Skip to content

Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

License

Notifications You must be signed in to change notification settings

MilaNLProc/xlm-emo

Repository files navigation

XLM-EMO: Multilingual Emotion Prediction in Social Media Text

Abstract

Detecting emotion in text allows social and computational scientists to study how people behave and react to online events. However, developing these tools for different languages requires data that is not always available. This paper collects the available emotion detection datasets across 19 languages. We train a multilingual emotion prediction model for social media data, XLM-EMO. The model shows competitive performance in a zero-shot setting, suggesting it is helpful in the context of low-resource languages. We release our model to the community so that interested researchers can directly use it.

See the paper for additional details:

Bianchi, F., Nozza, D., & Hovy, D. "XLM-EMO: Multilingual Emotion Prediction in Social Media Text". In Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (Forthcoming). Association for Computational Linguistics, 2022. Link.

License

Code comes from HuggingFace and thus our License is an MIT license.

For models restrictions may apply on the data (which are derived from existing datasets) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.

Installing

git clone the package and then run

pip install -e .

inside the folder

Important: If you want to use CUDA you need to install the correct version of the CUDA systems that matches your distribution, see PyTorch.

Features

from xlm_emo.classifier import  EmotionClassifier
ec = EmotionClassifier()

ec.predict(["senti testa di cazzo", "I am very happy"])

>> ["anger", "joy"]

Models

Model Link Macro F1 on Test Set
XLM-EMO-T https://huggingface.co/MilaNLProc/xlm-emo-t 0.85

Reference

If you use this tool please cite the following paper:

@inproceedings{bianchi-etal-2022-xlmemo,
title = {{XLM-EMO}: Multilingual Emotion Prediction in Social Media Text},
author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk",
booktitle = "Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
year = "2022",
publisher = "Association for Computational Linguistics"
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.