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In medical and public health research, hidden Markov models (HMM) are applied
in longitudinal studies to model the progression of disease based on clinical
classifications that may not be accurate. While missing data are common in
longitudinal studies, their impact on HMM has not been well studied. We conduct
a simulation study to evaluate effects on the parameter estimates of HMM by
simulating complete data, along with incomplete data with intermittent missing
values generated by ignorable and non ignorable missing mechanisms. Three
scenarios with different sets of parameters were simulated. For incomplete data due
to an ignorable mechanism, the accuracy and precision of parameter estimates are
generally similar to those obtained from complete data in all examined parameter
sets. Under the non ignorable mechanism, the estimation bias is substantial for most
parameters when the latent outcome is equally likely to stay at the current state or to
move to other states. The bias is dramatically smaller when subjects are more likely
to stay at the current state than moving to other states. An example from the mental
health arena is used to illustrate the application of intermittent missing observations
using HMM. Some computational issues are also discussed.

Keywords Hidden Markov models; Imperfect indicator; Latent variable;
Longitudinal multinomial data.

Mathematics Subject Classification 62M05.

1. Introduction

In medical and public health research, patients’ health status or responses to
treatment are often categorized into several states and recorded repeatedly through
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168 Yeh et al.

time, and the progression of disease or treatment effects can be studied by Markov
chain models (e.g., see Salazar, 2007). However, considering the errors that occur
in evaluating patient health status, researchers have taken into account imperfect
diagnosis (i.e., misclassification of an outcome) using hidden Markov models
(HMM) (Scott et al., 2005). In HMM, the true disease status is regarded as
latent and not observable, and the observed diagnosis is treated as an imperfect
indicator of true disease status. It is the latent disease status whose transition
is assumed to follow Markov chains. The observed classification or diagnosis is
assumed to depend only on the true disease state at the same time point (and not
on the history of previously observed states). With longitudinal observations of the
imperfect indicators of disease status, HMM simultaneously estimates (1) the initial
distribution of disease status at baseline, (2) the transition probabilities of the latent
disease status, and (3) the probabilities of misclassification (Rabiner, 1989). Because
of the flexibility that allows for modeling various types of unobservable data and
the ability to incorporate additional information about outcome misclassification,
HMM has been adopted rapidly in health-effects research (Le Strat and Carrar,
1999; Bureau et al., 2003; Jackson et al., 2003; Altman and Petkau, 2005; Scott et al.,
2005; Mass et al., 2006).

Missing values are commonly inevitable in longitudinal studies and should be
handled properly to alleviate bias. For the traditional or observed Markov models
(OMM) in which the observed disease status is regarded as the true status, the
impact of missing observations has been well studied and corresponding methods to
deal with effects due to missing data have been proposed (for example, see Albert,
2000; Bee, 2005; Deltour et al., 1999; Yeh et al., 2010). Yet, to our knowledge, there
is a paucity of research that has investigated the accuracy and precision of HMM
estimates when the imperfect indicator variable is completely observed at each
scheduled time point. Not to mention the incomplete data where the observations
on the imperfect indicator variable are intermittently missing. Therefore, we conduct
a simulation study to examine the impact of intermittent missing observations in
HMM. A discrete-time HMM and some computational issues are described in
Sec. 2. In Sec. 3, we simulate ignorable and nonignorable intermittent missing
values on the imperfect indicator and model the incomplete data as ignorable. A
Schizophrenia study is used as an example in Sec. 4. Discussion is given in Sec. 5.
Simulation and analysis of the Schizophrenia data are performed in SAS® version
9.2 using author-developed codes based on the Baum-Welch algorithm (Baum et al.,
1970; Welch, 2003), tantamount to the well-known Expectation-Maximization (EM)
algorithm (Dempster et al., 1977).

2. Methods

2.1. The Model

In this study, we consider a discrete-time HMM with a categorical imperfect
indicator variable. Let Y = �Y1� Y2� � � � � YT � denote the longitudinal outcomes
observed at T time points and serving as the imperfect indicator for the latent
variables S = �S1� S2� � � � � ST � where both Yt and St�t = 1� 2� � � � � T� can take any
one of c possible states. Suppose the latent outcomes follow a discrete-time
Markov chain with a c × c transition probability matrix A = �aij � aij = Pr�St+1 =
j � St = i�� t = 1� 2� � � � � T − 1� i� j = 1� 2� � � � � c�. Assume that the distribution of
Yt depends on St� t = 1� 2� � � � � T , and let B = �bij � bij = Pr�Yt = j � St = i�� t =
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Intermittent Missing Data in Hidden Markov Models 169

1� 2� � � � � T� i� j = 1� 2� � � � � c� represent the misclassification probability matrix.
Also, let � = �	1� 	2� � � � � 	c� denote the vector that contains the initial probabilities
in true states 1� 2� � � � � c, i.e., 	i = Pr�S1 = i�. Clearly,

∑c
i=1 	i = 1. Similarly, by

the property of the transition probability matrix
∑c

j=1 aij = 1, we can also have∑c
j=1 bij = 1 because a given hidden state i can be classified into one and only one of

the c states. It is not the observation Y but the latent variable S that is assumed to
follow a Markov chain. In HMM, we often assume observations are conditionally
independent given the hidden states (e.g., Eqs. (13a) and (13b) in Rabiner, 1989), so
the likelihood of observing the imperfect indicator outcomes Y = y conditioned on
the parameters � = ���A�B� is

Pr�Y = y � �� = ∑
S

Pr�Y = y�S � �� = ∑
S

Pr�Y = y �S��Pr�S � ���

where Pr�Y = y �S� �� = bS1y1bS2y2 · · · bST yT and

Pr�S � �� = 	S1
aS1S2

aS2S3
· · · aST−1ST

�

Thus,

Pr�Y = y � �� = ∑
S1�S2�··· �ST

	S1
�aS1S2

aS2S3
· · · aST−1ST

��bS1y1bS2y2 · · · bST yT �� (1)

2.2. The EM Algorithm

We use the likelihood approach to analyze the HMM as suggested by Rabiner
(1989). Due to the latent nature of the observations, the EM algorithm (Dempster
et al., 1977) is applied. In this section, we first construct the complete-data log-
likelihood, followed by the E- and the M-steps. We also discuss how the missing
imperfect indicator observations are handled and how the initial values for the
parameters are selected.

2.2.1. The E- and the M-steps. Consider a general case of multiple subjects (N ) who
may have different numbers of observations on the imperfect indicator variable and
assume that these observations are independent between any two subjects. Under
the HMM, the complete-data log-likelihood can be written as

l��� y� s� =
N∑
k=1

[
ln�	Sk�1

�+
Tk−1∑
t=1

ln�aSk�tSk�t+1
�+

Tk∑
t=1

ln�bSk�tyk�t �
]
� (2)

where y and s, respectively, denote the imperfect indicator observations and the
hidden states of the N subjects, � = ���A�B� denote the vector of the parameters
of interest, and Tk denotes the duration or the time of the last observation for
the kth subject. In the E-step, the expectation of the complete-data log-likelihood
conditioned on the observed outcomes and the vth iteration of the parameter
estimates can be expressed as

Q��� ����� = ES 
lnPr�y�S � �� � y� �����
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170 Yeh et al.

=
N∑
k=1

c∑
i=1


ln�	i�× �
��
k�1�i��+

N∑
k=1

Tk−1∑
t=1

c∑
i=1

c∑
j=1


ln�aij�× �
��
k�t�i� j��

+
N∑
k=1

Tk∑
t=1

c∑
i=1

c∑
j=1


ln�bij�× �
��
k�t�i�× ��yk�t = j��� (3)

where �
��
k�t�i� = Pr�Sk�t = i �Yk = yk = yk� �

���� indicates for the kth subject, the
probability of the true outcome in state i at time t given the observed imperfect
indicator outcomes and the vth iteration of the parameters; �

��
k�t�i� j� = Pr�Sk�t =

i� Sk�t+1 = j �Yk = yk� �
���� refers to the probability that the true outcome of the kth

subject is in state i at time t and in state j at time t + 1, respectively, given the
imperfect indicator observations and the vth iteration of the parameters; ��yk�t = j�

is the index function that equals 1 if the kth subject at time t is observed to be in
state j, and zero otherwise.

In the M-step, we maximize the Q function with respect to each parameter.
Because of the constraint

∑c
i=1 	i =

∑c
j=1 aij =

∑c
j=1 bij = 1, one can apply the

Lagrange multiplier with Eq. (3) and set the first derivative with respect to each
parameter to zero and then obtain

	̂
�+1�
i =

∑N
k=1 �

��
k�1�i�∑N

k=1

∑c
i=1 �

��
k�1�i�

� i = 1� 2� � � � � c (4)

â
�+1�
ij =

∑N
k=1

∑Tk−1
t=1 �

��
k�t�i� j�∑N

k=1

∑Tk−1
t=1 �

��
k�t�i�

� i� j = 1� 2� � � � � c (5)

where �
��
k�t�i� =

∑c
j=1 �

��
k�t�i� j�, and

b̂
�+1�
ij =

∑N
k=1

∑Tk
t=1 �

��
k�t�i�× ��yk�t = j�∑N

k=1

∑Tk
t=1 �

��
k�t�i�

� i� j = 1� 2� � � � � c� (6)

Corresponding formulas for a single sequence or subject (i.e., N = 1) with complete
data are given in Eqs. (40a)–(40c) in Rabiner (1989).

Note that the M-step is not in a closed form. In order to calculate �
�v�
k�t �i� and

�
�v�
k�t �i� j�, the Baum-Welch algorithm introduces two additional auxiliary forward
and backward variables (Rabiner, 1989):

�k�t�i� = Pr�Yk�1 = yk�1� � � � � Yk�t = yk�t� Sk�t = i � ��� t = 1� 2� � � � � Tk

�k�t�i� = Pr�Yk�t+1 = yk�t+1� � � � � Yk�T = yk�T � Sk�t = i� ��� t = 1� 2� � � � � Tk − 1�

where the forward variable �k�t�i� is the probability of observing the imperfect
indicator values up to time t�Yk�1� � � � � Yk�t� and the true outcome being in state i

(Sk�t = i) for the kth subject given the parameter values �; the backward variable
�k�t�i� is the probability of observing the imperfect indicator values from time t + 1
to time Tk given the parameter values and that the true outcome is in state i for the
kth subject.
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Intermittent Missing Data in Hidden Markov Models 171

It can be shown that

�k�1�i� = 	ibi�yk�1 and �k�t+1�i� =
[∑

i

�k�t�i�aij

]
bj�yk�t+1

� (7)

Let �k�Tk
�i� = Pr�· � STk = i� �� ≡ 1,

�k�t�i� =
∑
j

aijbj�yk�t+1
�k�t+1�j� (8)

With these auxiliary variables, ��v�k�t �i� and �
�v�
k�t �i� j� can be expressed as

�
�v�
k�t �i� =

�k�t�i��k�t�i�∑
i �k�Tk�i�

(9)

�
�v�
k�t �i� j� =

�k�t�i�aijbj�yk�t+1
�k�t+1�j�∑

i �k�Tk�i�
� (10)

In applying the Baum–Welch algorithm, we begin with a set of initial values
for the parameters � = ���A�B� to calculate the auxiliary variables by Eqs. (7) and
(8). These variables are then used to compute �

�v�
k�t �i� and �

�v�
k�t �i� j� using Eqs. (9)

and (10), which are then substituted into Eqs. (4)–(6) to obtain the parameters �
and to evaluate Q��� ������ These parameter values are then again used to update the
auxiliary variables. The process continues until the Q function converges.

2.2.2. The Missing Imperfect Indicator Observations. In HMM, because the
parameters directly related to the observed indicator outcomes are the bij’s or the
elements of the misclassification matrix B but not any element of 	 or A, we
adopt Liu’s suggestion (Liu, 1997) by defining bStyt = 1 if the imperfect indicator
observation is missing for the kth subject at time t (yk�t = �). In this way, ln�bStyt � =
0 does not change Eq. (1), i.e., the incomplete data are modeled as ignorable.
Correspondingly, Eq. (6) is modified as

b̂
�+1�
ij =

∑N
k=1

∑Tk
t=1 �

��
k�t�i�× ��yk�t = j�∑N

k=1

∑Tk
t=1 �

��
k�t�i�× ��yk�t �= ��

(11)

to satisfy the condition
∑c

j=1 b̂ij = 1 for any i = 1� 2� � � � � c.

2.2.3. Selection of the Initial Values. It is known that the EM algorithm does not
guarantee convergence to global maxima, and that the obtained estimates may
be sensitive to the initial values. Rabiner (1989) proposed selecting initial values
arbitrarily or choosing values that were equally likely for the parameters in 	 and
A. Liu (1997) further suggested avoiding the extreme and the independent patterns
for the parameters in B that can be described as:

(a) the extreme pattern: for a given i, bij = 1 and bij′ = 0 for any j �= j′; and
(b) the independent pattern: bij = Pr�y = j � S = i� = Pr�y = j� = b∗j .

Rabiner’s and Liu’s suggestions are adopted in simulation and analysis (see Secs. 3.1
and 4 below).
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172 Yeh et al.

3. A Simulation Study

In this section, we present a simulation study to investigate how the intermittently
missing imperfect indicator observations affect parameter estimation. Complete
HMM data are generated for three parameter sets and, for each set, missing values
are simulated by two mechanisms. Parameters are then estimated by the procedures
described in Sec. 2 for both the complete and the two incomplete data sets. Hence,
in total, nine scenarios are considered.

3.1. Simulation Procedure

Observations are generated at 10 scheduled time points with equal intervals for each
of 50 subjects by the parameters � = ���A�B� where

� =

0�1
0�3
0�6


 � B =


 0�8 0�15 0�05

0�1 0�7 0�2
0�05 0�05 0�9


 �

We consider three scenarios for the transition matrix A:

ALo =

0�34 0�33 0�33
0�33 0�34 0�33
0�33 0�33 0�34


 � AMo =


0�6 0�2 0�2
0�2 0�6 0�2
0�2 0�2 0�6


 � AHi =


0�8 0�1 0�1
0�1 0�8 0�1
0�1 0�1 0�8


 �

Because the A matrix provides the transition probabilities at each time point, the AHi

parameter matrix specifies a relatively high probability that successive observations
recur. This implies high dependency of a future outcome on the current outcome.
Similarly, the ALo and the AMo matrices specify low and moderate dependency.

In simulating missing values, we consider both the ignorable and the non
ignorable mechanisms. Let Y = �Yobs�Ymis� be a (N × T ) matrix for complete data
of the imperfect indicator variable for N subjects each with T observations, where
Yobs and Ymis denote the observed and the missing values, respectively, and R be a
matrix with elements Rij = 1 if Yij is observed and 0 otherwise. The complete data
are composed of observed values and an indication of missingness and the joint
distribution of Y and R can be factored into Pr�Y �R � ���� = f�Y � ��f�R �Y ���.
Then the observed-data likelihood is proportional to the joint distribution integrated
over the missing values:

����� �Yobs�R� ∝
∫

f�Yobs�Ymis � ��f�R �Yobs�Ymis���dYmis�

Also, the likelihood ignoring the missing mechanism is ��� �Yobs� ∝ f�Yobs � ��.
According to Little and Rubin (2002), the inference for � based on ��� �Yobs� is
the same as that based on ����� �Yobs�R� only when the following two criteria
are satisfied: (a) � and � are separable, i.e., the joint parameter space of ����� is
the product of individual parameter space; and (b) the missing values are missing
at random (MAR), defined as f�R �Yobs�Ymis��� = f�R �Yobs���. When the chance
of observing the outcome does not depend on either the observed or missing
data, i.e., f�R �Yobs�Ymis��� = f�R ���, the mechanism is missing completely at
random (MCAR), a special case of MAR. Violation of either criterion leads to a
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Intermittent Missing Data in Hidden Markov Models 173

non ignorable missing mechanism, including not missing at random (NMAR) if R
depends on Ymis.

Here, we do not consider any covariates and simply regard the observable
transition history as the “observed” values; thus, we consider an ignorable missing
mechanism in which the occurrence of missing observations depends on the
immediately previous “observed” state:

(1) Ignorable: for each subject, we simulate missing values at time t with
60% probability if the observation at time t − 1 is in state 3, i.e., p3 = Pr�rt =
0 � Yt−1 = 3� = 0�6 and pi = Pr�rt = 0 � Yt−1 = i� = 0 for i = 1� 2 and t = 2� 3� � � � � 10,
where the parameter � = �p1� p2� p3� = �0� 0� 0�6� is chosen independently of � =
���A�B� thus, � and � are separable.

We also consider a non ignorable mechanism that violates the criterion of
MAR:

(2) Non ignorable: for each subject, we generate missing values at time t with
60% probability only if the observation at time t is in state 3, i.e., p3 = Pr�rt =
0 � Yt = 3� = 0�6 and pi = Pr�rt = 0 � Yt = i� = 0 for i = 1� 2 and t = 1� 2� � � � � 10.

In this way, we generate, on average, 19–23% missing values. For each
combination of parameter sets and missing mechanisms, we perform 1,000
simulation runs, each replication includes 50 subjects and each subject has 10
observations. We use the probabilities obtained from the transition of the observed
imperfect indicators as the initial values for parameters in the matrix A, and
arbitrarily choose

��0� =

1/3
1/3
1/3


 � B�0� =


0�7 0�2 0�1
0�2 0�5 0�3
0�1 0�1 0�8




as the initial values for the initial distribution vector and the misclassification
matrix. The estimates at the 10th iteration are used because the log-likelihood often
converges with 10 or fewer iterations under this simulation design.

3.2. Simulation Results

Figure 1(a) compares the estimation bias of the initial distribution parameters �
across the three dependency levels specified in ALo, AMo, and AHi among HMM
fitted to (1) complete data, (2) incomplete data due to ignorable missing mechanism,
and (3) incomplete data due to non ignorable missing mechanism, respectively.
Figures 1(b) and (c) present respective comparisons for the parameters of the
transition and misclassification matrices. When data are complete, the bias is
small (<0�02) for most parameter estimates in the initial distribution vector �
and the transition matrix A, but is large (0.06 to 0.12) for most estimates of the
misclassification matrix B. The figures show a trend of decreasing bias with the
dependency level (ALo, AMo, and AHi) in several � and B parameters, but this trend
seems to be in the opposite direction, although less obvious, in the A parameters.

When missing data are due to the ignorable mechanism described in Sec. 3.1,
the MLEs demonstrate similar bias-vs.-dependency patterns to those observed with
complete data. The bias is, in general, of similar magnitude but can be slightly larger
for some parameters (	2� 	3� aij� i� j = 2� 3, and b22� b23).
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174 Yeh et al.

Figure 1. Bias of HMM estimates of (a) initial distribution (b) transition probabilities
(c) misclassification probabilities vs. the dependency levels specified in ALo�AMo, and AHi in
complete and incomplete data due to ignorable and non ignorable missing mechanism.
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Intermittent Missing Data in Hidden Markov Models 175

When the missing mechanism is non ignorable, the bias is substantially larger
in most � and A parameters as compared to the bias of the corresponding estimates
obtained from complete data or the incomplete data due to the ignorable missing
mechanism that we adopt. This phenomenon is most obvious for parameters
associated with transitions from and/or to state 2 or 3 (a13� a23� a31� a32� and a33).
The bias appears to be lower when the hidden outcome is more likely to stay at the
current state (i.e., greater dependency in the matrix A). The missing mechanism does
not impact the bias of the estimates in the misclassification B matrix as much as in
the � and A parameters. Also, the bias is of similar magnitude and depicts similar
patterns across complete data and missing mechanisms except for the parameters of
b22 and b23.

Figures 2 (a), (b), and (c) compare the standard errors (SE) of the parameter
estimates versus various levels of dependency of the future outcome on the current
outcome (ALo, AMo, and AHi) for complete and incomplete data. Intuitively and
empirically, incomplete data lead to greater SE due to a loss of information. In
this simulation, only some parameters preserve the expected pattern: the transition
parameters from state 3 (a31� a32� and a33) and the misclassification parameters with
hidden state 3 (b31� b32� and b33). Because the missingness is simulated on state 3
or depends on a previous observation with outcome in state 3 (see, Sec. 3.1), it is
not surprising to find more variability in the estimates associated with state 3. Other
parameter estimates from the simulation with incomplete data show SE in similar
magnitude to, or slightly less than, those obtained from the analyses with complete
data. Also, for complete and incomplete data, if the hidden status is more likely
to remain at the current state than to move to other states (i.e., AMo or AHi), SE
decrease in the transition parameter estimates but increase in the misclassification
parameter estimates. The mean squared errors, in general, show similar patterns to
those obtained for the bias (results not shown).

4. An Example

Data from a Schizophrenia study (SCHIZX1.sas7bdat), which are publicly available
(http://tigger.uic.edu/hedeker/ml.html), were analyzed. In this study, 437 patients
were randomized to receive either placebo (108 patients) or drug (329 patients)
treatment and observed at baseline and at equal follow-up intervals of 1 week
for weeks 1–6. The severity of Schizophrenia was categorized as normal, mild,
moderate, and severe. The initial observed health status for the two groups
combined was 59% severe, 28% moderate, 12% mild, and less than 1% normal. More
than 95% observations were missing at weeks 2, 4, and 5, and about 15% and 23%
of the observations were missing at weeks 3 and 6; overall, the proportion of missing
values was about 54%. The missing mechanism was assumed to be ignorable because
the majority of missing data occurred at weeks 2, 4, and 5, which was probably due
to the study design. The summary counts for observed baseline health status and
transitions for each group are summarized in Table 5 of Yeh et al. (2010). Here,
we consider the observed health status as an imperfect indicator of true status and
analyze the data by HMM. The initial values for the baseline distribution and the
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176 Yeh et al.

Figure 2. Standard error of HMM estimates of (a) initial distribution (b) transition
probabilities (c) misclassification probabilities vs. the dependency levels specified in ALo�AMo,
and AHi in complete and incomplete data due to ignorable and non ignorable missing
mechanism.

D
ow

nl
oa

de
d 

by
 [

A
ub

ur
n 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
9:

37
 2

5 
Fe

br
ua

ry
 2

01
6 
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misclassification parameters were arbitrarily chosen as:

��0� =



1/4
1/4
1/4
1/4


 � B�0� =



0�850 0�100 0�030 0�02
0�125 0�700 0�125 0�05
0�050 0�125 0�700 0�125
0�020 0�050 0�130 0�800


 �

whereas the initial values for transition parameters are estimated from transition of
the observed imperfect indicator variables:

A�0�
Drug =



0�982 0�006 0�006 0�006
0�149 0�660 0�170 0�021
0�082 0�447 0�365 0�106
0�046 0�227 0�304 0�423


 � A�0�

Plcebo =



0�250 0�250 0�250 0�250
0�091 0�636 0�182 0�091
0�001 0�361 0�472 0�166
0�016 0�078 0�125 0�781


 �

We terminate the algorithm at the 30th iteration according to convergence of log-
likelihood.

Table 1 shows the HMM estimates for the treatment and the placebo groups,
respectively. The baseline distributions (�) indicate that the true status of most
patients’ Schizophrenia was moderate or severe. The next four columns (the A
matrix), represent the transitions from and to the severe, moderate, mild, and
normal states. In the treatment group, 63% of patients were initially in the severe
state, 27% in the moderate, 10% in the mild state, and nearly no one in the normal
state. Severe patients had probabilities of 29%, 12% and 4% to improve to the
moderate, mild, and normal states, respectively, during a one-week period. The
likelihood of improving from a moderate to the mild or normal state in a one-week
period was 27% and 5%, respectively; and there was a 5% probability of regressing
to the severe state. Patients transitioned from the mild to the normal state with
21% probability and from mild to the moderate state with a 2% probability. Once
patients reached the normal state, they were not likely to progress to other states,
implying that Schizophrenia was unlikely to recur in patients treated with the drug.
The last four columns indicate the probabilities of misclassification. In the treatment
group, patients who were truly severe had a 6% chance of being misclassified
as moderate; patients who were actually moderate had a 15% chance of being
misclassified as mild and a 4% probability of being diagnosed as severe; patients
whose true state was mild had an 8% chance of being misclassified as moderate;
patients in the normal state had a 78% chance of being diagnosed correctly. The
placebo effects can be interpreted in a similar manner.

Generally, in comparing the unobservable true health status of patients, those
individuals treated with the drug were more likely to improve and less likely to
regress than patients receiving the placebo; the probabilities of correct diagnoses or
misclassification were similar in the two groups except for the likelihood of a correct
diagnosis for patients in the normal state, which could be due to small numbers.
The variability in estimates of the HMM parameters can be estimated through
bootstrapping (Efron and Tibshirani, 1994). We apply the Benjamini-Yekutieli’s
procedure (2001) to control for a 0.05 false discovery rate in correlated multiple
tests and find significant differences in the probabilities of remaining severe and
transitions from severe to the moderate and mild states.
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5. Discussion

Hidden Markov models (HMM) offer advantages in analyzing longitudinal latent
disease progression or improvement in health status because they account for
imperfect measurement of the disease status. In this paper, we study the intermittent
missing in HMM by simulation. Generally, we found that incomplete data due to
ignorable missing mechanisms lead to estimates with similar bias and SE to the
complete data. In contrast, incomplete data due to ignorable mechanisms result
in substantially greater bias, but the magnitude of bias reduces when the diagonal
elements in the transition matrix approach 1. The SE is greater in estimates of
transitions or misclassification associated with latent state subject to missing, but is
similar to or slightly smaller in other estimates as compared to those obtained from
complete data.

The algorithm described in Sec. 2.2 assumes the missing mechanism is ignorable.
Whether this assumption is plausible depends on how accurately the observed
data can predict the missing values. In a bivariate normal setting, for example,
with one variable completely observed and the other only partially observed, the
ignorable method may introduce substantial bias in the mean of the partially
observed variable under not missing at random if the correlation between the two
variables is low (Schafer, 1997, Sec. 2.5). Low correlation suggests the completely
observed variable does not provide much information in predicting the missing
values. However, if the correlation is strong, the missing values can be more
accurately predicted by the observed data and the bias can be dramatically less.
In HMM, the true latent state a subject will move to depends only on the current
state and not on the previous transition history. Therefore, when subjects are more
likely to stay at the current state than moving to other states, the missing values
can be predicted more accurately by the immediately prior or immediately following
observation, and parameter estimation leads to less bias. Our simulation shows, for
some parameters, this trend. When this is not the case, it is probably because the
likelihood function is not smooth and the achieved estimates are likely local maxima
or saddle points.

The ignorable method can be a reasonable approximation for incomplete data
due to non ignorable mechanisms when � and � are separable. In our simulation
work, missing values are generated only for state 3 in the non ignorable mechanism.
In other situations though, missing values are possible for any state with certain
proportions. For a non ignorable mechanism Pr�rt = 0 � Yt = i� = pi, the missing
proportion pi varies from state to state. It is intuitive that the more homogeneous
these missing proportions are, the less the missing will depend on its actual state.
An extreme case is if each state has the same missing proportion, then Pr�rt =
0 � Yt = 1� ≈ Pr�rt = 0 � Yt = 2� ≈ · · · ≈ Pr�rt = 0� ≈ constant, and the missingness is
virtually completely at random, a special case of ignorable mechanisms.

When ignorability is not a plausible assumption, methods for non ignorable
missing are required. Established statistical methods for non ignorable missing in
models other than HMM commonly need knowledge about the missing mechanism
(informative missing), and require joint modeling the data f�Y � �� and the missing
mechanism f�R �Y ���, and estimating parameters � and � simultaneously (Troxel
et al., 1998; Albert, 2000). These methods usually introduce additional parameters
other than � and � and make the computation more intensive. Further work is
required to cope with general non ignorable missing mechanisms.
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180 Yeh et al.

Finally, like many other iterative procedures, the convergence in likelihood in
the EM algorithm does not guarantee convergence in estimates. In some simulation
runs, the overall bias (defined as the sum of squared bias over all the 21 parameters)
diminishes and then increases after a few iterations. When we examine the bias for
individual parameters in either case, some parameters converge to the true values
with increasing iterations while others diverge (results not shown). Additionally,
different sets of initial values may produce estimates that vary in magnitude.
Therefore, we recommend researchers applying HMM to report the initial values
of parameters and the number of iterations used to achieve the final parameter
estimates so that the analysis can be reproduced.
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