
Qualification of a Model Checker for Avionics
Software Verification

Lucas Wagner1, Alain Mebsout2, Cesare Tinelli2, Darren Cofer1, and Konrad
Slind1

1 Advanced Technology Center, Rockwell Collins
{lucas.wagner, darren.cofer, konrad.slind}@rockwellcollins.com

2 The University of Iowa
{alain-mebsout, cesare-tinelli}@uiowa.edu

Abstract. Formal methods tools have been shown to be effective at
finding defects in safety-critical systems, including avionics systems in
commercial aircraft. The publication of DO-178C and the accompanying
formal methods supplement DO-333 provide guidance for aircraft manu-
facturers and equipment suppliers who wish to obtain certification credit
for the use of formal methods for software development and verification.
However, there are still a number of issues that must be addressed before
formal methods tools can be injected into the design process for avionics
systems. DO-178C requires that a tool used to meet certification objec-
tives be qualified to demonstrate that its output can be trusted. The
qualification of formal methods tools is a relatively new concept present-
ing unique challenges for both formal methods researchers and software
developers in the aerospace industry.
This paper presents the results of a recent project studying the quali-
fication of formal methods tools. We have identified potential obstacles
to their qualification and proposed mitigation strategies. We have con-
ducted two case studies based on different qualification approaches for
an open source formal verification tool, the Kind 2 model checker. The
first case study produced a qualification package for Kind 2. The sec-
ond demonstrates the feasibility of independently verifying the output of
Kind 2 through the generation of proof certificates and verifying these
certificates with a qualified proof checker, in lieu of qualifying the model
checker itself.

Keywords: qualification, certification, model checking, software verifi-
cation

1 Introduction

Civilian aircraft must undergo a rigorous certification process to establish their
airworthiness. Certification encompasses the entire aircraft and all of its compo-
nents, including the airframe, engines, and on-board computing systems. Many
of these systems utilize software. Guidance for the certification of airborne soft-
ware is provided in DO-178C: Software Considerations in Airborne Systems and
Equipment Certification [1].



Formal methods tools have been shown to be effective at finding and eliminat-
ing defects in safety-critical software [2]. In recognition of this, when DO-178C
was published it was accompanied by DO-333: Formal Methods Supplement to
DO-178C and DO-278A [3]. This document provides guidance on how to accept-
ably use formal methods to satisfy DO-178C certification objectives. However,
there are a number of issues that must be addressed before formal methods tools
can be fully integrated into the development process for aircraft software. For
example, most developers of aerospace systems are unfamiliar with which for-
mal methods tools are most appropriate for different problem domains. Different
levels of expertise are necessary to use these tools effectively and correctly. Fur-
ther, evidence must be provided of a formal method’s soundness, a concept that
is not well understood by most practicing engineers. Similarly, most develop-
ers of formal methods tools are unfamiliar with certification requirements and
processes.

DO-178C requires that a tool used to meet its objectives must be qualified in
accordance with the tool qualification document DO-330: Software Tool Qual-
ification Considerations [4]. The purpose of the tool qualification process is to
obtain confidence in the tool functionality. The effort required varies based on
the potential impact a tool error could have on system safety. The qualification
of formal verification tools poses unique challenges for both tool developers and
aerospace software engineers.

Previous NASA-sponsored work has described in detail how one might use
various formal methods tools to satisfy DO-178C certification objectives [5].
This paper presents the results of a subsequent study designed to address the
qualification of formal methods tools. The goal of the effort was to interpret the
guidance of DO-330 and DO-333 and provide critical feedback to the aerospace
and formal methods research communities on potential pitfalls and best practices
to ensure formal methods tool users and developers alike can successfully qualify
their tools.

We are aware of several commercial tool vendors who have successfully qual-
ified formal methods tools. For example, Polyspace by MathWorks and Astreé
by AbsInt both have DO-178C qualification kits available. In the early stages
of this project we helped to organize a Dagstuhl Seminar on Qualification of
Formal Methods Tools [6] to engage both formal methods researchers and cer-
tification experts. The seminar included presentations on qualification work for
the Alt-Ergo theorem prover [7], SPARK verification tools [8], and the Com-
pCert compiler [9], as well as experience reports on qualification guidance and
efforts in other industries. A good summary of tool qualification requirements
in other domains is found in [10].

In this paper we examine the qualification of a model checker for use in
verification of avionics software. The success of model checking is largely due to
the fact that it is a highly automated process, generally requiring less expertise
than an interactive theorem prover [11]. One clear strength of model checkers
is their ability to return precise error traces witnessing the violation of a given
safety property. However, most model checkers are currently unable to return



any form of corroborating evidence when they declare a safety property to be
satisfied. When used to satisfy certification objectives for aircraft software, a
model checking tool would therefore need to qualified.

An alternative is to instrument the model checker so that in addition to its
safety claims, it generates a proof certificate, which is an artifact embodying
a proof of the claims. Such a certificate can then be validated by a qualified
certificate checker. By reducing the trusted core to the certificate checker, this
approach facilitates the integration of formal method tools into the development
processes for aircraft software. It redirects tool qualification requirements from a
complex tool, the model checker, to a much simpler one, the certificate checker.

The main contribution of this paper is presentation of these two approaches
to qualification as applied to the Kind 2 model checker [12]. Section 2 provides
a brief overview of the certification guidance for software in commercial aircraft.
Section 3 describes the tool qualification process that is used to establish trust
in the tools that are used in avionics software development. Sections 4 and 5
describe two case studies that illustrate different approaches to qualification:
direct qualification of the Kind 2 model checker and qualification of the certifi-
cate checker for a proof-generating enhancement of the model checker. Section 6
provides conclusions and lessons learned from the project. The complete NASA
technical report and qualification artifacts are available at [13].

2 Aircraft Software and Certification

Certification is defined in DO-178C as legal recognition by the relevant certifi-
cation authority that a product, service, organization, or person complies with
its requirements. In the context of commercial aircraft, the relevant certification
authority is the FAA in the U.S. or EASA in Europe. The requirements referred
to are the government regulations regarding the airworthiness of aircraft oper-
ating in the National Airspace System (NAS). In practice, certification consists
primarily of convincing representatives of a government agency that all required
steps have been taken to ensure the safety, reliability, and integrity of the aircraft.
Certification differs from verification in that it focuses on evidence provided to
a third party to demonstrate that the required activities were performed com-
pletely and correctly, rather on performance of the activities themselves.

The stakeholders in the civil aviation domain (regulators, airframers, equip-
ment manufacturers) have developed a collection of guidance documents defining
a certification process which has been accepted as the standard means to comply
with regulations. The process includes system development, safety assessment,
and design assurance. DO-178C focuses on design assurance for software, and
is intended to make sure that software components are developed to meet their
requirements without any unintended functionality.

DO-178C does not prescribe a specific development process, but instead iden-
tifies important activities and design considerations throughout a development
process and defines objectives for each of these activities. It identifies five soft-
ware levels, with each level based on the impact of a software failure on the



Fig. 1. DO-178C certification activities required for Level A software.

overall aircraft function. As the software criticality level increases, so does the
number of objectives that must be satisfied. Depending on the associated soft-
ware level, the process can be very rigorous (Level A) or non-existent (Level E).
Objectives are summarized in a collection of tables covering each phase of the
development process. Figure 1 shows the objectives required for the most critical
avionics software, Level A.

One of the foundational principles of DO-178C is requirements-based testing.
This means that the verification activities are centered around explicit demon-
stration that each requirement has been met. A second principle is complete
coverage, both of the requirements and of the code that implements them. This
means that every requirement and every line of code must be examined in the
verification process. Furthermore, several metrics are defined which specify the
degree of structural coverage that must be obtained in the verification process,
depending on the criticality of the software being verified. A third principle
is traceability among all of the artifacts produced in the development process.



Together, these objectives provide evidence that all requirements are correctly
implemented and that no unintended function has been introduced.

When DO-178C was developed, guidance specific to new software technolo-
gies was provided in associated documents called supplements which could add,
modify, or replace objectives in the core document. New supplements were de-
veloped in the areas of model-based development, object-oriented design, and
formal methods, as well as an additional document containing expanded guid-
ance on tool qualification. DO-178C and its associated documents were published
in 2011 and accepted by the FAA as a means of compliance with airworthiness
regulations in 2013.

3 Qualification

Guidance governing tool qualification is provided in Section 12.2 of DO-178C.
A tool must be qualified if the following two conditions are met:

1. Any of the processes of DO-178C are eliminated, reduced, or automated by
the use of a software tool, and

2. The output of the tool is used without being verified.

This means that if a tool is used to identify software defects rather than,
for example, demonstrating that source code satisfies its low-level requirements
(a DO-178C objective), then qualification is not required. Similarly, if a tool is
used to generate test cases, but those test cases will be manually reviewed for
correctness, then qualification is not required.

When it is determined that tool qualification is required, the purpose of
the qualification process is to ensure that the tool provides confidence at least
equivalent to the processes that were eliminated, reduced, or automated by the
tool.

Tool qualification is context-dependent. If a tool previously qualified for use
on one system is proposed for use on another system, it must be re-qualified in
the context of the new system.

DO-330 outlines a process for demonstrating a tool’s suitability for satisfying
DO-178C objectives that it is being used to eliminate, reduce, or automate.
The qualification process is similar to the software verification process defined
in DO-178C. Qualification amounts to accomplishing a set of activities with
corresponding objectives to:

– Identify the DO-178C objectives that the tool is eliminating, reducing, or
automating

– Specify which functions of the tool are being relied upon

– Create a set of requirements that precisely identify those functions

– Develop a set of test cases showing that the tool meets those requirements.



3.1 Tool Qualification Level

As in the certification process itself, there are varying levels of rigor associated
with tool qualification. The Tool Qualification Level (TQL) is similar to the soft-
ware level in DO-178C and defines the level of rigor required by the qualification
process. TQL-1 is the most rigorous, while TQL-5 is the least rigorous.

The required TQL is determined by identifying the tool’s impact on the
software development process. The impact is characterized by determining the
impact of a error in the tool. DO-178C provides three criteria to characterize
the impact of an error in the tool:

Criterion 1. A tool whose output is part of the airborne software and thus
could insert an error.

Criterion 2. A tool that automates verification processes and thus could
fail to detect an error, and whose output is used to justify the elimination or
reduction of:

– Verification processes other than those automated by the tool, or
– Development processes that could have an impact on the airborne software.

Criterion 3. A tool that, within the scope of its intended use, could fail to
detect an error.

A code generator in a model-based development process is an example of a
Criterion 1 tool. We expect that most formal methods tools will be used as part
of the software verification process and will, therefore, fall into Criteria 2 or 3.
That is, they will not be used to generate airborne software, but will be used to
verify that the airborne software is correct.

The distinction between Criteria 2 and 3 depends on exactly which processes
the tool is eliminating, reducing, or automating. For example, if an abstract inter-
pretation tool determines that division-by-zero cannot occur and this is used to
satisfy DO-178C objectives related to the accuracy and consistency of the source
code (Objective A-5.6), then the tool is Criterion 3. However, if those results are
also used to justify elimination of robustness testing related to division-by-zero in
the object code (Objectives A-6.2 and A-6.4), then the tool becomes a Criterion
2 tool. An unofficial rule of thumb is that when a tool addresses objectives from
multiple tables of DO-178C (corresponding to different development phases), it
is likely a Criterion 2 tool.

The required TQL is determined by the combination of its impact and the
DO-178C software level to which the tool is being applied, as shown in Table 1.

In summary, formal methods tools used to satisfy verification process objec-
tives of DO-178C will usually need to be qualified at TQL-5. TQL-4 qualification
would only be required if the tool is determined to fall into Criterion 2 and it is
being used in the verification of Level A or B software.

3.2 DO-330 and Tool Qualification Objectives

Once the TQL is determined, the required tool qualification objectives are de-
fined by DO-330. Like DO-178C, these objectives are summarized in a collection



Table 1. Determination of Tool Qualification Level.

Software Level
Criterion

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

of tables. Table 2 shows the number of objectives to be satisfied in each area for
TQL-4 and TQL-5. Note that objectives for a particular TQL are cumulative,
so that the TQL-5 objectives are a subset of the TQL-4 objectives.

Table 2. DO-330 tool qualification objectives.

DO-330 Qualification Objectives TQL-4 TQL-5

T-0: Tool Operational Processes 7 6
T-1: Tool Planning Processes 2
T-2: Tool Development Processes 5
T-3: Verification of Outputs of Tool Requirements Process 8
T-4: Verification of Outputs of Tool Design Process 1
T-5: Verification of Outputs of Tool Coding & Integ. Process
T-6: Testing of Output of Integration Process 2
T-7: Verification of Outputs of Tool Testing 2
T-8: Tool Configuration Management 5 2
T-9: Tool Quality Assurance Process 2 2
T-10: Tool Qualification Liaison Process 4 4

Total number of objectives 38 14

Table 2 highlights an important distinction between the qualification objec-
tives. The gray rows (qualification objective tables T-1 through T-7) are objec-
tives related to the development processes of the tool itself. The other rows (T-0
and T-8 through T-10) are objectives related only to the use of the tool. Thus
there is a clear distinction between the tool developer context and the tool user
context. Furthermore, TQL-5 qualification only requires objectives from the tool
user context. This means that TQL-5 qualification is significantly simpler than
TQL-4 because it does not require information about how the tool was devel-
oped. If a tool was built by a third party, TQL-4 qualification may be difficult
to achieve. In particular, since many formal methods tools arise from academic
research activities, the artifacts required for TQL-4 qualification may not be
available.

Another interesting point is that tool qualification is always performed in
the context of a particular aircraft development effort. This means that certain
tool functions may not be utilized or addressed in a qualification. For example,
qualification of a model checker may only need to cover variables of primitive



data types while ignoring composite types such as arrays, records, and tuple
types, if those are not relevant for the given application.

Once the proper TQL is determined and the objectives have been identified,
qualification is simply a matter of demonstrating that each objective is satisfied.
For a TQL-5 qualification, the bulk of this effort is associated with DO-330
Table T-0, Tool Operational Processes, and involves defining and verifying Tool
Operational Requirements which describe tool capabilities necessary to satisfy
the claimed certification objectives.

4 Case Study: Kind 2 Model Checker

The first case study describes the activities and artifacts necessary to complete
a TQL-5 qualification of the Kind 2 model checker based on the guidance in
DO-330. Our goal is to provide a concrete example that illustrates the qualifica-
tion process for a typical formal methods tool and could be used as a pattern by
others. We also identify challenges or lessons learned in the process. The quali-
fication package is available as part of the NASA final report for the project.

Kind 2 [14] is an open-source, multi-engine, SMT-based automatic model
checker for safety properties of programs written in the synchronous dataflow
language Lustre [15]. It takes as input a Lustre file annotated with properties to
be proved, and outputs for each property either a confirmation or a counterex-
ample, a sequence of inputs that falsifies the property.

This case study is based on earlier work [5] in which various formal methods
were used to satisfy DO-178C and DO-333 objectives for verification of a rep-
resentative Flight Guidance System (FGS). In one of the examples, the Kind 2
model checker was used to verify that a model of the FGS mode logic satisfies
its high-level requirements. This qualification case study extends that work by
performing the activities needed to qualify Kind 2 for accomplishing the certifi-
cation objectives described in the earlier work.

Fig. 2. Verification using qualified Kind 2 model checker.



In this example, the mode logic was expressed as a state machine model
in Simulink Stateflow, and serves as low-level requirements for the source code
that will be generated from it. A Rockwell Collins tool was used to translate this
model into Lustre for analysis by the Kind 2 model checker. Textual high-level
requirements for the model logic were manually translated to Lustre and merged
with the mode logic Lustre model. The overall tool chain is shown in Figure 2.
This case study is limited to qualification of the model checker and ignores (for
now) the model translation tools.

4.1 Need for Tool Qualification

In this case study Kind 2 is being used to automate processes that satisfy the
objectives of Verification of Outputs of Software Design Process (DO-178C Table
A-4). This includes, for example:

– A-4.1 Low-level requirements comply with high-level requirements.
– A-4.2 Low-level requirements are accurate and consistent.
– A-4.7 Algorithms are accurate.

Furthermore, the outputs of Kind 2 will not be independently verified. This
establishes the need for qualification.

The required TQL is established by determining the impact of Kind 2 on the
software development process. In this context the tool:

– Cannot insert an error into the airborne software.
– Could fail to detect an error in the airborne software.
– Is not used to justify the elimination or reduction of other verification pro-

cesses or development processes that could have an impact on the airborne
software.

Therefore, Criterion 3 applies so Kind 2 should be qualified to TQL-5.

4.2 Tool Qualification Objectives

The work performed to satisfy TQL-5 qualification objectives is summarized
below:

T-0.1 Tool qualification need is established. (Rationale for tool qualification
and determination of the required TQL is described in Section 4.1.)

T-0.2 Tool Operational Requirements are defined. Definition of the Tool
Operational Requirements (TOR) and their verification in objective T-0.5 are
the key qualification activities. The Tool Operational Requirements identify how
the tool is to be used within the software life cycle process. This objective requires
the identification of the tool usage context, tool interfaces, the tool operational
environment, tool inputs and outputs, tool operational requirements, and the
operational use of the tool. The focus here is on the tool performance from
the perspective of the tool user and what capabilities the tool provides in the
software development process.

We have specified 111 TORs that must be verified for Kind 2. These require-
ments cover:



– The features of the Lustre language used by Kind 2 in this context

– Input validation features

– Properties that must be correctly analyzed as true or false.

Since the requirements will be verified by testing performed on Kind 2, they
cover a finite subset of the Lustre grammar. Conservative bounds on the length
of inputs are established and validated.

T-0.3 Tool Executable Object Code is installed in the tool operational envi-
ronment. Identification of the specific versions of the tool and its dependencies,
instructions of how to install the tool, and a record of actually installing the tool
are required to meet this objective. Qualification was based on Kind 2 version
1.0.1 and the Z3 SMT solver [16] (version 4.4.2).

T-0.5 Tool operation complies with the Tool Operational Requirements. This
objective demonstrates that the tool complies with its TORs. This objective is
covered in three parts. First, the review and analysis procedures used to verify
the TORs are defined. Secondly, we identify a set of tests, referred to as the
Tool Operational Test Cases and Procedures, that when executed, demonstrate
that Kind 2 meets its TORs. Finally, the results of actually executing the test
procedures within the Tool Operational Environment must be collected.

T-0.6 Tool Operational Requirements are sufficient and correct. This objec-
tive is satisfied by ensuring that the TORs adequately address the tool usage
context, the tool operational environment, the input accepted by the tool, the
output produced by the tool, required tool functions, applicable tool user infor-
mation, and the performance requirements for the tool.

T-0.7 Software life cycle process needs are met by the tool. This objective is
satisfied by the review, analysis, and testing results used to satisfy the TORs.

Other objectives (T-8, T-9, T-10). Tool configuration management,
quality assurance, and qualification liaison process. Most of the data required
by these objectives are highly dependent on the context and the processes of
the applicant organization and can only be meaningfully defined for an actual
software development and tool qualification effort.

4.3 Results

The purpose of this qualification package was to provide a complete case study
containing a detailed set of tool operational requirements and test procedures.
It is anticipated that this qualification package contains all of the necessary
information such that it could be used within an avionics certification effort. No
barriers were found that would prevent qualification of Kind 2.

One interesting result from the Tool Qualification Liason process is T-10.4
Impact of Known Problems on TORs. During verification of the TORs, some
errors were identified.These have either been corrected or will be corrected in
the near future. However, such errors do not preclude use of the tool in certi-
fication activities, as long as the impact and functional limitations on tool use
are identified.



The qualification package and results were reviewed by certification experts
at Rockwell Collins and determined to meet the requirements of DO-330. Suc-
cessfully using it would require an applicant to provide detailed information to
support the tool qualification objectives from Table T-8, T-9, and T-10, which
are specific to an organization’s configuration management, quality assurance,
and certification practices respectively. We expect that it could be used as the
starting point for tool qualification in an actual avionics software development
effort or as a pattern for qualification of another tool.

5 Case Study: Proof-Generating Model Checker

The second qualification case study is based on a proof-generating version of
the Kind 2 model checker that is supported by a separate proof checker [14]. In
this approach, the proof checker verifies the output of the model checker. This
removes the need to qualify a complex tool (the model checker) and instead
requires qualification of a much simpler one (the proof checker). By reducing
the trusted core to the proof checker, we may be able to reduce the qualification
effort required and enhance the overall assurance.

This case study is based on the same software development context as the
first, and involves using the model checker to satisfy the same certification ob-
jectives for verifying the FGS mode logic. The qualification package developed
for the proof checker tool is available as part of the project final report.

5.1 Development of a Proof-Generating Version of Kind 2

For this effort we have used the SMT solver CVC4 [17] with Kind 2. CVC4 is
a solver for first-order propositional logic modulo a set of background theories
such as integer or real linear arithmetic. Our work relies heavily on the proof
production capabilities of CVC4. A unique aspect of CVC4 proofs is that they
are fine grained. This means they are very detailed and checking them is only
a matter of carefully following and replaying the steps in the proof certificate.
In contrast, proofs produced by other solvers require the final proof checker to
perform substantial reasoning to reconstruct missing steps.

The proof checker which was qualified in this case study, named Check-It, is
an instantiation of the Logical Framework with Side Conditions (LFSC) proof
checker [18]. The resulting tool architecture is shown in Figure 3, which includes
both the unqualified Kind 2 model checker and the qualified Check-it proof
checker.

Kind 2 is used to generate two separate proof certificates:

– A proof certificate (PC) for safety properties of the transition system corre-
sponding to Lustre model being verified.

– A front-end certificate (FEC) that provides evidence that two independent
tools have accepted the same Lustre input model and produced the same
first order logic (FOL) internal representation.



Fig. 3. Verification using Kind 2 and a qualified proof checker.

The PC summarizes the work of the different analysis engines used in Kind
2. This includes bounded model checking (BMC), k-induction, IC3, as well as
additional invariant generation strategies. In practice it takes the form of a k-
inductive strengthening of the properties.

This intermediate certificate is checked by CVC4, from which we extract
proofs to reconstruct safety arguments using the rules of k-induction. Proofs are
produced in the language of LFSC.

To make the whole process efficient and scalable, certificates are first min-
imized before being checked. An iterative process takes care of this phase by
efficiently lowering the bound k and removing any superfluous information con-
tained within the certificate.

The FEC is necessary to ensure that the proof in the PC is actually about
the input model provided. Without this step, it is possible that the (unqual-
ified) model checker could produce a valid PC that is unrelated to the input
model. The FEC is generated in the form of observational equivalence between
two internal representations generated by independently developed front ends.
In our case, the two front ends are Kind 2 itself and JKind, a Lustre model
checker inspired by Kind but independently developed by Rockwell Collins [19].
Observational equivalence between the two FOL representations is recast as an
invariant property. Checking that property yields a second proof certificate from
which a global notion of safety can be derived and incorporated in the LFSC
proof.

The trusted core of this approach consists of:

– The LFSC checker (5300 lines of C++ code).

– The LFSC signatures comprising the overall proof system in LFSC, for a
total of 444 lines of LFSC code.

– The assumption that Kind 2 and JKind do not have identical defects that
could escape the observational equivalence check. We consider this reasonable
since the tools were produced by different development teams using different
programming languages.



5.2 Qualification of Check-It

The approach of using a qualified tool to check the results of an unqualified
tool is not unprecedented. FAQ D.7 of DO-330 provides guidance for exactly
this “two tool” approach. Recall that qualification of a tool is necessary when
it is used to eliminate, reduce, or automate DO-178C processes and when the
outputs of the tool are not verified. Kind 2 and Check-It are used to satisfy the
same objectives for the FGS mode logic as described in Section 4. The outputs
of the Kind 2 analysis, a set of proof certificates, are verified using the Check-It
proof checking tool. According to the guidance in DO-330 FAQ D.7, this process
is acceptable if the Check-It tool is qualified.

Determination of required TQL is the same as in Section 4. Check-it is used
only to verify proof certificates produced by Kind 2 and so it is a Criterion 3
tool. Therefore, Check-It must be qualified at TQL-5.

The qualification objectives for Check-It were the same as for Kind 2, so
we only address the differences here. Since Check-It is simpler than Kind 2,
defining its TORs was comparatively straightforward. Inputs to the tool are
proof certificates (PC and FEC) that are composed of proof rules defined in six
signature files. We have specified 82 TORs that must be verified for Check-It.

Objectives for verification of tool operation were accomplished by a com-
bination of peer review and testing. Test cases cover presence and validity of
certificates, compatibility with certificates produced by Kind 2, performance re-
quirements, and proof rule acceptance. Peer review of the proof rules in the
signatures files used by Check-It was conducted to identify any potential trust
issues. Results from this review were used to identify additional test cases (for
example, to preclude the acceptance of unsound rules).

DO-330, FAQ D.7 provides additional information on the use of a qualified
tool (Check-It) to check the results of an unqualified tool (Kind 2). This FAQ
identifies factors that should be considered to prevent the possibility of errors
in both the unqualified tool and the qualified tool. The primary concern is to
identify the interaction between tools in the case of various failures in the un-
qualified tool (for example, if Kind 2 fails to produce a PC or a FEC, or if either
is found to be incorrect by Check-It).

The FAQ also identifies four additional concerns that apply in this situation,
and which have been addressed in the qualficiation package:

– Coverage of verification objectives for the unqualified tool’s output
– Operating conditions of the qualified tool
– Common cause avoidance
– Protection between tools

5.3 Results

To summarize, we found nothing about the “two tool” proof-checking approach
that would prevent successful tool qualification. Checking the PC validates the
Kind 2 analysis and checking the FEC provides an argument that the emit-
ted PC corresponds to the original Lustre file. If Kind 2 produces incorrect,



malformed, or missing certificates Check-It highlights the error. The tools use
dissimilar technical approaches, one performing model checking and the other
proof checking, minimizing the chance for any common cause failure. The TORs
for Check-It were much simpler to define and verify than for Kind 2. However,
the proof checking approach was more challenging to explain to certification
experts and, consequently, would be inherently riskier to implement. We esti-
mate the overall effort of this approach to be about 75% of the effort required
to qualify Kind 2 itself. An added benefit, however, is that the qualified proof
checker could be reused with future improved versions of Kind 2 (provided the
proof format remains the same), or even with other model checkers which would
produce certificates in the same format.

6 Conclusions

In this paper we have explored the qualification of formal methods tools within
the context of avionics certification. This effort produced useful examples and
artifacts for two qualification case studies, and also provided insight into the
qualification process for formal methods tools that should be useful to software
developers, tool developers, tool users, and certification experts. Combined with
the prior work on Formal Methods Case Studies for DO-333, it provides a com-
prehensive set of case studies for using and qualifying formal method tools for
avionics software development.

The work reveals that qualification at TQL-5 can be a straightforward task.
The guidance of DO-330 does not require any activities that are especially dif-
ficult or costly for qualification of a model checker. However, the guidance does
suggest that tools from the research community may be difficult to qualify at
TQL-4 due to the requirements for tool development artifacts including tool re-
quirements, test cases, tool design, and architectural descriptions. Formal meth-
ods tool developers who desire to have their tools used in the avionics industry
should keep this in mind.

In addition, this work highlights the need for good software engineering prac-
tices for formal methods tools used in certification. The relatively high complex-
ity of internal translations, optimizations, and analysis algorithms increases the
likelihood that defects will be identified. Bug tracking facilities are absolutely
essential for users to understand a tool’s limitations.

Lastly, we developed a proof-generating enhancement of the Kind 2 model
checker, and explored the impact of this capability on tool qualification. We pro-
duced qualification packages for both Kind 2 and for the proof checker for cer-
tificates generated by Kind 2. We determined that the “two tool” proof checker
approach was viable from a qualification standpoint and provides increased as-
surance. However, it was not dramatically easier or less costly to qualify and was
definitely more difficult to explain and justify to certification experts.

Based purely on cost and perceived risk, we expect that TQL-5 qualfication
of a model checker would be the approach preferred by most avionics software
developers. The qualified proof checker approach provides significant advantages



in terms of greater assurance and modularity, which may be attractive for devel-
opers interested in “future-proofing” their verification process. By keeping the
model checker separate and free from the need for qualification, improved fea-
tures and functionality can be more easily incorporated without impacting the
qualified (and therefore less flexible) proof checker.

Acknowledgments. This work was funded by NASA contract NNL14AA06C.

References

1. RTCA DO-178C: Software Considerations in Airborne Systems and Equipment
Certification, Washington, DC. (2011)

2. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-
tice and experience. ACM Comput. Surv. 41 (2009)

3. RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A, Wash-
ington, DC. (2011)

4. RTCA DO-330: Software Tool Qualification Considerations, Wash., DC. (2011)
5. Cofer, D., Miller, S. In: DO-333 Certification Case Studies. Springer International

Publishing, Cham (2014) 1–15
6. Cofer, D., Klein, G., Slind, K., Wiels, V.: Qualification of Formal Methods Tools

(Dagstuhl Seminar 15182). Dagstuhl Reports 5 (2015) 142–159
7. OCamlPro: Alt-ergo (2013) https://alt-ergo.ocamlpro.com/.
8. AdaCore: SPARK Pro (2014) http://www.adacore.com/sparkpro/.
9. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning

43 (2009) 363–446
10. Camus, J.L., DeWalt, M.P., Pothon, F., Ladier, G., Boulanger, J.L., Blanquart,

J.P., Quere, P., Ricque, B., Gassino, J.: Tool qualification in multiple domains:
Status and perspectives. In: Embedded Real Time software and Systems, Springer
(2014)

11. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53 (2010) 58–64

12. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In:
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II. (2016) 510–517

13. NASA: Qualification of Formal Methods Tools Under DO-330 (2017) https://

shemesh.larc.nasa.gov/fm/FMinCert/DO-330-case-studies-RC.html.
14. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for

infinite-state systems. In: Proceedings of 16th Conference on Formal Methods in
Computer-Aided Design (FMCAD), Springer (2016)

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proceedings of the IEEE. (1991) 1305–1320

16. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, 14th Int’l Conference, TACAS 2008.
Volume 4963 of LNCS., Springer (2008) 337–340

17. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV, Springer (2011) 171–177

18. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods in System Design 41 (2013) 91–118

19. Gacek, A.: JKind - a Java implementation of the KIND model checker (2014)
https://github.com/agacek/jkind.


