Skip to content
Go to file

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

Covid-19 Xray Detection and Web-App development

Developed by M.Rovai @ May, 12 2020


The deployment of an automatic COVID-19 detection is for educational purposes only. It is not meant to be a reliable, highly accurate COVID-19 diagnosis system, nor has it been professionally or academically vetted.



The inspiration of this project, was to understand and create a didactic proof of concept of the work "XRayCovid-19" developed by UFRRJ (Universidade Federal Rural do Rio de Janiero). XRayCovid-19 is an ongoing project that uses Artificial Intelligence to assist the health system in the COVID-19 diagnostic process. It is characterized by easy use; efficiency in response time and effectiveness in the result.

Why X-rays?

There have been promising efforts to apply machine learning to aid in the diagnosis of COVID-19 based on CT scans. Despite the success of these methods, the fact remains that COVID-19 is an infection that is likely to be experienced by communities of all sizes. X-rays are inexpensive and quick to perform; therefore, they are more accessible to healthcare providers working in smaller and/or remote regions.


This work was developed using TensorFlow and Keras, based on the great tutorial published by Dr. Adrian Rosebrock. Also, I would like to thanks Nell Trevor that, also based on Dr. Rosebrock's work, provided an endpoint idea, where the resultant model could be tested: Covid-19 predictor API



Dataset 1: COVID-19 image data collection
Joseph Paul Cohen and Paul Morrison and Lan Dao COVID-19 image data collection, arXiv:2003.11597, 2020

Project Summary: To build a public open dataset of chest X-ray and CT images of patients which are positive or suspected of COVID-19 or other viral and bacterial pneumonias (MERS, SARS, and ARDS.). Data will be collected from public sources as well as through indirect collection from hospitals and physicians. This project is approved by the University of Montreal's Ethics Committee #CERSES-20-058-D

All images and data will be released publicly in this GitHub repo.

Dataset 2: Chest X-Ray Images (Pneumonia)
Kermany, Daniel; Zhang, Kang; Goldbaum, Michael (2018), “Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification”, Mendeley Data, v2

Dataset of validated OCT and Chest X-Ray images described and analyzed in "Deep learning-based classification and referral of treatable human diseases". The Images are split into a training set and a testing set of independent patients. Images are split into 2 directories: PNEUMONIA, and NORMAL.

Data file:


Covid-19 vs Pneumo Xray Detection using TensorFlow



No releases published


No packages published


You can’t perform that action at this time.