression (i.e the correlation measure). However if
we select the rank regression option, SAM uses the ranks for the response and gene
expression values. Now SAM does a good job of isolating the top 100 genes

• Suppose in the above example we had no idea of the predominant patterns in our set of
genes. Then we can use the pattern discovery option. This is illustrated in the pattern
discovery worksheet. In the response row we indicate which eigengene we want to find.
Usually we would start with 1, and then later try 2, 3, etc. until the FDRs get too high.
SAM then computes the requested eigengene, finds the genes that have high correlation with
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it, and also prints out the estimated eigengene in the significant genes output sheet.
The user should make a scatterplot of the eigengene in Excel and study its shape. In the
pattern discovery worksheet example, SAM finds the generating pattern described
above and does a fairly good job of isolating the important genes.

• SAM normally estimates the exchangeability factor s0 by an automatic method described in
section (12.1). This estimate is expressed as a percentile of the standard deviation values
of all the genes. The role of s0 is to prevent genes whose expression is near zero (and
hence unreliable) from having large scores di (such a gene might have di ≈ 0/0. However
occasionally one might want to set s0 manually, and this option is offered in SAM. For
example, if you want to get the standard Cox scores for an entire gene set for some other
purpose, you can set the s0 percentile to -1 (forcing s0 = 0) and then click All genes
tab. [Note that setting the s0 percentile to 0, sets s0 to the minimum gene standard deviation,
which is probably > 0.] You can also try playing with s0 and seeing how the FDR changes

11 Gene set analysis
SAM now has facilities for Gene Set Analysis [2], a variation on the Gene Set Enrichment Analysis
technique of [7]. The idea is to make inferences not about individual genes, but pre-defined sets of
genes. The gene set analysis (GSA) method is also implemented in the R package GSA, available
from CRAN

The gene set analysis (GSA) method differs from Gene Set Enrichment Analysis in the follow-
ing ways:

• GSA uses the “maxmean” statistic: this is the mean of the positive or negative part of gene
scores di in the gene set, whichever is large in absolute value. [In detail: take all of the gene
scores di in the gene set, and set all of the negative ones to zero. Then take the average
of the positive scores and the zeros, giving a positive part average avpos Do the same for
the negative side, setting the positive scores to zero, giving the negative part average avneg.
Finally the score for the gene set is avpos if |avpos| > |avneg|, and otherwise it is avneg.]

• Efron and Tibshirani shows that this is often more powerful than the modified Kolmogorov-
Smirnov statistic used in GSEA.

• GSA also uses a somewhat different null distribution for estimation of false discovery rates:
it does ”restandardization” of the genes (rows), in addition to the permutation of columns
done in GSEA. This means that a gene set must be unusual BOTH as compared to gene sets
of the same size sampled at random from the set of genes represented by the gene set, and as
compared to itself, when the outcome labels are permuted.
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To do a gene set analysis in SAM, click the Gene sets option for Analysis Type and browse
for the gene set file (.gmt file) that you want to use. You may use any of the gene set files available
at

http://www-stat/stanford.edu/˜tibs/GSA

or one that you construct yourself.
A .gmt file is a tab-delimited text file, with one row per gene set. The gene set name is in

column 1 and the gene set description is in column 2 (this is for info purposes only; just fill the
column with whatever you like). The remaining entries are the symbols for each of the genes in
that gene set.

The entries in the .gmt file must use the same coding as that of column 2 of your expression
spreadsheet.

Further points:

• There are boxes where you can specify minimum and maximum gene set sizes.
Gene sets outside of these ranges are ingored.

• When you run Gene Set Analysis, a message might appear, saying that there was too little
overlap between your gene names and those in the .gmt file. This probably means that you
have not used the same coding for both, or that you have the gene names in the expression
sheet in the wrong column (they should be in column 2)

• When you run a Gene Set Analysis, the SAM plot looks different from the usual plot. Be-
cause the gene sets are usually of different sizes, the gene set scores cannot be directly
compared. Hence we convert each score to a p-value, using separate permutation distribu-
tions for each gene set to estimate FDRs. The Gene Set Analysis plot shows the FDR for
each p-value cutoff, both for positive and negative gene sets. The slider sets the FDR cutoff
that defines upper and lower p-value cutoffs, and the resulting number of significant gene
sets are shown in the top left part of the panel.

• A “Negative” gene set is one in which lower expression of most genes in the gene set cor-
relates with higher values of the phenotype y. For example, two classes coded 1,2, lower
expression correlates with class 2. For survival data, lower expression correlates with higher
risk, i.e shorter survival (Be careful, this can be confusing!)

• A “Positive” gene set is one in which higher expression of most genes in the gene set corre-
lates with higher values of the phenotype y.

• Under Significant Gene Set tab, you get a list of positive and negative sets, and you
can also type the number of each gene set to see the individual genes and their scores.
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• Gene set collection tab gives general info about the overlap between your list of
genes and the gene set collection.

• 100 or 200 permutations are OK for initial exploratory analysis, but to get accurate estimates
of FDR, we recommend at least 1000 permutations.

• Gene set analysis is only available for response types Two class unpaired, Two class
paired, Survival, Multiclass and Quantitative.

12 Technical details of the SAM procedure
The data is xij , i = 1, 2, . . . p genes, j = 1, 2, . . . n samples, and response data yj , j = 1, 2, . . . n
(yj may be a vector).

Here is the generic SAM procedure for array data. For sequencing data, the definition of the
score di is different- see Section 12.5.

1. Compute a statistic

di =
ri

si + s0
; i = 1, 2, . . . p (12.1)

ri is a score, si is a standard deviation, and s0 is an exchangeability factor. Details of these
quantities are given later in this note.

2. Compute order statistics d(1) ≤ d(2) · · · ≤ d(p)

3. Take B sets of permutations of the response values yj . For each permutation b compute
statistics d∗bi and corresponding order statistics d∗b(1) ≤ d∗b(2) · · · ≤ d∗b(p).

4. From the set ofB permutations, estimate the expected order statistics by d̄(i) = (1/B)
∑

b d
∗b
(i)

for i = 1, 2, . . . p.

5. Plot the d(i) values versus the d̄(i).

6. For a fixed threshold ∆, starting at the origin, and moving up to the right find the first i = i1
such that d(i) − d̄(i) > ∆. All genes past i1 are called “significant positive”. Similarly, start
at origin, move down to the left and find the first i = i2 such that d̄(i) − d(i) > ∆. All genes
past i2 are called “significant negative”. For each ∆ define the upper cut-point cutup(∆) as
the smallest di among the significant positive genes, and similarly define the lower cut-point
cutlow(∆).
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7. For a grid of ∆ values, compute the total number of significant genes (from the previous
step), and the median number of falsely called genes, by computing the median number of
values among each of the B sets of d∗b(i), i = 1, 2, . . . p, that fall above cutup(∆) or below
cutlow(∆). Similarly for the 90th percentile of falsely called genes.

8. Estimate π0, the proportion of true null (unaffected) genes in the data set, as follows:

(a) Compute q25, q75 = 25% and 75% points of the permuted d values (if p = # genes,
B = # permutations, there are pB such d values).

(b) Compute π̂0 = #{di ∈ (q25, q75)}/(.5p) (the di are the values for the original dataset:
there are p such values.)

(c) Let π̂0 = min(π̂0, 1) (i.e., truncate at 1). This estimate of π0 is analogous to setting
λ = 0.5 in the π̂0 proposed in [6]. For multiclass data, the scores are all positive, so we
use the 0th and 50th percentiles of the permuted values [NOTE: this was corrected in
version 2.0].

9. The median and 90th percentile of the number of falsely called genes from step 6, are mul-
tiplied by π̂0.

10. User then picks a ∆ and the significant genes are listed.

11. The False Discovery Rate (FDR) is computed as [median (or 90th percentile) of the number
of falsely called genes] divided by [the number of genes called significant].

12. Fold change. Suppose x̄i1 and x̄i2 are the average expression levels of a gene i under each of
two conditions. These averages refer to raw (unlogged) data. Then if a nonzero fold change t
is also specified, then a positive gene must also satisfy |x̄i2/x̄i1| ≥ t in order to be called sig-
nificant and a negative gene must also satisfy |x̄i1/x̄i2| ≤ 1/t to be called significant. When
a fold change is specified, genes with either x̄i1 ≤ 0 or x̄i2 ≤ 0 (or both) are automatically
left off the significant gene list, as their fold change cannot be unambiguously determined.
When such fold changes are reported in output, they are indicated by NA.

13. The q-value of a gene is the false discovery rate for the gene list that includes that gene and
all genes that are more significant. It is computed by finding the smallest value of ∆̂ for
which the gene is called significant, and then is the FDR corresponding to ∆̂.

14. The local FDR for a gene is the false discovery rate for genes having a similar score di as
that gene. It is estimated by taking a symmetric window of 0.5% of the genes on each side
of the target gene, and estimating the FDR in that window. If 1.0% times the total number
of genes in the dataset is less than 50, then the percentage is increased so that the number of
genes is 50.
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12.1 Computation of s0
1. Let sα be the α percentile of the si values. Let dαi = ri/(si + sα).

2. Compute the 100 quantiles of the si values, denoted by q1 < q2 . . . < q100.

3. For α ∈ (0, .05, .10 . . . 1.0)

(a) Compute vj = mad(dαi |si ∈ [qj, qj+1)), j = 1, 2, . . . n, where mad is the median
absolute deviation from the median, divided by .64

(b) Compute cv(α)= coefficient of variation of the vj values

4. Choose α̂ = argmin[cv(α)]. Finally compute ŝ0 = sα̂. s0 is henceforth fixed at the value ŝ0.

For Wilcoxon option, rank regression and pattern discovery, the s0 percentile is set at 5%. We
found that this offered better performance than automatic estimation of s0 in these cases.

12.2 Details of ri and si for different response types.
Quantitative response ri is the linear regression coefficient of gene i on the outcome:

ri =

∑
j yj(xij − x̄i)∑
j(yj − ȳj)2

(12.2)

where x̄i =
∑

j xij/n and si is the standard error of ri:

si =
σ̂i

[
∑

j(yj − ȳi)2]1/2
, (12.3)

and σ̂i is the square root of residual error:

σ̂i =
[∑

j(xij − x̂ij)2

n− 2

]1/2
x̂ij = β̂i0 + riyj
β̂i0 = x̄j − riȳj (12.4)

If rank regression is selected, yi and each gene xij are first converted to ranks.

Two class, unpaired data yj = 1 or 2. Let Ck = {j : yj = k} for k = 1, 2. Let nk = # of
observations in Ck. Let x̄i1 =

∑
j∈C1

xij/n1, x̄i2 =
∑

j∈C2
xij/n2.

ri = x̄i2 − x̄i1
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si = [(1/n1 + 1/n2){
∑
j∈C1

(xij − x̄i1)2 +
∑
j∈C2

(xij − x̄i2)2}/(n1 + n2 − 2)]1/2

If instead the Wilcoxon statistic is selected, The Mann-Whitney (two sample Wilcoxon)
statistic is computed.

NOTE: this was changed in version 2.0; in previous versions we used the regression of the
outcome on gene i. The current version is more consistent with the treatment of other data
types.

Censored survival data yj = (tj,∆j). tj is time, ∆j = 1 if observation is a death, 0 if censored.
Let D be the indices of the K unique death times z1, z2, . . . zK . Let R1, R2, . . . RK be the
indices of the observations at risk at these unique death times, that is Rk = {i : ti ≥ zk}).
Let mk = # in Rk. Let dk be the number of deaths at time zk and x∗ik =

∑
tj=zk

xij and
x̄ik =

∑
j∈Rk

xij/mk.

ri =
K∑
k=1

[x∗ik − dkx̄ik]

si = [
K∑
k=1

(dk/mk)
∑
j∈Rk

(xij − x̄ik)2]1/2 (12.5)

NOTE: A positive score (red genes in the SAM plot) means that higher expression correlates
with higher risk, i.e. shorter survival. The reverse is true for negative scores (green genes):
a negative score means higher expression correlates with lower risk, i.e. longer survival.

[ We had this wrong in some earlier versions of this manual]!

Multiclass response yj ∈ {1, 2, . . . K}. Let Ck= indices of observations in class k, nk = # in
Ck, x̄ik =

∑
j∈Ck

xij/nk, x̄i =
∑

j xij/n.

ri = [{
∑

nk/
∏

nk}
K∑
k=1

nk(x̄ik − x̄i)2]1/2 (12.6)

si = [
1∑

(nk − 1)
· (
∑ 1

nk
)

K∑
k=1

∑
j∈Ck

(xij − x̄ik)2]1/2 (12.7)

(12.8)

Paired data yj ∈ {−1, 1,−2, 2 . . . − K,K}. Observation −k is paired with observation k. Let
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j(d) be index of the observation having yj = d.

zik = xij(k) − xij(−k) (12.9)

ri =
∑
k

zik/K (12.10)

si = [
∑
k

(zik − ri)2/{K(K − 1)}]1/2 (12.11)

One class data yj = 1∀j.

ri = x̄i =
∑
j

xij/n

si = {
∑
j

(xij − x̄i)2/(n(n− 1))}1/2 (12.12)

12.3 Details of Permutation Schemes
For unpaired, quantitative, multiclass and survival data we do simple permutations of the n values
yj . For paired data, random exchanges are performed within each −k, k pair. For one class
data, the set of the expression values for each experiment are multiplied by +1 or −1, with equal
probability. If blocks are specified, the permutations are restricted to be within blocks, as described
earlier. For pattern discovery, the elements within each row (gene) are permuted separately. This
gives a new data matrix, whose eigenvectors are then computed.

12.4 Assessment of sample sizes
Assessment of sample sizes for microarray data is a tricky exercise. What assumptions should one
make, and what quantities should be provided as output?

Some packages (e.g. the R package ssize) assume that the genes are independent and use the
Bonferroni inequality to set the type I error. Since genes in microarray experiments are far from
independent, this approach seems to be too conservative. They also report the power for each gene.
But how does one interpret this in the context of thousands of genes.

In our approach we start with the output from a SAM analysis for a set of pilot data. From
this we estimate the standard deviation of each gene, and the overall null distribution of the genes.
Then for a given hypothesized mean difference, we estimate the false discovery rate (FDR) and
false negative rate (FNR) of a list of genes. Since the calculation is based on the SAM scores
from permutations of the data, the correlation in the genes is accounted for. By working with the
scores rather than the raw data, we avoid the difficult task of simulating new data from a population
having a complicated (and unknown) correlation structure.Table 6 summarizes the outcomes of p
hypothesis tests of a set of p genes.
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Table 6: Possible outcomes from p hypothesis tests of a set of genes. The rows represent the true
state of the population and the columns are the result from a data-based decision rule.

Called Called
Not Significant Significant Total

Null U V p0
Non-null T S p1

Total p−R R p

Now FDR = V/R and FNR = T/(p − R), power = S/p1 and type I error = V/p0. For
simplicity, we assume that the number of genes called significant (R) is the same as the number of
non-null genes in the population (p1). This implies that 1− power = FDR and type I error=FNR.
Hence conveniently, the FDR can be interpreted as one minus the per gene power, and similarly
for the FNR.

Here are the details of the calculation for the two-class unpaired case. (Below we indicate
changes necessary for other data types). If n1 and n2 are the sample sizes in each group, The SAM
score is

di =
x̄i2 − x̄i1

si

where

si = [(1/n1 + 1/n2){
∑
j∈C1

(xij − x̄i1)2 +
∑
j∈C2

(xij − x̄i2)2}/(n1 + n2 − 2)]1/2

If non-zero, the exchangeability constant s0 is also included in the denominator (i.e the denom-
inator is si + s0.) If σi is the within-group standard deviation for gene i (assumed to be the same
in each group), then si2 estimates

var(x̄i2 − x̄i1) = σ2
i (1/n1 + 1/n2)

(we assume that the proportion of samples in groups 1 and 2 remains the same as we vary the
sample size). Hence a shift of δ units in one gene for each sample in group 2 causes an average
increase in the SAM score di of δ/(σi

√
1/n1 + 1/n2). Here is the calculation in detail:

1. Estimate the null distribution of the SAM scores, and the per gene standard deviation σi.
from the set of SAM permutations.

2. For k (the number of truly changed genes) running from 10 to p/2, do the following:

• Sample a set of p scores from the permutation distribution of the scores
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• Add δ/(σi
√

1/n1 + 1/n2) in class 2 to a randomly chosen set of k of these scores.

• Find the cutpoint c equal to the k largest score in absolute value

• Estimate the FDR and FNR of the rule |di| > c. This is straightforward since we know
which genes are truly non-null (they are the ones that were incremented by δ)

3. Repeat Step 2 twenty times and report the median result for each k.

SAM does the above calculation for sample sizes n, 2n, 3n and 5n ( assuming the input sample
size factors are 1, 2, 3, 5) and reports the results both graphically and in tables on the SAM output
sheet. This gives the user information on how the FDR and FNR will improve if the sample size
were to be increased.

The user specifies the hypothesized mean difference δ and sample size factors s1, s2, s3, s4
(default 1,2,3,5). SAM then tries sample sizes s1n, s2n, s3n, s4n

To get an idea of what values of the mean difference δ are appropriate or reasonable, the user
can look at the significant gene list from the SAM analysis. The Numerator column is the mean
difference for each gene.

In SAM version 2.1, sample size assessment is offered only for unpaired, paired, oneclass and
survival data types. For paired data, we take n1 = n2 = n/2 (remember n is the total sample size).
and all of the above recipe is the same. For one class data, var = σ2

i /n. For survival data with ri
equal to the numerator of the Cox score statistic, we assume that varri = σ2

i /n and we interpret
δ relative to ri. That is for example, if in our pilot data the genes that we call significant have
|ri| > 100 (roughly), we might set δ = 100 in our sample size assessment.

Here is an example. We generated some two-class data: 1000 genes and 20 samples, 10 samples
in each of classes. Each measurement was standard Gaussian (i.e. there was no difference between
the groups in the pilot data). We ran SAM (two class unpaired, logged) and entered a mean
difference of log2 2 = 1.0. Thus we are hypothesizing a difference of 2 fold for class 1 versus
class 2, assuming that the data are on a log base 2 scale. The results are shown in Figure 5.
Remember that the quantity on the horizontal axis— number of genes— refers to both the
hypothesized number of truly non-null genes, and the number of genes called significant.

We see that, depending on the number of genes truly changed at 2-fold, the sample size should
be increased to 60 or 100, in order to get the FDR down to 10 or 5%. The false negative rate is
consistently low throughout.

12.5 Sequencing data
Data from RNA-seq experiments come in the form of counts for each gene or probe. They are
non-negative and can be very skewed (some large values). In addition, the sequencing depth for
each sample is typically different, creating bias in the counts for that sample. Hence one cannot
simply apply methods designed for microarray data to RNA-seq data.
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Figure 5: Sample size assessment plot
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Some approaches to RNA-seq data use the poisson or negative binomial distributions to model
the counts. While this is useful, we have found that at times it is not very robust or reliable [5].
Hence we have developed a non-parametric approach to this problem, that involves a) estimating
the sequencing depths b) resampling from the data using these estimated depths, c) computing a
non-parametric summary measure (such as the Mann-Whitney-Wilcoxon test) on each resampled
dataset and d) averaging the summary measures over the resamples.

From a macroscopic point of view, this process simply replaces the SAM score di with a new
score equal to the average summary measure. Then the rest of the SAM procedure, as outlined
above, is the same. We call this procedure “SAMSeq”. When the sequencing option is selected,
SAM carries out this procedure and also outputs the estimating sequencing depths. Full details may
be found in [5].

13 Frequently Asked Questions
1. SAM generates an error when I run it on my dataset. What should I do?

Most often, errors are due to improper data formats.

• Please make sure that your data is formatted exactly as described in section 5. Particular
attention needs to be paid to the format of the response in the first row as described in
section 5.1.

• Please make sure that the response type you chose in the SAM panel shown in figure 1
matches the format of your response.
In our testing, about 95% of the problems have been due to the wrong response format.

• Is there a gene with only one or zero non-missing value? If so, the imputation will fail.

2. Why does the random number seed stay the same? Can you not generate a new seed auto-
matically?

The random number seed allows one to reproduce an analysis. By default, it is set to
1234567. However, if one uses the default seed for every analysis, then the same sequence
of permutations are generated. This is not always desirable. It would appear that generating
a seed randomly using the clock or some such mechanism without bothering the user for
input might be better. Not necessarily. If reproducibility is important, then asking the user to
set the seed is preferable so that any analysis can be rerun to confirm results. We have come
down on the side of reproducibility. The user always has a choice of requesting a randomly
generated seed based on the clock by clicking on the Generate Random Seed button. Please
also note that the random number generator seed used in any analysis is always listed in the
output to ensure reproducibility of results.
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3. This document does not answer my questions. Where should I look?

As we get asked new questions, we update this list of frequently asked questions with an-
swers. Please visit the url http://www-stat.stanford.edu/˜tibs/SAM where
you may find further information.

4. Where can I go for help if I just cannot get SAM to work?

We are very interested in making SAM work for all users. However, before reporting prob-
lems or bugs, we’d really like you to make sure that the problem is really with SAM. The
following checklist should help.

• If the problem is with SAM usage, please make sure that you have formatted your data
exactly as mentioned in the SAM manual.

• If you are having problem on a particular type of data, please make sure that you have
formatted the response labels appropriately and have chosen the correct applicable data
type.

If you still cannot get SAM to work, send email to sam-bug@stat.stanford.edu
with complete details including

(a) The error message

(b) The system you are using

(c) The version of R you are using

(d) The dataset you used that generated the error.
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