
Solving the 0-1 Knapsack Problem with Genetic Algorithms

Maya Hristakeva
Computer Science Department

Simpson College
hristake@simpson.edu

Dipti Shrestha
Computer Science Department

Simpson College
shresthd@simpson.edu

Abstract

This paper describes a research project on using Genetic Algorithms (GAs) to solve the
0-1 Knapsack Problem (KP). The Knapsack Problem is an example of a combinatorial
optimization problem, which seeks to maximize the benefit of objects in a knapsack
without exceeding its capacity.

The paper contains three sections: brief description of the basic idea and elements of the
GAs, definition of the Knapsack Problem, and implementation of the 0-1 Knapsack
Problem using GAs. The main focus of the paper is on the implementation of the
algorithm for solving the problem. In the program, we implemented two selection
functions, roulette-wheel and group selection. The results from both of them differed
depending on whether we used elitism or not. Elitism significantly improved the
performance of the roulette-wheel function. Moreover, we tested the program with
different crossover ratios and single and double crossover points but the results given
were not that different.

mailto:hristake@simpson.edu
mailto:shresthd@simpson.edu

Introduction

In this project we use Genetic Algorithms to solve the 0-1Knapsack problem where one
has to maximize the benefit of objects in a knapsack without exceeding its capacity.
Since the Knapsack problem is a NP problem, approaches such as dynamic programming,
backtracking, branch and bound, etc. are not very useful for solving it. Genetic
Algorithms definitely rule them all and prove to be the best approach in obtaining
solutions to problems traditionally thought of as computationally infeasible such as the
Knapsack problem.

Genetic Algorithms (GAs)

Genetic Algorithms are computer algorithms that search for good solutions to a problem
from among a large number of possible solutions. They were proposed and developed in
the 1960s by John Holland, his students, and his colleagues at the University of
Michigan. These computational paradigms were inspired by the mechanics of natural
evolution, including survival of the fittest, reproduction, and mutation. These mechanics
are well suited to resolve a variety of practical problems, including computational
problems, in many fields. Some applications of GAs are optimization, automatic
programming, machine learning, economics, immune systems, population genetic, and
social system.

Basic idea behind GAs

GAs begin with a set of candidate solutions (chromosomes) called population. A new
population is created from solutions of an old population in hope of getting a better
population. Solutions which are chosen to form new solutions (offspring) are selected
according to their fitness. The more suitable the solutions are the bigger chances they
have to reproduce. This process is repeated until some condition is satisfied [1].

Basic elements of GAs

Most GAs methods are based on the following elements, populations of chromosomes,
selection according to fitness, crossover to produce new offspring, and random mutation
of new offspring [2].

Chromosomes

The chromosomes in GAs represent the space of candidate solutions. Possible
chromosomes encodings are binary, permutation, value, and tree encodings. For the
Knapsack problem, we use binary encoding, where every chromosome is a string of bits,
0 or 1.

Fitness function

GAs require a fitness function which allocates a score to each chromosome in the current
population. Thus, it can calculate how well the solutions are coded and how well they
solve the problem [2].

Selection

The selection process is based on fitness. Chromosomes that are evaluated with higher
values (fitter) will most likely be selected to reproduce, whereas, those with low values
will be discarded. The fittest chromosomes may be selected several times, however, the
number of chromosomes selected to reproduce is equal to the population size, therefore,
keeping the size constant for every generation. This phase has an element of randomness
just like the survival of organisms in nature. The most used selection methods, are
roulette-wheel, rank selection, steady-state selection, and some others. Moreover, to
increase the performance of GAs, the selection methods are enhanced by eiltism. Elitism
is a method, which first copies a few of the top scored chromosomes to the new
population and then continues generating the rest of the population. Thus, it prevents
loosing the few best found solutions.

Crossover

Crossover is the process of combining the bits of one chromosome with those of another.
This is to create an offspring for the next generation that inherits traits of both parents.
Crossover randomly chooses a locus and exchanges the subsequences before and after
that locus between two chromosomes to create two offspring [2]. For example, consider
the following parents and a crossover point at position 3:

Parent 1 1 0 0 | 0 1 1 1
Parent 2 1 1 1 | 1 0 0 0
Offspring 1 1 0 0 1 0 0 0

 Offspring 2 1 1 1 0 1 1 1

In this example, Offspring 1 inherits bits in position 1, 2, and 3 from the left side of the
crossover point from Parent 1 and the rest from the right side of the crossover point from
Parent 2. Similarly, Offspring 2 inherits bits in position 1, 2, and 3 from the left side of
Parent 2 and the rest from the right side of Parent 1.

Mutation

Mutation is performed after crossover to prevent falling all solutions in the population
into a local optimum of solved problem. Mutation changes the new offspring by flipping
bits from 1 to 0 or from 0 to 1. Mutation can occur at each bit position in the string with

some probability, usually very small (e.g. 0.001). For example, consider the following
chromosome with mutation point at position 2:

Not mutated chromosome: 1 0 0 0 1 1 1
Mutated: 1 1 0 0 1 1 1

The 0 at position 2 flips to 1 after mutation.

Outline of basic GA s

1. Start: Randomly generate a population of N chromosomes.
2. Fitness: Calculate the fitness of all chromosomes.
3. Create a new population:

a. Selection: According to the selection method select 2 chromosomes
from the population.

b. Crossover: Perform crossover on the 2 chromosomes selected.
c. Mutation: Perform mutation on the chromosomes obtained.

4. Replace: Replace the current population with the new population.
5. Test: Test whether the end condition is satisfied. If so, stop. If not, return the

best solution in current population and go to Step 2.

Each iteration of this process is called generation.

The Knapsack Problem (KP)

Definition

The KP problem is an example of a combinatorial optimization problem, which seeks for
a best solution from among many other solutions. It is concerned with a knapsack that has
positive integer volume (or capacity) V. There are n distinct items that may potentially be
placed in the knapsack. Item i has a positive integer volume Vi and positive integer
benefit Bi. In addition, there are Qi copies of item i available, where quantity Qi is a
positive integer satisfying 1 ≤ Qi ≤ ∞.

Let Xi determines how many copies of item i are to be placed into the knapsack. The goal
is to:

Maximize
 N
∑ Bi Xi

 i = 1
Subject to the constraints

N
∑ Vi Xi ≤ V

 i = 1

And
0 ≤ Xi ≤ Qi.

If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded
[3]. The bounded KP can be either 0-1 KP or Multiconstraint KP. If Qi = 1 for i = 1, 2,
…, N, the problem is a 0-1 knapsack problem In the current paper, we have worked on
the bounded 0-1 KP, where we cannot have more than one copy of an item in the
knapsack.

Example of a 0-1 KP

Suppose we have a knapsack that has a capacity of 13 cubic inches and several items of
different sizes and different benefits. We want to include in the knapsack only these items
that will have the greatest total benefit within the constraint of the knapsack’s capacity.
There are three potential items (labeled ‘A,’ ‘B,’ ‘C’). Their volumes and benefits are as
follows:

Item # A B C
Benefit 4 3 5
Volume 6 7 8

We seek to maximize the total benefit:
 3
∑ Bi Xi = 4X1 + 3X2 + 5X3

 i = 1
Subject to the constraints:

 3
∑ Vi Xi = 6X1 + 7X2 + 8X3 ≤ 13

 i = 1
And

Xi Є {0,1}, for i= 1, 2, …, n.

For this problem there are 23 possible subsets of items:

A B C Volume of the set Benefit of the set
0 0 0 0 0
0 0 1 8 5
0 1 0 7 3
0 1 1 15 -
1 0 0 6 4
1 0 1 14 -
1 1 0 13 7
1 1 1 21 -

In order to find the best solution we have to identify a subset that meets the constraint and
has the maximum total benefit. In our case, only rows given in italics satisfy the

constraint. Hence, the optimal benefit for the given constraint (V = 13) can only be
obtained with one quantity of A, one quantity of B, and zero quantity of C, and it is 7.

NP problems and the 0-1 KP

NP (non-deterministic polynomial) problems are ones for which there are no known
algorithms that would guarantee to run in a polynomial time. However, it is possible to
“guess” a solution and check it, both in polynomial time. Some of the most well-known
NP problems are the traveling salesman, Hamilton circuit, bin packing, knapsack, and
clique [4].

GAs have shown to be well suited for high-quality solutions to larger NP problems and
currently they are the most efficient ways for finding an approximately optimal solution
for optimization problems. They do not involve extensive search algorithms and do not
try to find the best solution, but they simply generate a candidate for a solution, check in
polynomial time whether it is a solution or not and how good a solution it is. GAs do not
always give the optimal solution, but a solution that is close enough to the optimal one.

Implementation of the 0-1 KP Using GAs

Representation of the items

We use a data structure, called cell, with two fields (benefit and volume) to represent
every item. Then we use an array of type cell to store all items in it, which looks as
follows:

items 0 1 2 3
20 | 30 5 | 10 10 | 20 40 | 50

Encoding of the chromosomes

A chromosome can be represented in an array having size equal to the number of the
items (in our example of size 4). Each element from this array denotes whether an item is
included in the knapsack (‘1’) or not (‘0’). For example, the following chromosome:

 0 1 2 3
1 0 0 1

indicates that the 1st and the 4th item are included in the knapsack. To represent the whole
population of chromosomes we use a tri-dimensional array (chromosomes [Size][number
of items][2]). Size stands for the number of chromosomes in a population. The second
dimension represents the number of items that may potentially be included in the
knapsack. The third dimension is used to form the new generation of chromosomes.

Flowchart of the main program

no yes

Randomly select 2 chromosomes
from the population

Perform crossover on the 2
chromosomes selected

Perform mutation on the
chromosomes obtained

no

Does 90% have the same fit
value? && Is the number of
generations greater than the

limit?

STOP

yes
Does 90% of them

have the same
fitness value?

Check what percentage of the
chromosomes in the population

has the same fitness value

Calculate the fitness and
volume of all chromosomes

Initialize the first population by randomly generating a
population of Size chromosomes

START

Initialize array items reading from a file - the data
(volume and benefit) for each item.

Termination conditions

The population converges when either 90% of the chromosomes in the population have
the same fitness value or the number of generations is greater than a fixed number.

Fitness function

We calculate the fitness of each chromosome by summing up the benefits of the items
that are included in the knapsack, while making sure that the capacity of the knapsack is
not exceeded. If the volume of the chromosome is greater than the capacity of the
knapsack then one of the bits in the chromosome whose value is ‘1’ is inverted and the
chromosome is checked again. Here is a flowchart of the fitness function algorithm:

no

Remove this item from the knapsack (i.e.
change bit = 0)

yes

Is total volume >
capacity of the

knapsack

Randomly choose items from the
chromosome until we generate an item that

is included in the knapsack (i.e. bit = 1)

START

For each chromosome in the
population do:

For each item in the chromosome if it is included
(bit=1) in the knapsack, add its volume and benefit

to the total volume and benefit

Assign this item’s total
volume and benefit
corresponding to
chr_fitness[] and

chr_volume []

STOP

Selection functions

In the implementation of the program, we tried two selection methods: roulette-wheel and
group selection, combined with elitism, where two of the fittest chromosomes are copied
without changes to the new population, so the best solutions found will not be lost.

Roulette-wheel selection

Roulette-wheel is a simple method of implementing fitness-proportionate selection. It is
conceptually equal to giving each individual a slice of a circular roulette wheel equal in
area to the individual’s fitness [2]. The wheel is spun N times, where N is the number of
the individuals in the population (in our case N = Size). On each spin, the individual
under wheel’s marker is selected to be in the pool of parents for the next generation [2].
This method can be implemented in the following way:

START

Sum the total expected fitness (benefit) of all
individuals in the population (we call it fsum).

The individual whose expected fitness puts the
sum over this limit is the one that is selected to

be a parent in the next generation.

STOP

Choose a random integer (limit)
between 0 and Size.

Loop through the individuals in the
population, summing up the expected values
until the sum is greater than or equal to limit.

Group selection

We implemented this selection method in order to increase the probability of choosing
fitter chromosomes to reproduce more often than chromosomes with lower fitness values.
Since we could not find any selection method like this one in the literature, we decided
to call it group selection.

For the implementation of the group selection method, we use another array
indexes[Size], where we put the indexes of the elements in the array chr_fitness[Size].
chr_fitness
 0 1 2 3 4 5 6 7 8 9 10 11
40 20 5 1 9 7 38 27 16 19 11 3

indexes
 0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11

We sort the array indexes in descending order according to the fitness of the
corresponding elements in the array chr_fitness. Thus, the indexes of the chromosomes
with higher fitness values will be at the beginning of the array indexes, and the ones with
lower fitness will be towards the end of the array.
indexes:
 0 1 2 3 4 5 6 7 8 9 10 11
0 6 7 1 9 8 10 4 5 2 11 3

We divide the array into four groups:
0 … 2 (0 … Size/4)
3 … 5 (Size/4 … Size/2)
6 … 8 (Size/2 … 3*Size/4)
9 … 11 (3*Size/4 … Size)

Then, we randomly choose an item from the first group with 50% probability, from the
second group with 30% probability, from the third group with 15% probability, and from
the last group with 5% probability. Thus, the fitter a chromosome is the more chance it
has to be chosen for a parent in the next generation. Here is a flowchart of the group
selection algorithm:

Comparison between the results from roulette-wheel and group selection methods

Crossover Ratio = 85%
Mutation Ratio = 0.1%
No Elitism

Roulette-wheel selection Group selection method
Popul
ation
Size

№ of
Gen

Max.
Fit.
found

Items chosen № of
Gen

Max.
Fit.
found

Items chosen

100 62 2310 2, 5, 8, 13, 15 39 3825 1, 2, 3, 4, 5, 7, 9, 12
200 75 2825 1, 2, 6, 7, 8, 17 51 4310 1, 2, 3, 4, 5, 6, 7, 8, 11
300 91 2825 2, 3, 5, 7, 8, 16 53 4315 1, 2, 3, 4, 5, 6, 7, 8, 10
400 59 2825 1, 2, 3, 4, 15, 16 49 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
500 64 2835 1, 3, 6, 8, 10, 11 65 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
750 97 2840 3, 4, 5, 7, 9, 10 45 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
1000 139 2860 1, 3, 4, 6, 8, 12 53 4320 1, 2, 3, 4, 5, 6, 7, 8, 9

START

Initialize array indexes[]

Sort the array indexes[] in descending order
according to the fitess of the corresponding

elements in the array chr_fitness[]

Randomly generate a number from 0 to 99

Randomly choose an item from the part of
the array that corresponds to this number

STOP

Crossover Ratio = 85%
Mutation Ratio = 0.1%
Elitism - two of the fittest chromosomes are copied without changes to a new population

Roulette-wheel selection Group selection method
Popul
ation
Size

№ of
Gen

Max.
Fit.
found

Items chosen № of
Gen

Max.
Fit.
found

Items chosen

100 60 3845 1, 2, 3, 4, 5, 7, 8, 9 42 3840 1, 2, 3, 4, 5, 6, 7, 12
200 36 3830 1, 2, 3, 5, 6, 7, 8, 10 45 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
250 45 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 45 4315 1, 2, 3, 4, 5, 6, 7, 8, 10
300 46 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 27 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
400 43 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 47 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
500 25 4310 1, 2, 3, 4, 5, 6, 7, 9, 10 54 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
750 34 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 49 4320 1, 2, 3, 4, 5, 6, 7, 8, 9

Crossover Ratio = 75%
Mutation Ratio = 0.1%
Elitism - two of the fittest chromosomes are copied without changes to a new population

Roulette-wheel selection Group selection method
Popul
ation
Size

№ of
Gen

Max.
Fit.
found

Items chosen № of
Gen

Max.
Fit.
found

Items chosen

100 49 3840 1, 2, 3, 4, 6, 7, 8, 9 46 3840 1, 2, 3, 4, 5, 7, 8, 10
200 42 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 43 4315 1, 2, 3, 4, 5, 6, 7, 8, 10
250 39 3820 1, 2, 3, 4, 6, 8, 9, 11 41 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
300 52 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 57 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
400 42 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 45 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
500 44 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 61 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
750 29 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 50 4320 1, 2, 3, 4, 5, 6, 7, 8, 9

Crossover Ratio = 95%
Mutation Ratio = 0.1%
Elitism - two of the fittest chromosomes are copied without changes to a new population

Roulette-wheel selection Group selection method
Popul
ation
Size

№ of
Gen

Max.
Fit.
found

Items chosen № of
Gen

Max.
Fit.
found

Items chosen

100 27 3320 1, 2, 3, 5, 9, 10, 13 37 3825 1, 2, 3, 4, 5, 6, 9, 13
200 49 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 50 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
250 62 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 40 4310 1, 2, 3, 4, 5, 6, 7, 9, 10

300 31 4320 1, 2, 3, 4, 5, 6, 7, 8, 9 60 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
400 38 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 50 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
500 25 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 56 4320 1, 2, 3, 4, 5, 6, 7, 8, 9
750 34 4315 1, 2, 3, 4, 5, 6, 7, 8, 10 54 4320 1, 2, 3, 4, 5, 6, 7, 8, 9

The results from the two selection functions, roulette-wheel and group selection, differ a
lot depending on whether we used elitism to enhance their performance or not.

When we do not use elitism the group selection method is better than the roulette-wheel
selection method, because with group selection the probability of choosing the best
chromosome over the worst one is higher than it is with roulette-wheel selection method.
Thus, the new generation will be formed by fitter chromosomes and have a bigger chance
to approximate the optimal solution.

When we use elitism than the results from roulette-wheel and group selection method are
similar because with elitism the two best solutions found throughout the run of the
program will not be lost.

Crossover

We tried both single and double point crossover. Since there was not a big difference in
the results we got from both methods, we decided to use single point crossover. The
crossover point is determined randomly by generating a random number between 0 and
num_items - 1. We perform crossover with a certain probability. If crossover probability
is 100% then whole new generation is made by crossover. If it is 0% then whole new
generation is made by exact copies of chromosomes from old population. We decided
upon crossover rate of 85% by testing the program with different values. This means that
85% of the new generation will be formed with crossover and 15% will be copied to the
new generation.

Mutation

Mutation is made to prevent GAs from falling into a local extreme. We perform mutation
on each bit position of the chromosome with 0.1 % probability.

Complexity of the program

Since the number of chromosomes in each generation (Size) and the number of
generations (Gen_number) are fixed, the complexity of the program depends only on the
number of items that may potentially be placed in the knapsack. We will use the
following abbreviations, N for the number of items, S for the size of the population, and
G for the number of possible generations.

The function that initializes the array chromosomes has a complexity of O(N). The
fitness, crossover function, and mutation functions have also complexities of O(N). The
complexities of the two selection functions and the function that checks for the
terminating condition do not depend on N (but on the size of the population) and they
have constant times of running O(1).

The selection, crossover, and mutation operations are performed in a for loop, which runs
S times. Since, S is a constant, the complexity of the whole loop is O(N). Finally, all
these genetic operations are performed in a do while loop, which runs at most G times.
Since G is a constant, it will not affect the overall asymptotic complexity of the program.
Thus, the total complexity of the program is O(N).

Conclusion

We have shown how Genetic Algorithms can be used to find good solutions for the 0-1
Knapsack Problem. GAs reduce the complexity of the KP from exponential to linear,
which makes it possible to find approximately optimal solutions for an NP problem. The
results from the program show that the implementation of a good selection method and
elitism are very important for the good performance of a genetic algorithm.

References

1. Obitko, M. Czech Technical University (CTU). IV. Genetic Algorithm. Retrieved
October 10, 2003 from the World Wide Web:
http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html

2. Mitchell, M. (1998). An Introduction to Genetic Algorithms. Massachusettss: The MIT
Press.

3. Gossett, E. (2003). Discreet Mathematics with Proof. New Jersey: Pearson Education
Inc..

4. Weiss, M. A. (1999). Data Structures & Algorithm Analysis in C++. USA: Addison
Wesley Longman Inc..

5. LeBlanc, T. Computer Science at the University of Rochester. Genetic Algorithms.
Retrieved October 10, 2003 from the World Wide Web:
http://www.cs.rochester.edu/users/faculty/leblanc/csc173/genetic-algs/

Acknowledgements

I would like to acknowledge the assistance of Professor Lydia Sinapova in the
preparation of this paper.

For the implementation of the fitness function we used the outline of flowchart on
following website http://www.evolutionary-algorithms.com/kproblem.html.

http://www.evolutionary-algorithms.com/kproblem.html

