
Reinforcement Learning with MATLAB

Understanding Training and Deployment

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 2

Reinforcement Learning Workflow Overview

This ebook series addresses the five areas of reinforcement learning.
It covers concepts and then shows how you can do it in MATLAB® and
Simulink®.

The first ebook focuses on setting up the environment. The second
explores rewards and policy structures. This ebook covers training
and deployment.

You need an environment where your agent can learn. You need to choose what
should exist within the environment and whether it’s a simulation or a physical setup.

You need to choose a way to represent the policy.
Consider how you want to structure the parameters

and logic that make up the decision-making
part of the agent.

You need to think about what you ultimately want your agent to do and
craft a reward function that will incentivize the agent to do just that.

You need to choose an algorithm to train the agent
that works to find the optimal policy parameters.

Finally, you need to exploit the policy by deploying
it in the field and verifying the results.

https://www.mathworks.com/content/dam/mathworks/ebook/gated/reinforcement-learning-ebook-part1.pdf
https://www.mathworks.com/content/dam/mathworks/ebook/gated/reinforcement-learning-ebook-part2.pdf

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 3

How the Policy Is Structured

In a reinforcement learning (RL) algorithm, neural networks
represent the policy in the agent. The policy structure and the
reinforcement learning algorithm are intimately intertwined;
you can’t structure the policy without also choosing the RL
algorithm.

The next few pages will describe policy function–based, value function–
based, and actor-critic approaches to reinforcement learning to
highlight the differences in the policy structures. This will definitely be
an oversimplification, but if you want a basic understanding of the ways
policies can be structured, it should help you get started.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 4

Policy Function–Based Learning

Policy function–based learning algorithms train a neural network
that takes in the state observations and outputs actions. This neural
network is the entire policy—hence the name policy function–based
algorithms. The neural network is called the actor because it directly
tells the agent which actions to take.

The question now is, how do we approach training this neural network?
To get a general feel for how this is done, take a look at the Atari game
Breakout.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 5

The Policy Approach to Learning Breakout

Breakout is a game in which you try to eliminate bricks using a paddle
to direct a bouncing ball. The game has three actions, move the paddle
left, right, or not at all, and a near-continuous state space that includes
the position of the paddle, the position and velocity of the ball, and the
location of the remaining bricks.

In this example, the inputs into the actor network are the
states of the paddle, ball, and blocks. The outputs are nodes
representing the actions: left, right, and stay. Rather than
calculating the states manually and feeding them into the
network, you can input a screen shot of the game and let
the network learn which features in the image are the most
important to base its output on. The actor would map the
intensity of thousands of pixels to the three outputs.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 6

A Stochastic Policy

Once the network is set, it’s time to look at approaches to training it.
One broad approach that itself has a lot of variations is policy gradient
methods. Policy gradient methods can work with a stochastic policy,
so rather than producing a deterministic “Take a left,” the policy would
output the probability of taking a left. The probabilities are directly
related to the value of the three output nodes.

Should the agent exploit the environment by choosing the actions that collect the
most rewards that it already knows about, or should it choose actions that explore
parts of the environment that are still unknown?

A stochastic policy addresses this tradeoff by building exploration into the
probabilities. Now, when the agent learns, it just needs to update the probabilities.
Is taking a left a better option than taking a right? If so, push the probability that you
take a left in this state higher.

Over time, the agent will nudge these probabilities in the direction that produces
the most reward. Eventually, the most advantageous action for every state will have
such a high probability that the agent always takes that action.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 7

Policy Gradient Methods

So how does the agent know whether the actions were good or not? The idea is
this: execute the current policy, collect reward along the way, and then update the
network to increase the probabilities of actions that led to higher rewards.

If the paddle went left, missing the ball and causing a negative reward, then change
the neural network to increase the probability of moving the paddle right next time
the agent is in that state.

You take the derivative of each weight and bias in the network with
respect to reward, and adjust them in the direction of a positive reward
increase. In this way, the learning algorithm is moving the weights and
biases of the network to ascend up the reward slope. This is why the
term gradient is used in the name.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 8

The Downside of Policy Gradient Methods

One of the downsides of policy gradient methods is that the naive
approach of just following the direction of steepest ascent can converge
on a local maxima rather than global. Policy gradient methods can also
converge slowly due to their sensitivity to noisy measurements, which
happens, for example, when it takes a lot of sequential actions to receive
a reward and the resulting cumulative reward has high variance
between episodes.

For example, in Breakout the agent might make a lot of quick left and right
paddle movements as the paddle ultimately works its way across the field
to strike the ball and receive a reward. The agent wouldn’t know if every
single one of those actions was actually required to get that reward, so the
policy gradient algorithm would have to treat each action as though it was
necessary and adjust the probabilities accordingly.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 9

Value Function–Based Learning

With a value function–based agent, a function would take in the state
and one of the possible actions from that state, and output the value of
taking that action.

This function alone is not enough to represent the policy since it
outputs a value and the policy needs to output an action. Therefore,
the policy would be to use this function to check the value of every
possible action from a given state and choose the action with the
highest value.

You can think of this function as a critic since it’s looking at the possible
actions and criticizing the agent’s choices.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 10

Value Functions and Grid World

To see how this would work in practice, here’s an example using the
Grid World environment.

In this environment, there are two discrete state variables: the X grid
location and the Y grid location. The agent can only move one square
at a time either up, down, left, or right, and each action it takes results
in a reward of -1.

If the agent tries to move off the grid or into one of the black obstacles,
then the agent doesn’t move into the new state but the -1 reward is still
received. In this way, the agent is penalized for essentially running into
a wall and it doesn’t make any physical progress for that effort.

There is one state that produces a +10 reward; the idea is that in order
to collect the most reward, the agent needs to learn the policy that will
get it to the +10 in the fewest moves possible.

	» See how to solve a Grid World environment in MATLAB

https://www.mathworks.com/help/reinforcement-learning/ug/train-q-learning-agent-to-solve-basic-grid-world.html

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 11

Value Functions and Grid World Continued

It might seem easy to determine exactly which route to take to get to
the reward.

However, you have to keep in mind that in model-free RL, the agent
knows nothing about the environment. It doesn’t know that it’s trying
to get to the +10. It just knows that it can take one of four actions, and
it receives its location and reward back from the environment after it
takes an action.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 12

Solving Grid World with Q-Tables

The way the agent builds up knowledge of the environment is by taking
actions and learning the values of that state/action pair based on the
received reward. Since there are a finite number of states and actions
in grid world, you can use a Q-table to map them to values.

So how does the agent learn these values? Through a process
called Q-learning.

With Q-learning, you can start by initializing the table to zeros,
so all actions look the same to the agent. After the agent takes a
random action, it gets to a new state and collects the reward from the
environment.

The agent uses that reward as new information to update the value
of the previous state and the action that it just took using the famous
Bellman equation.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 13

The Bellman Equation

The Bellman equation allows the agent to solve the Q-table over time by breaking up the whole problem into multiple simpler steps. Rather than
solving the true value of a state/action pair in one step, the agent will update the value each time a state/action pair is visited through dynamic
programming. The Bellman equation is important for Q-learning as well as other learning algorithms, such as DQN. Here’s a closer look at the
specifics of each term in the equation.

After the agent has taken an action a from state s, it receives a reward.

Value is more than the instant reward from an action; it’s the maximum
expected return into the future. Therefore, the value of the state/action pair
is the reward that the agent just received, plus how much reward the agent
expects to collect going forward.

You discount the future rewards by gamma so that the agent doesn’t
rely too much on rewards far in the future. Gamma is a number between
0 (looks at no future rewards to assess value) and 1 (looks at rewards
infinitely far into the future).

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 14

The Bellman Equation Continued

The Bellman equation is another connection between reinforcement learning and traditional control theory. If you are familiar with optimal control
theory, you may notice that this equation is the discrete version of the Hamilton-Jacobi-Bellman equation, which, when solved over the entire state
space, is a necessary and sufficient condition for an optimum.

The sum is now the new value of the state and action pair (s, a), and we
compare it with the previous estimate to get the error.

The error is multiplied by a learning rate that gives you control over
whether to replace the old value estimate with the new (alpha = 1), or
nudge the old value in the direction of the new (alpha < 1).

Finally, the resulting delta value is added to the old estimate and the
Q-table has been updated.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 15

The Bellman Equation Continued

It might be helpful to see the Bellman equation in action by looking at the first few steps in a
simple Grid World example. In this example, alpha is set to 1 and gamma is set to 0.9. If both
actions have the same value, then the agent takes a random action; otherwise, the agent
chooses the action with the highest value.

When the agent reaches the termination state, S3, the episode ends and the agent reinitializes at the starting state, S1.
The Q-table values persist and the learning continues into the next episode, which is continued on the next page.

S1 S2 S3
Left 0 0 0
Right 0 0 0

Episode Step State current Q(s, a) Action R(s, a) new Q(s, a)

S1 S2 S3
Left 0 0 0
Right -1 0 0

1 1 S1 right
(random)

-1

S1 S2 S3
Left 0 0 0
Right 0 0 0

S1 S2 S3
Left 0 0 0
Right -1 10 0

1 2 S2 right
(random)

+10

End of episode

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 16

S1 S2 S3
Left -1 0 0
Right -1 10 0

The Bellman Equation Continued

Within just four actions, the agent has already settled on a Q-table that produces the optimal policy; in state S1, it will take a right since the value
8 is higher than -1, and in state S2, it will take a right again since the value 10 is higher than 0. What’s interesting about this result is that the
Q-table hasn’t settled on the true values of each state/action pair. If it keeps learning, the values will continue to move in the direction of the actual
values. However, you don’t need to find the true values in order to produce the optimal policy; you just need the value of the optimal action to be
the highest number.

S1 S2 S3
Left 0 0 0
Right -1 10 0

Episode Step State current Q(s, a) Action R(s, a) new Q(s, a)

2 1 S1 left
(greedy)

-1

S1 S2 S3
Left -1 0 0
Right -1 10 0

S1 S2 S3
Left -1 0 0
Right 8 10 0

2 2 S1 right
(random)

-1

End of episode

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 17

The Critic as a Neural Network

Extend this idea to an inverted pendulum. Like Grid World, there are
two states, angle and angular rate, except now the states
are continuous.

The value function (the critic) is represented with a neural network. The
idea is the same as with a table: You input the state observations and
an action, the neural network returns the value of that state/action pair,
and the policy is to choose the action with the highest value.

Over time, the network would slowly converge on a function that
outputs the true value for every action anywhere in the continuous
state space.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 18

The Downside of Value-Based Policies

You can use a neural network to define the value function for
continuous state spaces. If the inverted pendulum has a discrete
action space, you can feed discrete actions into your critic network one
at a time.

Value function–based policies won’t work well for continuous action
spaces. This is because there is no way to calculate the value one
at a time for every infinite action to find the maximum value. Even for
a large (but not infinite) action space, this becomes computationally
expensive. This is unfortunate because often in control problems you
have a continuous action space, such as applying a continuous range
of torques to an inverted pendulum problem.

So what can you do?

You can implement a vanilla policy gradient method, as covered in
the policy function–based algorithm section. These algorithms can
handle continuous action spaces, but they have trouble converging
when there is high variance in the rewards and the gradient is noisy.
Alternatively, you can merge the two learning techniques into a class of
algorithms called actor-critic.

	» See how to train an actor-critic agent to balance
an inverted pendulum in MATLAB

https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 19

Actor-Critic Methods

The actor is a network that is trying to take what it thinks is the best action given the current state, as seen with the policy function method.
The critic is a second network that is trying to estimate the value of the state and the action that the actor took, as seen with the value function
method. This approach works for continuous action spaces because the critic only needs to look at the single action that the actor took and does
not need to try to find the best action by evaluating all of them.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 20

The Actor-Critic Learning Cycle

The actor chooses an action in the same way
that a policy function algorithm would, and it is
applied to the environment.

The critic makes a prediction of what the value of that
action is for the current state and action pair.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 21

The Actor-Critic Learning Cycle Continued

The critic then uses the reward from the environment to determine the accuracy of its value prediction. The error is the difference between the
new estimated value of the previous state and the old value of the previous state from the critic network. The new estimated value is based on
the received reward and the discounted value of the current state. The error gives the critic a sense of whether things went better or worse than it
expected.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 22

The Actor-Critic Learning Cycle Continued

The critic uses this error to update itself in the same
way that a value function would so that it has a better
prediction the next time it’s in this state.

The actor also updates itself with the response from
the critic so that it can adjust its probabilities of taking
that action again in the future.

In this way, the policy now ascends the reward slope
in the direction that the critic recommends rather
than using the rewards directly.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 23

Two Complementing Networks

A lot of different types of learning algorithms use an actor-critic policy;
this ebook generalizes these concepts to remain algorithm agnostic.

The actor and critic are neural networks that try to learn the optimal
behavior. The actor is learning the correct actions to take using
feedback from the critic to know which actions are good and bad, and
the critic is learning the value function from the received rewards so
that it can properly criticize the action that the actor takes.

With actor-critic methods, the agent can take advantage of the best
parts of policy and value function algorithms. Actor-critics can handle
both continuous state and action spaces, and speed up learning when
the returned reward has high variance.

Hopefully, it’s now clear why you may have to set up two neural
networks when creating your agent; each one plays a very
specific role.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 24

Policy Deployment

The last step in the reinforcement learning workflow is to deploy the policy.

If learning is done with the physical agent in the real environment, then the learned policy is already on the agent and can be exploited. This
ebook has assumed that the agent has learned offline by interacting with a simulated environment. Once the policy is sufficiently optimal, the
learning process can be stopped and the static policy deployed onto any number of targets, just like you would deploy any traditionally developed
control law.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 25

Deploying the Learning Algorithm

Even if the majority of learning is done offline with a simulated
environment, it may be necessary to continue learning with the real
physical hardware after deployment.

This is because some environments might be hard to model accurately,
so a policy that is optimal for the model might not be optimal for the
real environment. Another reason might be that the environment slowly

changes over time and the agent must continue to learn occasionally
so that it can adjust to those changes.

For these reasons, you deploy both the static policy and the learning
algorithms to the target. With this setup, you have the option of
executing the static policy (turn learning off) or continuing to update the
policy (turn learning on).

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 26

The Complementary Relationship

There is a complementary relationship between learning with a simulated environment and learning with the real environment. With the
simulation, you can safely and relatively quickly learn a sufficiently optimal policy—one that will keep the hardware safe and get close to the
desired behavior even if it’s not perfect. Then you can tweak the policy using the physical hardware and online learning to create something that
is fine-tuned to the environment.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 27

The Drawbacks of RL

At this point, you may think that you can set up an environment, place
an RL agent in it, and then let the computer solve your problem while
you go off and get a coffee. Unfortunately, even if you set up a perfect
agent and a perfect environment and the learning algorithm converges
on a solution, there are still drawbacks to this method.

These challenges come down to two main questions:
•	 How do you know the solution is going to work?
•	 Is there a way to manually adjust it if it’s not quite perfect?

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 28

The Unexplainable Neural Network

Mathematically, a policy is made up of a neural network with possibly
hundreds of thousands of weights and biases and nonlinear activation
functions. The combination of these values and the structure of the
network create a complex function that maps high-level observations to
low-level actions.

This function is a black box to the designer. You may have an intuitive
sense of how this function operates and the hidden features that
this network has identified, but you don’t know the reason behind
the value of any given weight or bias. So if the policy doesn’t meet a
specification or if the operating environment changes, you won’t know
how to adjust the policy to address that problem.

There is active research that is trying to push the concept of explainable artificial intelligence. This is the idea that you can set up your network so
that it can be easily understood and audited by humans. At the moment, the majority of RL-generated policies are still categorized as a black box,
which is an issue that needs to be addressed.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 29

Pinpointing Problems

There is an issue where the very thing that has made solving the control problem easier—condensing the difficult logic down to a single black-
box function—has made our final solution incomprehensible. Contrast this with a traditionally designed control system, where there is typically a
hierarchy with loops and cascaded controllers, each designed to control a very specific dynamic quality of the system. Think about how gains are
derived from physical properties like appendage lengths or motor constants, and how simple it is to change those gains if the physical system
changes.

In addition, if the system doesn’t behave the way you expect, with
a traditional design you can often pinpoint the problem to a specific
controller or loop and focus your analysis there. You can isolate a
controller and test and modify it to ensure it’s performing under the
specified conditions, and then bring it back into the larger system.

Isolating issues is difficult to do when the solution is a monolithic collection of
neurons and weights and biases. So, if you end up with a policy that isn’t quite
right, rather than being able to fix the offending part of the policy, we have to
redesign the agent or the environment model and then train it again. This cycle of
redesigning, training, and testing can be time consuming.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 30

The Larger Problem

There is a larger issue looming here that goes beyond the length of time it takes to train an agent, and it comes down to the accuracy of the
environment model.

It is difficult to develop a sufficiently realistic model that takes into account all of the important system dynamics as well as disturbances and
noise. At some point, it’s not going to perfectly reflect reality, and so any control system you develop with that model is also not going to be
perfect. This is why you still have to do physical tests rather than just verify everything with a model.

This is less of an issue if you use the model to design a traditional control system, since you can understand the functions and can tune the
controllers. However, with a neural network policy, you don’t have that luxury. As you can never build an absolutely realistic model, any agent
you train with that model will be slightly wrong. The only option to fix it is to finish training the agent on the physical hardware, which can be
challenging in its own right.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 31

Verifying the Learned Policy

Verifying that a policy meets the specifications is also difficult with
a neural network. For one reason, with a learned policy, it’s hard to
predict how the system will behave in one state based on its behavior
in another. As an example, if you train an agent to control the speed of
an electric motor by having it learn to follow a step input from 0 to 100
RPM, you can’t be certain, without testing, that that same policy will
follow a similar step input from 0 to 150 RPM. This is true even if the
motor behaves linearly.

A slight change may cause a completely different set of neurons to
activate and produce an undesired result. You won’t know that unless
you test it. Testing more conditions does reduce risk, but it doesn’t
guarantee a policy is 100% correct unless you can test every input
combination.

Having to run a few extra tests might not seem like a big deal, but you
have to remember that one of the benefits of deep neural networks is
that they can handle data from rich sensors, like images from a camera
that have extremely large input spaces; think thousands of pixels that
each can have a value between 0 and 255. Testing every combination
in this scenario would be impossible.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 32

Formal Verification Methods

Learned neural networks also make formal verification difficult. These methods involve guaranteeing that some condition will be met by providing
a formal proof rather than using a test. For example, you don’t have to test to make sure a signal will always be nonnegative if the absolute value
operation of that signal is performed in the software. You can verify it simply by inspecting the code and showing that the condition will always be
met. Other types of formal verification include calculating robustness and stability factors like gain and phase margins.

For neural networks, this type of formal verification is more difficult. As we’ve
discussed, it’s hard to inspect the code and make any guarantees about how
it will behave. You also don’t have methods to determine its robustness or its
stability. It all comes back to the fact that you can’t explain what the function is
doing internally.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 33

Shrinking the Problem

A good way to reduce the scale of these problems is to narrow the
scope of the RL agent. Rather than learn a policy that takes in the
highest-level observations and commands the lowest-level actions, we
can wrap traditional controllers around an RL agent so it only solves a
very specialized problem. By targeting a smaller problem with an RL
agent, we shrink the unexplainable black box to just the parts of the
system that are too difficult to solve with traditional methods.

A smaller policy is more focused so it’s easier to understand what it’s
doing, its impact on the whole system is limited, and the training time
is reduced. However, shrinking the policy doesn’t solve your problem;
it just decreases its complexity. You still don’t know if it is robust to
uncertainties, if there are stability guarantees, or if can you verify that
the system will meet the specifications.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 34

Working Around These Issues

Even though you can’t quantify robustness, stability, and safety, you can address those issues with workarounds in the design.

For robustness and stability, you can train the agent in an environment
where the important environment parameters are adjusted each time
the simulation is run.

For example, if you choose a different max torque value for the walking
robot at the start of each episode, the policy will eventually converge to
something that is robust to manufacturing tolerances. Tweaking all of
the important parameters like this will help you end up with an overall
robust design. You may not be able to claim a specific gain or phase
margin, but you will have more confidence that the result can handle a
wider range within the operational state space.

You can also increase safety by determining situations that you want
the system to avoid no matter what, and build software outside of the
policy that monitors for that situation. If that monitor is triggered, you
can constrain the system or take over and place it into some kind of
safe mode before it has a chance to cause damage.

This doesn’t prevent you from deploying a dangerous policy, but it will
protect the system, allowing you to learn how it fails and adjusting the
reward and training environment to address that failure.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 35

Solving a Different Problem

Workarounds are nice, but you can fix the issues directly by solving a different problem altogether. You can use reinforcement learning as a tool
to optimize the controller gains in a traditionally architected control system. Imagine designing an architecture with dozens of nested loops and
controllers, each with several gains. You can end up with a situation where you have a hundred or more individual gain values to tune. Rather
than try to manually tune each of these gains by hand, you could set up an RL agent to learn the best values for all of them at once.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 36

RL Complementing Traditional Methods

Imagine an environment comprising a control system and the plant.
The reward would be how well the system performs and how much
effort it takes to get that performance, and the actions would be the
gains for the system. After each episode, the learning algorithm would
tweak the neural network in a way that the gains move in the direction
that increases reward (i.e., it improves performance and lowers effort).

You get the best of both worlds with this method. You don’t have to
deploy any neural networks, verify them, or worry about having to
change them; you just need to code the final static gain values into the
controller. This way, you still have a traditionally architected system,
one that can be verified and manually adjusted on the hardware, but
you populated it with gain values that were optimally selected using
reinforcement learning.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 37

The Future of Reinforcement Learning

Reinforcement learning is a powerful tool for solving hard problems.
There are some challenges regarding understanding the solution and
verifying that it will work, but as we covered, you have a few ways right
now to work around those challenges. While reinforcement learning is
nowhere near its full potential, it may not be too long before it becomes
the design method of choice for all complex control systems.

Learning algorithms, reinforcement learning design tools such as
MATLAB and Reinforcement Learning Toolbox™, and verification
methods are advancing all the time.

Reinforcement Learning with MATLAB: Understanding Training and Deployment | 38

Reinforcement Learning with MATLAB

Reinforcement Learning Toolbox provides functions and blocks for
training policies using reinforcement learning algorithms. You can use
these policies to implement controllers and decision-making algorithms
for complex systems such as robots and autonomous systems.

The toolbox lets you implement policies using deep neural networks,
polynomials, or look-up tables. You can then train policies by enabling
them to interact with environments represented by MATLAB or
Simulink models.

https://www.mathworks.com/products/reinforcement-learning.html

© 2019 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for
a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Learn More

Train a Reinforcement Learning Agent in Basic Grid World - Documentation

Train an Actor-Critic Agent to Balance Cart-Pole System - Documentation

Train a Biped Robot to Walk Using DDPG Agent - Documentation

Getting Started with Reinforcement Learning - Code examples

Reinforcement Learning Tech Talks - Video Series

http://www.mathworks.com/trademarks
https://www.mathworks.com/help/reinforcement-learning/ug/train-q-learning-agent-to-solve-basic-grid-world.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-ddpg-agent.html
https://www.mathworks.com/help/reinforcement-learning/examples.html
https://www.mathworks.com/videos/series/reinforcement-learning.html

