Skip to content

MilesCranmer/symbolic_deep_learning

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
June 22, 2020 20:06
January 14, 2021 02:03
June 22, 2020 20:06
October 22, 2020 06:35
June 22, 2020 20:06
June 22, 2020 20:06

Discovering Symbolic Models from Deep Learning with Inductive Biases

This repository is the official implementation of Discovering Symbolic Models from Deep Learning with Inductive Biases.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, Shirley Ho

Check out our Blog, Paper, Video, and Interactive Demo.

Requirements

For model:

Symbolic regression:

  • PySR, our new open-source Eureqa alternative

For simulations:

  • jax (simple N-body simulations)
  • quijote (Dark matter data; optional)
  • tqdm
  • matplotlib

Training

To train an example model from the paper, try out the demo.

Full model definitions are given in models.py. Data is generated from simulate.py.

Results

We train on simulations produced by the following equations: giving us time series:

We recorded performance for each model: and also measured how well each model's messages correlated with a linear combination of forces:

Finally, we trained on a dark matter simulation and extracted the following equations from the message function:

About

Code for "Discovering Symbolic Models from Deep Learning with Inductive Biases"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages