diff --git a/docs/source/getting-started/installation_gpu.md b/docs/source/getting-started/installation_gpu.md index 1637f069..eaf1d3d0 100644 --- a/docs/source/getting-started/installation_gpu.md +++ b/docs/source/getting-started/installation_gpu.md @@ -33,6 +33,13 @@ docker run \ ``` Refer to [Set up using docker](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#set-up-using-docker) for more information to run your own vLLM container. +### Install by pip +Install by pip or find the pre-build wheels on [Pypi](https://pypi.org/project/uc-manager/). +``` +pip install uc-manager +``` + + ### Build from source code Follow commands below to install unified-cache-management: @@ -46,7 +53,10 @@ pip install -v -e . --no-build-isolation **Note:** Patches are now applied automatically via dynamic patching when you import the unified-cache-management package. You no longer need to manually apply patches using `git apply`. The patches are automatically applied when you use the `UnifiedCacheConnectorV1` connector. + ## Setup from docker + +### Build image from source Download the pre-built `vllm/vllm-openai:v0.9.2` docker image and build unified-cache-management docker image by commands below: ```bash # Build docker image using source code, replace with the branch or tag name needed @@ -54,6 +64,14 @@ Download the pre-built `vllm/vllm-openai:v0.9.2` docker image and build unified- cd unified-cache-management docker build -t ucm-vllm:latest -f ./docker/Dockerfile ./ ``` + + +### Pre-built images + +```bash +docker pull unifiedcachemanager/ucm:latest +``` + Then run your container using following command. You can add or remove Docker parameters as needed. ```bash # Use `--ipc=host` to make sure the shared memory is large enough.