
1

2

Untrapped Value

Untrapped Value: This is a series to follow
with no ends

Software Reuse Powering Future Prosperity

Dave R. Erickson

EVERGENT TECHNOLOGIES

1.01 GAMMA VERSION $39.99π
π+0.0̄...1

Book Design reused from:
Copyright © 2013 by the Editorium.
All rights reserved.
LYXBook™ is a trademark of the Editorium:
www.editorium.com

https://www.editorium.com

For your future prosperity, everywhere, and for everyone!

You Are What You Have Been,
And What You Will Be Is What You Do.
—Siddhartha Gautama, The Buddha

Contents

List of Figures v

List of Tables vii

Macroscopic View:
The Manifesto ix

1 Introduction 1

2 Software Reuse: Conceptually 5

3 Untrapped Value: The Problem 21

4 Knowledge Reuse by Dialog: 1993 to 2022 33

5 The ReUse Software Movement 77

6 A Reuse Strategy beyond Fads 99

7 Linux: The Pinnacle of Software Reuse 115

8 Organizational Considerations 121

9 Legal Aspects of Code 127

10 Re-Use Library Abstraction (RULA) 143

iii

iv

I Microscopic View:
The Toolbox 145

11 Pirate Treasure Map 147

12 Reuse Tools 151

13 General Methods of Improving Code 175

14 Logger Reuse Code Exemplar 185

15 Reuse Legal Actions 203

16 Re-Use Library Abstraction (RULA) 211

17 Conclusion - What’s at stake? 213

A Acknowledgments 217

B All-Encompassing Index 219

Index 223

Bibliography 235

List of Figures

3.1 Software Code Base Lines of Code estimation, from Autonomous
Cars - Part 3: Technology Consolidation. © 2016 Blackberry/QNX . . 22

4.1 The specific to general, advanced to common is a common truism
made by human ontology . 38

4.2 OSI Layers by message size as seen across the seven layers(from OSI
7 Layers); layer headers are inserted and stripped off sequentially
on both sides of the data transmission. 39

4.3 The Axe Wedge of effort and novelty: from the bleeding edge,
through leading edge, onto the common components of software;
Bleeding edge has the least experience, most bugs. Leading edge is
better tested, better made but not foolproof. Common are developed
to levels we expect. 70

4.4 Left: Red Whittaker and the broken filter from CMU’s H1ghlander.
Right: CMU’s H1ghlander crash before the big race, the DARPA
Grand Challenge. 71

5.1 Graph cardinality 2- At no more than 2 nodes away from man for
optimal human search . 80

5.2 Software Reuse: Bluntified shows the histogram of the most salient
55,000 words from my survey of software reuse literature. The
largest word count is for the word ’model’. While you may argue
the value, it’s uncanny how many educated, experienced, and well-
funded software applying organizations think the same things are
important. 85

5.3 Bluntified Histogram of words, top 100 from 1283 to 90 count words 85
5.4 Total Word Histogram (down to 5 count) 86
5.5 The Keyword Importance: Keywords link both Concepts 1 through R

and Ideas 1 through S to functions 1 through N and Data 1 through
M. 87

v

http://qnxauto.blogspot.com/2016/10/autonomous-cars-part-3-technology.html
http://qnxauto.blogspot.com/2016/10/autonomous-cars-part-3-technology.html
https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-between-the-osi-sevenlayer-network-model-and-tcpip
https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-between-the-osi-sevenlayer-network-model-and-tcpip

vi LIST OF FIGURES

6.1 Erickson Composition: The Concept acts on the identity of Idea so
that it can be found within the keyword object 101

6.2 Simple, over-connected keywords from many sets of concepts and
ideas onto one function and or data inside the library under investi-
gation. In the large scale . 105

6.3 The impact of keywords, that multi-connected keywords that acti-
vate other terms. 105

6.4 The Ultimate Goal: keywords allow multiple ways to connect to what
the software coder is looking for without knowing all the correct,
precise, ways to search for it. The user doesn’t need exactly one
correct way (in the understanding of the original coders ideas and
concepts) to find what they need. The new coder will get a range of
answers that might point at the wanted elements. Or, just as useful,
demonstrate conclusively the library doesn’t have what is needed.
Quickly. 106

6.5 N over-connected ideas from many sets onto one brain concept. . . . 106

9.1 Rejection is part of the game. 128
9.2 David McCandless’s infograph (partial - included through fair use

for analysis as described in Chapter 9) 132
9.3 Approved Permission to use copyright by Jacob Beningo. 134
9.4 According to BlackDuck Software, the commonest public licence dis-

tribution back in 2016. 135
9.5 The IPD Cost Value Proposition for integrating software reuse into

regular design-maintenance operations: This is the value to untrap
as soon as possible. 139

11.1 SourceGraph teams up with Fedora to search all Fedora repositories
by licence. 149

11.2 The Commonality Code of Conduct Page 149

12.1 Meld: It works visually on both files and directories like diff and
comp work on the command line shell. 153

12.2 GNU sed manual, version 4.8, 1 January 2020, page 3 169
12.3 Printing “Hello World!” From: https://www.beningo.com. © 2016

Jacob Beningo, All Rights Reserved. Used with permission. 172

14.1 Michael Kerrisk’s gracious blessing... 195

https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses
https://www.beningo.com/getting-the-most-performance-from-printf/

List of Tables

2.2 Software Reuse Critical Issues . 16
2.4 Software Reuse Guidelines . 18
2.7 Software Reuse: Strengths, Weaknesses, Opportunities, and Threats . 19

5.1 Top ten words from bluntified analysis 86

9.1 According to BlackDuck Software, the commonest public licence dis-
tribution back in 2016. 134

9.2 According to BlackDuck Software, the estimated public licence dis-
tribution is back in 2016. BlackDuck Software Source Licences 135

9.3 Project Commonalities: Traditional versus IPD 140

vii

https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses
https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses
https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses

Macroscopic View:
The Manifesto

Chapter 1

Introduction

Since Everything is a Reflection of Our Minds,
Then Everything Can Be Changed By Our Minds.

—Siddhartha Gautama, The Buddha

Mankind has invested vast resources (time, manhours, computer machinery
sunk costs, maintenance, building space, heating, venting, cooling, and so on)
into software for all kinds of digital and analog hardware for over sixty years.
Far longer if you consider punched cards, and so on. In the end, most of the
source code ends in the waste heap of history. Old code gets forgotten, rub-
bished, and a new wave of developers is forced to recreate new versions of old
ideas. People get promoted, graduate from college, and leave to get married;
before they do they don’t have time, don’t believe in the priority, and don’t
place the code where others can find it to make an important curation of their
software; and by this donate it to future generations, worldwide, the society at
large. If organizations, at the other end of the spectrum, would realign software
for a legacy of centuries instead of product runs, mankind can preserve the sunk
costs, speed up advancement, and make software impact far wider when it’s
made in a reusable form. People move to a new job, and remake linked lists,
factory classes, or ring buffers in the new language of the day, or within the
design paradigm of the latest fad management.

It’s kind of insane when you think about it, people spend many years getting
a consumer product working, finely tuned and profitable. Then two companies
merge, product lines are unified or obsoleted, and some or all of the intellectual
property gets forgotten in a corner as one team is merged and the others retire
to golf, or the pool. While filling in cardboard boxes of stuff as they leave, does
anyone drag out the old tapes and floppies to make sure the new guys aren’t
starting by reinventing the wheel?

1

2 Introduction

Why? The culture has a serious misunderstanding of where the value, where
the intellectual property comes from and where it gets stored. This wasteful
malaise needs to change.

This book is a launching point, not a destination. It is designed to evolve in
small, incremental ways along with your reusable software development guide-
lines, over many years. From novice coders starting out to experienced, and
jaded, software managers; all practical and technical issues are presented in
two natural layers (for the simplest stratifications - explained in Section 8)-
one, the manifesto paints broad strokes in a proscriptive manner about how
to steer your organization gradually towards code for longevity, and two, the
toolbox brings together a set of free tools to get you started, a bunch of tried
and true realities about what makes sense while plumbing inside someone else’s
code, and realistic high level strategies to make sense of what you find. There’s
no practical way for this small book to cover every topic fully, the manuals
alone for autotools are several thousand pages. But the goal is a comprehensive
perspective, and that can be achieved, quickly.

This book provides a wider perspective, by looking back on the history of
software reuse, and the development cycle not as a painful target to meet and
then forget, but as a stepping stone that brings on differing teams, ramping
up and ramping down, to meet the custom needs of every stage of software.
Doesn’t that sound more productive, on the face of it?

Maintenance was the old end of software development, the goal of software
reuse is to make all software a continual maintenance cycle for mankind. The
goal is to accelerate the next generation farther and faster, perhaps into the
stars. But even in a humble grounded form, make impacts felt worldwide.

Easier to start, longer to impact, cheaper to deliver. The goal of all software
reuse: to untrap all the value stored there by society.

For each chapter, I parallel the main ideas of reuse with a Buddha koan.
Enigmatic ideas smashed together like koans are like the perfect proscriptive
advice: they present paradoxical and enigmatic ideas that appear ungrounded
in the importance of the day, until you wander into a situation, perhaps a con-
flict of ideas, and the answer leaps out of the confusion - linked to your brain by
the wise words of a koan. It all becomes clear, with time, patience, and practice.

Like the discipline needed to transform people’s habits to instill software
reuse, Buddhism is a practice. It is a “life raft built for one”, as the expres-
sion goes. There are many aspects, many dimensions, to consider as important
factors in making software more useful to a wider group. Like any discipline,
there will be areas people stumble, and other areas where people excel, and
areas that take a great deal of resources to conquer. And conquer them you

Introduction 3

shall, with some humble guidance and a positive outlook.

Executive Summary:

What is this book about?
Software, made with quality from original sources repurposed, in many

agreed standpoints of comprehension, to meet a wider audience that benefits
mankind for generations instead of fiscal quarters so mankind can maximize
benefit from it for all society.

Who may benefit?
Mankind should be interested in and profit from software reuse, because re-

ducing software development time reduces energy greenhouse gas emissions,
reduces computing machinery wear and tear, provides more ways to accelerate
more people to work on software with security, mission-critical, and real-time
requirements; it provides easier starts for younger scientists and engineers in
Science, Technology, Engineering, and Math (STEM) to profit from and accel-
erate their learning and contribution to technology.

Why should society care?
Society has learned from enough bad ideas and bad methods in the progeny

of software to make optimization a priority for everyone’s advancement tomor-
row.

When?
The change needs to happen tomorrow, and this book points a way towards it.
How?
By attacking the top and the bottom of software development at the same

time: the first half of this book describes the ideas from a managerial, or high
level perspective; the second half delves into the nuts and bolts things anyone
might use to get started.

In this chapter we set out the grand visions of what software reuse might be,
in the next we bring forward the ideas that will be top of mind if you venture
into the business of software reuse.

Chapter 2

Software Reuse: Conceptually

With Our Thoughts,
We Make The World.

—Siddhartha Gautama, The Buddha

Software is a collection of ideas. Whether in human readable thoughts like a
book, or in machine language code in many files, or stored on firmware, even
the relay-ladder logic in a garbage truck’s electrical relays turning hydraulics on
and off, these ideas outlive the form they are encapsulated in. That is, they are
built to outlast the implementation, but mankind hasn’t valued idea capture to
the same priority as productivity or novelty.

In the time of hectic progress, we tend to narrow our view from the horizon
down to the next corner, the next obstacle to avoid, then next fiscal quarter.
That doesn’t foster the kind of higher ideals that come with thinking of keeping
software like fine artwork. Leonardo da Vinci may have taken 5 years to paint
the Salvator Mundi, but that still amounts to five man-years. The auction value
of Salvator Mundi was $497.8 million USD. Many software projects take man-
decades to produce at valuations that are nowhere near as valued. Perhaps the
mindset must start at appreciating software value in bigger terms?

Take a step back from your problems, from your recent mindset, and consider
the age of some ideas.

Sir Isaac Newton’s Principia Mathematica was written in 1687: 5 July, 1687.
The world’s application of these mechanical laws were dovetailed into mechan-
ical machines over generations, the cotton ginny, the steam engine, and so on.
Some of the greatest uses of Newton’s Laws of Motion arrived with generators
and engines of the 18th and 19th centuries. Some would argue that the greatest
application was achieved by Orville and Wilbur Wright, bicycle mechanics from

5

6 Software Reuse: Conceptually

Ohio, when they achieved powered flight1 on December 17, 1903. What might
have happened if Newton’s Laws died out in books and devices, in the 17th
century?

That’s a time difference of about 216 years from the publishing of Newton’s
Laws to a heavier-than-air machine powered flight. A success for mankind that
makes the full cycle from knowledge discovery, through knowledge innovation,
unto technological implementation that impacts us all.

Now, consider how efficient mankind might be if the novel ideas in circulation
amongst the thought leaders of the day, and the people that innovate upon
them, if they were created, operated, and then left in the dustheap of history
within a few months. Or a few years, perhaps a few decades? The duration
of an idea is ENTIRELY DEPENDENT on the media it inhabits, including the
minds of those that understand it. Not the relative applicability of current or
over the horizon applications. If it is kept in the catalog, if it gets recycled,
it lives on long enough to make it to the next great use. Unfortunately, the
final location of many ideas inhabits two vastly different outcomes: ideas that
win over the marketplace - by profit margin alone - live on, and the ideas that
lose the marketplace in the short term, become detritus. Ideas that may not
have arrived “on time” may be just the solution people need just a few years
later. Will those ideas be there when it counts? Are we aiming too low to our
grandkids’ detriment?

Society has many needs. And it has organizations with corporate memories
measured in centuries because they are entrusted with maintaining the societies
they oversee. The human justice system, the medical healthcare system, politics,
technology-based societies, and so on. The human endeavours of STEM, the
cradle of all technologies and the lifeblood of tomorrow’s needs, must have
access to all ideas. Including vacuum tubes. Including Van De Graaf generators.
Including hydraulic swash plates.

The obvious retort would be to question why the ideas have to be put back
into open software when they have been in software before? And don’t they
exist in many books, papers, journals, and so on? Well, the first problem is
that admits massive failure to keep value. How many wasted efforts would be
enough to satisfy anyone’s needs? Second, if the result of quickly built soft-
ware code, full of bugs and wished changes, was not optimal then wouldn’t
it be better for all to expend that effort on improving the existing code to a
better standard than the original? Ideas in theory, in books or videos, aren’t the

1. One might argue Bernoulli’s effect was more important and it was discovered around 1738.
Yes, but I wanted a bigger difference than 100 years to illustrate my point. Please allow me to
reuse Newton, instead.

Software Reuse: Conceptually 7

finished product, working software is the finished product. Books don’t encap-
sulate all the problems, bugs like noninitialized pointers surface using only after
hardware, firmware, and software are brought together in integrated form. To
suggest you don’t need the finished software source product is to accept rein-
venting the felloe’s plate (an American wagon wheel is made of a hub, spokes,
felloe’s, and tires. You need a felloe’s plate to hold the felloe’s together under
the tire) over and over.

And let’s talk about climate change and topical wastes of energy like Bit-
coin block chain computations. Does it make sense for the environment, for
mankind, for political expediency, and so on, to continually pay for new sets
of people to reinstate the same software ideas over and over for a new set of
applications? In a time of saturated needs, should software be allowed to be
as wasteful?

If you know object-oriented software, and have suffered some sort of odd
behaviour that comes and goes or after a revision does things you’ve never seen
before, that is an open secret that the objects being used together, mainly by an
Object Oriented Programming (OOP) concept known as inheritance, that has
changed the obvious behaviour to the user comes from a place of noncompre-
hension. Object oriented programming, the last bug fad, results in rapid use
of objects without necessarily a complete understanding of this version of how
the software works after updates, or the last version. Doesn’t it seem like the
current model has done a poor job of optimizing how people make code if they
can’t solve the bug and crashes issues after decades of work?

What this book does, what value it delivers to you now and into the future,
is that it combines the ideas and the mechanisms together to act from the large
and the small perspectives onto the entirety of the problem. There is no way
any novella, nor a multi-part encyclopedia will cover all the important reuse
aspects to the satisfaction of all. It doesn’t bog down at the technical level,
but it demonstrates with real economic numbers how fast you can recapture
value. It doesn’t solve all problems of unseen unknown work, but it presents
the necessary concepts and broad strategies that will inspire your thinking on
how to augment code for your own use.

8 Software Reuse: Conceptually

Ideas in a useable form: Comparables

Let’s begin our analysis by explaining what kind of things software reuse
should include and look like if it wants to attain the same stature of usefulness
and importance in STEM; by comparing the problems and needs of reusable
software to other orthogonal ideas that worked better in other fields, we can
make a start at arriving. This exposition merely takes what you already know
about things and reframes them from the perspective of the knowledge con-
tained; remarkable factors explain how and why they work in the general sense.
You will find most of the knowledge I present herein takes existing knowl-
edge from forward of concepts taught many years ago, and relooking at those
same things from a deeper knowledge base and fresh perspective to make their
deeper, profound knowledge clear. But this simple mindset follows my deeply
held principle that tomorrow’s discoveries appear from yesterday’s assumptions
(axioms / assumptions / principles).

The first, obvious one is Dmitri Mendeleev’s Periodic Table of Elements. Odd,
as the war between Russia and Ukraine flares on today, this book describes a
part of the shared culture of Europe and Russia in it’s importance as the best
example of science in usable form. It was Mendeleev that used his spreadsheet,
today’s word but an unfamiliar one to his time, based on the atomic sizes and
proton counts, the basis of chemical reactions, to predict how newer atoms
would behave. Imagine if you had to explain and understand the basic tenets of
chemistry without having a universal Rosetta stone for all chemical properties
and their implications; how to divide chemicals into families of similar compo-
sitions and behaviours. It allows one to create a new element and insert them,
reliably into the larger database of chemicals with predictions and rationales. As
a work of science knowledge, a cross reference method - placing the elements
with the specific information for each and relative information between each, it
made a powerful way to solve the problem: and the first problem was realizing
how important those variables were in relation. Unmistakable when presented
in the proper format.

If I could describe the Periodic Table of Elements in computer terms, it’s like
having a switch case to choose one of a number of functions to accurately pre-
dict the variables and how they react. It had missing elements in the matrix that
allowed for prediction based on proton count how a missing element would be-
have. And true to form, the filled in blanks acted as prediction. In a way, that’s
what software does: it takes one person’s model of what something should add
to, look like, compare with, and it places that knowledge in those formats that
make it graspable as James Doohan’s missing middle finger.

Software Reuse: Conceptually 9

The second useable knowledge format that drove innovation is the old me-
chanical device plate books from the 18th - 19th Century. As an exposition of
simple, proven, mechanical armatures, force transmission, pulleys, belts and
other crafted mechanical devices that would predict how a machine installing
these elements would behave. Imagine trying to spend your time explaining to
people that have very little reading comprehension, and almost as little math,
how to understand the math of friction, stiction, three-dimensional moment
arms and so on. And, when it comes to efficiency, years in a high school class-
room or college sophomore drunken stupors are obviated by a simple craft
made from the plates that describe in as much detail as needed where one must
cut material and where one must fill material (constructive solid geometry) to
create an object like a cog. People that are good at and happy to work with
their hands will find a mechanical plate book easier to understand and easier
to copy that a textbook full of math. The means of medium is quality from
the perspective of the consumer. The number of people that could reproduce
mechanical mechanisms2 that work in real time exploded.

Mechanical drawing plate books were like 2-dimensional math functions that
constructed a mechanical object set meant to interlock, and allowed the human
to play with them, push and pull and witness how much force they resisted
or how little force it took to move across each other. Add oil and felt, one
for sliding viscous friction reduction and one to deaden motions and diffuse
them, and one allows simple folk to make reliable devices. Two dimensional
drawings, a set of tools, materials, oil, and felt is all that’s required. It’s mod-
ifiable (make changes/improvements), reproducible (make many copies), and
expandable (extend the range of applications). Think about it, you use wood for
simple mechanical actions that don’t require large forces, you use soft metals
like tin for larger forces, and you use hardened steel for forces in the kilo-N
Newton range. The mechanical objects are all scaled duplicates. That makes a
tremendous range of mechanical devices in the hands of anyone.

The third exemplar of ideas in a useable form is the Schaum’s Mathematical
Handbook, mainly written by a small team of mathematicians for the Schaum
Publishing House. This book allows people to use math formulas, charts, and
mathematical nomenclature that they would otherwise couldn’t or wouldn’t
have the exposure, education, nor tutorship and supervision, to apply the foun-
dational mathematics to derive the simplified mathematical formulae for use in
many similar equations. While it’s aimed at college students, it allow anyone to
substitute the equations and work out the answers for themselves. It’s like the
Magician’s book left in the hands of the Magician’s Apprentice. It’s accessible

2. in this rare case, not a redundancy

10 Software Reuse: Conceptually

to all, and by working the equations one can teach himself, herself, themself
what the equations do.

I must point out that this comparable wasn’t on the list until I had to find
some old book and paper citations, but Google’s Scholar, a search engine aimed
as an academic-, patent-, documentation-, and case law- information aggrega-
tor that makes the process of finding someone else’s reference citations, going
back decades and even centuries quickly, easily is a definite best use of ideas
comparable; it is a quantum leap better than the old days where one would
have to type them all by hand. I use BiBTeX, and this has to be the easiest
I’ve had it in decades copying over .bib references for my bibliographies. There
are thousands of man years sunk into the purpose of accurately and honestly
reporting where we stole our ideas from, or in other words, our “Standing on
the Shoulders of Giants” to an academic standard. I won’t claim my references
are the best, but they exist. Just look at some old documents for the difference
in the ubiquity and quality of references. When we get to the last few entries
written per year for each new book and paper, we as a society have climbed a
real mountain of academic reuse and fairness to others. At least in this regard,
Google is doing not-evil.

The fifth and final is the most logical one for the acceptance as a work in
progress, one that needs no further introduction, one that adapts as new kinds
of traffic goes on it and can be relied upon to have more use and faster speeds
in the future. It’s the internet, a once ARPA (ARPANet) and DARPA project
(DARPANet), open sourced for the world to animate. It is both a theory of it-
self and a working copy for anyone that can observe, take notes, collaborate,
implement, design, monetize, and live within. It would be hard to dispute the
massive importance of the internet to the world today. While there may be
Seven Wonders of the World sitting on the Earth’s surface, more people gaze
at their phones, consistently.

Every example here proves two basic things: one, that people opt to use infor-
mation in formats that make it easier to apply, and two, of the many ways that
one could present that information there are seldom few that survive the test of
time. The ones that do master the duality of an easy need that’s needed easily.

This sets two very important, intertwined objectives for software reuse: make
it present information in a preferable way, and never lose that preferred way,
even if that way changes, to avoid discardment by humanity. Many great ideas
litter the dustbin of history. It seems the common thread is ease of use.

Software Reuse: Conceptually 11

Simplicity wins, it always wins

You will see many takes on the problem of complexity and more complex sys-
tems, taken on in many variant arguments within this book and why it seems
to make things harder. Here’s a unique theory by Dr. John F. Sowa. You could
search forever amongst the detritus of half-takes and musings. I will point at
two.

There was a handwringing argument about why “worse is better” as an ex-
planation of why LISP was doomed; when it comes to software & hardware
standards, but this was debunked soundly as a strawman made without straw.
Another, better realization was made by mathematician John Sowa in that there
seems to be an uncanny correlation between the most sophisticated created
standards made by large organizations and the untimely demise of the grand
designs by simpler smaller and effective upstarts. Here is Sowa’s take:

THE LAW OF STANDARDS

BY JOHN F. SOWA

In 1991, while I was participating in some standards projects, I sent
an e-mail message to my colleagues, in which I formulated the following
hypothesis:

Whenever a major organization develops a new system as an official
standard for X, the primary result is the widespread adoption of some sim-
pler system as a de facto standard for X.

In the original statement, which is reprinted below, I illustrated the
hypothesis with four failed attempts to develop widely accepted standards:

The PL/I project by IBM and SHARE resulted in Fortran and COBOL
becoming the de facto standards for scientific and business computing.

The Algol 68 project by IFIPS resulted in Pascal becoming the de facto
standard for academic computing.

The Ada project by the US DoD resulted in C becoming the de facto
standard for system programming.

The OS/2 project by IBM and Microsoft resulted in Windows becom-
ing the de facto standard for desktop computing.

The failure of these attempts to establish new standards does not
mean that all standardization efforts are doomed to failure. On the con-
trary, many successful standards have been established for computer sys-
tems as well as everything from screw threads to grain sizes for wheat.
But the overwhelming majority of successful standards are clarifications
and revisions of interfaces that have proved to be effective without the

http://www.jfsowa.com/computer/standard.htm
http://dreamsongs.com/Files/worse-is-worse.pdf

12 Software Reuse: Conceptually

support of a major standards body. What has consistently failed are the
"proactive" attempts to design new systems from scratch that are declared
to be standard before anyone has had a chance to implement them, test
them, use them, and live with them. Some new systems succeed, but most
fail, and even the most successful go through several iterations before the
best configuration is found. Such design iterations are best done in small
research projects, not in large public committees.

A hypothesis that explains a fixed set of data may be the result of
chance. It does not attain the status of a law until it has been confirmed by
observations that were not included in the original data. Since 1991, the
most notorious illustration of the law of standards was the failure of the
seven-level standard for Open Systems Interconnection (OSI), which was
being developed by ISO with major support from governments and busi-
nesses around the world. The primary result was the triumph of TCP/IP as
the de facto standard for computer networks.

One more data point makes a hypothesis more credible, but the most
convincing evidence is a successful prediction about the future. In 1995,
when Bill Gates laid out his vision of "Windows everywhere," the law of
standards convinced me that Linux would replace Windows as the de facto
standard for operating systems. Following is some evidence in its favor:

The Linux kernel is a single code base that runs on everything from
embedded systems, hand-held computers, and wearable computers to some
of the largest supercomputers.

Instead of spreading to all environments, the Windows code base has
fragmented into multiple incompatible systems labeled 95, 98, ME, NT,
CE, W2K, and XP. Microsoft is dropping support for the older versions, but
they plan to produce a new version codenamed Longhorn, which threatens
to make all current versions obsolete.

Most graphic applications are being written for platform-independent
browsers and languages such as Java and C# that run on Linux, Windows,
and most versions of Unix.

The formerly fragmented Unix systems are becoming more compatible
by supporting Linux compatibility packages, while Linux has improved its
support for the Posix (Unix-based) standards.

Major IT companies that had been promoting their own proprietary
operating systems have switched their allegiance to Linux. The premier
example is the biggest IT company of all, IBM, which has adopted Linux as
the strategic OS for all their hardware. Other companies, such as Oracle,
develop all their software on Linux and port the results to other platforms,
such as Windows and Unix.

Software Reuse: Conceptually 13

Organizations with limited budgets, especially schools and govern-
ments, have been moving en masse to Linux, especially in developing coun-
tries, such as China and Brazil. This trend is increasing even in Europe,
Canada, and the United States.

Therefore, the law of standards predicts that the Linux API (Applica-
tion Programming Interface) will replace the Windows API as the de facto
standard for operating systems. That does not mean that Linux itself will
immediately replace all other operating systems, but that all major oper-
ating systems will become compatible by supporting the same conventions
and interfaces as Linux. Microsoft may continue to produce operating sys-
tems called Windows, but they already run applications originally written
for Linux, and the old Windows API will be used only in legacy applications.

“But the overwhelming majority of successful standards are clarifications and
revisions of interfaces that have proved to be effective without the support of
a major standards body.”

This is not a recrimination of the idea of making standards. This is not a
demonstration of the revolt of the many against the annointed few. This is not
a salesmen’s urge to sell old software to new customers.

In my view, it is a reinforcement of the general truism that people use useful
things, like tools used for custom jobs or mechanisms like the wheel that are
hard to improve upon, not because they are approved but because they work
better than other options on offer. Wheels work, have worked, will continue to
work into the future. To expend a great deal of effort to displace wheels is the
kind of uphill climb it should be whether you are creating an overcomplicated
standard or a novel rolling design.

This is an important generalization to realize when one sets out with software
reuse. On one side, if you find over complicated software then you have the
opportunity to return the masses to your improved standard. On the other side,
it is a warning of what not to make out of your software reuse ventures.

A Reuse Framework

This chapter gives the management level overview of important things to
consider and include for successful reuse operations. The idea of reuse, espe-
cially amongst entrenched senior application and software developers requires
additional factors to every job. It makes jobs of everyone harder if you haven’t
accounted for a way to avoid giving the job to same people, whom will appreci-
ate you ever so with these additional demands. If they were overworked before,
and remain overworked after, there’s little chance for success.

14 Software Reuse: Conceptually

It might seem like another pot of gold for management, but the reasons why
reuse movements in the past became fads is exactly why you won’t get that
extra value without novel thinking, and reoriented resources. You and I aren’t
inventors of the software reuse ideas, but we can become reuse innovators by
heeding the honest realities why it hasn’t taken over in the shorter term. As
with anything in capitalism, exploiting a commercial advantage, like getting
your software made for $0.50 cents on the dollar invested, can only improve
your competitive advantages. This book presents an unblinking, unromantic
tear down built from other’s project ashes.

I come to this knowledge by unique circumstances, as a defence scientist
on a budget, I wanted to exploit other’s hardware and software as much as
possible to accelerate my own work. I’ve reviewed over 5000 software code
source projects: tarballs, zipped directory trees, and so on, including Google,
NASA, DARPA, DTIC, NATO, amongst others. No, I’m not going to tell you most
of them, because I don’t want to create greater enmity if I can help it, I may need
some help some time. I’ve seen it all. The good, the bad, and the embarrassing.
If you are reading this, you intend to exploit my sunk costs and suffering. Well
played. Long live capitalism!

Here’s the software management reality: if you demand software developers
meet another requirement set (reuse goals) in addition to the original require-
ments to accurately plot out the software function, then you will be imposing a
need that isn’t top of mind for many people, it’s a need that appears (to the old
way of thinking) as a problem that can be solved later than getting the damned
thing running. That will inevitably result in a non-fit structure, and then rushed
at the end a restructuring to meet that unimportant (in relative time) “extra”
goal. They will rush the important part, and waste the chance.

That’s why one of the best recommendations I make later on is to adopt
a newer software management project mindset with the introduction of inte-
grated project delivery (IPD) in Chapter 9 alliance where the owner brings in
software mercenaries companies that can salvage software on the front end of
development to speed your critical path, and reuse mercenary companies that
can turn your made code into another profitable product. More on this later.

Existing Methods Analysis

Like one of the managerial overviews I reviewed for this book, the obvious
managerial conclusions that people arrive at are like this:

If you want to reuse software, then:
• Identify criteria for evaluating domain analysis approaches
• Survey existing methods for domain analysis and relate to criteria

Software Reuse: Conceptually 15

• Develop description of desirable characteristics of a domain analysis
• Identify critical risks involved issues and assess

This sober advice is a bunch of truisms. It’s what everybody tries. How’d that
work so far? I am not saying this is irrelevant, but, clearly, domain analysis
can’t be the answer. I would argue that the risks associated with stopping work
to analyze other code ended in most cases as what we all see; developers spent
some time, made a few conclusions, perhaps even adopted a couple of things,
and then, running out of time, pulled a couple of all-nighters to catch up. The
rest of the code floated to the bottom, aboard the Titanic, perhaps.

Let me describe why: advancement from the old way of thinking to the new
way of thinking costs time at a minimum, personnel, and reputation value at
the maximum. Now you know why it’s rarely successful. It isn’t easy, cheap,
nor free.

Identify Critical Issues

Let’s lay out exactly the kinds of risks you should be expecting and prepared for.
If you are running a large software organization, or even if you have a critical
number of programmers, the impact of reuse on your entreprise must consider
the following and what the impact of asking developers to reuse software (Ta-
ble 2.2).

These risks present in software reuse as an additional requirement set on top
of making software will affect all aspects of a project. It will not be without
preparation an obstacle to your continued success. No college teaches software
reuse, and of the few papers presented on spurts of investment into software
reuse, they are few and far between. There is a society in the IEEE that does
continue the work, but I doubt you are even aware of it. There are few compa-
nies set up to train others. There are few people that have reused software code
compared to the vast majority of the mindset of do it yourself.

Don’t throw this book away! All these issues can be used to delineate re-
sponsibilities amongst a set of workers, a group of competing interests, that
accommodate for them into the plan, ideally at the beginning of the planning
cycle! Dread nought!

Define Guidelines for Reuse

If you want to make some headway in a less risky, evolutionary way then adopt
new guidelines instead of rules and drift into reuse gradually.

Develop guidelines, not rules: rules make resistant people expend effort to
avoid rules. Guidelines accept that perhaps not all value will be trapped in

16 Software Reuse: Conceptually

Area Issues

Development methods No matter which design methods your

individuals/teams use, reuse changes how they settle

each component. Novel design methods may introduce

delivery slippage.

Development languages Any grand reuse momentum will require equivalents

introduced across all used languages to capture all

value. Or it makes rifts in parts assembled from various

sources. A risk that may turn into a nightmare.

Development tools Reuse will require time and resources to reorient the

team to a new set of tools that allow the extra activities

to support reuse. Or mandate a new set of people with

the right skills. This will add delays and risk of project

slippage.

Development personnel Reuse is a skill, it’s a top of mind factor in those that

understand the new requirements. Is this a demand

you can make of every worker up and down the

hierarchy? Are you prepared for the headaches and

bellyaches?

Domain application Reuse in terms of a user application is a duality:

looking from the software to the application, and

looking back from the application to the software.

Reuse can encompass both, separately and together.

You can’t expect people experienced in only one

direction to master the opposite on the first try, thus

adding risk.

Brand name If your organization makes better use of software by

reuse, then the better quality would help your brand.

Reuse isn’t second hand, it’s better through

augmentation of new over old. Can you suffer a

temporary brand value loss converting to a new way?

Organization efficiency Efficient software organizations can suffer shocks and

black swan events better than less efficient ones.

There’s more time and resources for everything else.

There’s fewer reasons of merit for action than

corporate survival. Can you plan in the way to arrive

through a reuse struggle? Might it cost you your career

if you can’t?

Table 2.2: Software Reuse Critical Issues

Software Reuse: Conceptually 17

the initial work, but adopting guidelines, over time, morphs people’s habits (
the instinctual brain over the deterministic brain) lull people into gradually
adopting rather than resisting. There’s lots of ways to motivate but in the end
you want your staff not wasting time, morale, and effort standing in the way
of reuse. Let it arrive.

Use the results of your research into the tools to show developers why these
new ways might actually speed them up. Develop guidelines for conducting
domain analysis and applying results during software development.

One of the best guidelines is to make more, clear additions to software docu-
mentation; documentation will contain proforma add-ons for the reuse domain,
relationship of reuse to overall of domain development, and recommend tools
to analyze software automatically to regain project momentum. I cover some
free reuse tools in Chapter12.

Principles for Reuse

If you want to pick good ideas from the many software reuse literature, the
key principles that seem to predominate much of the surveyed literature are a
good starting point (Table 2.4): for the sanity of all concerned, don’t attempt to
make the design, the code writing, code reviews, and code documentation more
onerous, confusing, and distracting from the outcomes you need. Your software
must still work, the customer must be satisfied, your reputation must survive
intact, and your must still meet resource constraints.

18 Software Reuse: Conceptually

Principle Rationale

Simple Simple makes it easier to understand;
complicated makes it less likely to be
understood. Read the multiple
authors quoted in this book, clarity
and understanding are common
themes. Understanding software is an
epistemology problem.

Client-based Aims at the users at the end. They
haven’t disappeared as the focus, you
are merely diverting on the critical
path.

Process Parallel functioning or views of the
same objects across rational divisions.
Some of the best reuse may come
from just keeping pieces separate and
communicate between them.

Metrics Most demand ways to measure both
code reuse and the value of reuse.
Money is your sword and shield in
business.

Relevant There must be a real need to justify
extra work. How can one make this
appear as an existential importance?

Object-Oriented Things within software use
object-like abstraction, encapsulation,
information hiding, data abstraction,
dynamic binding, and inheritance
that resolve into domains and ranges
that can be made clear. It might even
keep developers from quarreling.

Standards If there are software with standards
included, why wouldn’t one adopt
them? Work should apply towards
meeting standards. If they don’t have
any, they should adopt new ones. It
makes your work more sellable.

Documentation The need for documentation is
universal; meanwhile, code
documentation practice is lacking
today.

Table 2.4: Software Reuse Guidelines

Software Reuse: Conceptually 19

Strengths Weaknesses

Many ways to breakdown and process

software reuse: documentation,

optimization, commonality,organization,

and even marketing

Code is inscrutable when poorly organized,

miserably documented, unportable,

unintelligible to but a few minds. Care must

be taken assessing if this code is worth the

effort.

Code coverage is easier when the basic

boundary cases have already been tested.

Observing where it isn’t tested gives one the

difference.

It takes more work to extract work that isn’t

in an easily understood format. The harder

to understand, the more the work.

Fresh eyes means fresh perspectives; perhaps

you can solve problems in the code faster

than making your own from scratch.

You don’t get anything for free. Added costs

of reviewing other’s code are never zero.

Teams not trained for reuse aren’t expert at

what you expect them to do.

Opportunities Threats

Teams with strengths can offer to

supplement the

Any competitor that gets to the pinnacle of

reuse before the others becomes an upstart

with a cheaper per unit cost and greater

quality rating. Both together can result in a

disruptive advantage.

There will be ways to make your code better

for reuse, and in so doing attract others to

help your software.

Wasting time on losing causes, poorly

organized code, is an obvious risk to

anyone’s career.

Can you leverage different mercenary teams

to improve your overall productivity, for a

small piece of the prosperity?

If you don’t pick the right code to adapt to,

perhaps a competitor steals a march on

your product pole position?

If you don’t adopt reuse as part of your

strategy, how long until your competitors

do, first?

Table 2.7: Software Reuse: Strengths, Weaknesses, Opportunities, and Threats

20 Software Reuse: Conceptually

Software Reuse: SWOT

Software reuse can be thought of in terms of the common business mindest of
Strengths, Weaknesses, Opportunities, and Threats(SWOT). We lay them out
here in the table form for presentation and discussion with team members (
Table 2.7): If you can convince upper management with the strengths, be honest
with your employees with the admitted weaknesses, plan to avoid the threats,
then you will reap the maximal of all the implied opportunities.

In this chapter, we’ve laid out solid ways to bring reuse on board, mindful of
the pitfalls associated with software development as a contact sport between
people. In the next chapter we expand the problem space of reuse in aid of
better designing.

Chapter 3

Untrapped Value: The Problem

Accept What Is,
Let Go Of What Was,

And Have Faith In
What Will Be.

—Siddhartha Gautama, The Buddha

Mankind invests vast resources into software, to go along with firmware and
hardware in all kinds of systems, to control the technologies that most people
take for granted. And in the end, software falls into disrepair - often languishing
on old servers or old portable media, in USB thumb drives now, on 3 1/2 inch
floppies decades ago, on 5 1/4 inch floppies before that, on 8 inch floppies
before that, on magnetic tape spools before that, on punch cards before that,
on paper before that, on an abacus addition before that, and on and on as far
back perhaps as Hammurabi’s code: Ideas set down on solid means that are
used by the software that is cutting edge today, but becomes a distant memory
tomorrow, as the competitors build and knock down models that meet their
needs (mostly) and then get forgotten as new features and better performance.

How do we change this? At first glance, it’s a problem affecting all aspects of
the software model: design, management, documentation, legal, marketing, ed-
ucation, QA testing, project closeout, project commissioning, and maintenance
phase.

The most glaring way to improve code is by forcing coders to do less. Au-
tomation may hold the key.

Key Automation

There are many things that can be automated to free humans from effort, like:
• Expert knowledge (Make a computer rationalize knowledge)

21

22 Untrapped Value: The Problem

Software Code Base Lines of Code estimation, from Autonomous Cars - Part 3:
Technology Consolidation. © 2016 Blackberry/QNX

• Domain analysis (machine learn the to and from domain to range)
• Data acquisition (make machines gather and filter)
• Reusable and use standardization storage library (this is my Chapter10)
• Integration with software environments and reuse (development tools that

implement reuse automatically)
• Feasibility Issues of automation retrieval interfaces for development tools (

ask the tools to find you source)
• Provide consistent, cohesive methods with common interface and under-

standing (make computers explain the interface to others)
The facts are obvious, there is a growing amount of software out there, just

look at the numbers year over year. There’s a sizeable code chart that refused
to be part of this book but it’s good to show data for people to judge by them-
selves(I turned a lemon into lemonade by making a fair use case out of it).

If you want to know the size and scale of the code bases available, consider
this chart- made in 2016 by Blackberry/QNX- of the relative size in hundreds
of thousands of lines of code (LOC). Human applications are exploding in lines
of code that must work, as software infects everything that once was analog
and disparate. From 2016 the source out there is exploded, as more and more
programmers bash away at keyboards.

Eschew the One True Way!

This document outlines my overwhelming experience exploring, reading, get-
ting frustrated, getting lost, despairing, getting sober, and accepting defeat from
the endless maze of problems around what was some good software code.

http://qnxauto.blogspot.com/2016/10/autonomous-cars-part-3-technology.html
http://qnxauto.blogspot.com/2016/10/autonomous-cars-part-3-technology.html
https://www.visualcapitalist.com/millions-lines-of-code/
https://www.visualcapitalist.com/millions-lines-of-code/

Untrapped Value: The Problem 23

The goal of the knowledge herein as outlined provides you with non-specific
yet proscriptive practical methods to limit your time wasting along the path
to code leverage. This is one of the most valuable books to read, heed, and
recommend to anyone plunged into depths of software hell; one that needs to
economize on how they approach software left in an unknown state but over-
came the knowledge gap and speed towards your already ambitious project
milestones, successful testing and evaluation regimes, and infrastructure com-
missioning and ceremonies.

Take what seems like a one-dimensional cause; in a more holistic way, when
one rescues software from an eventual oblivion, you are guiding other people’s
work into the future prosperity for others to leverage in turn.

Technology, in any age, is like a group of settlers trying to make their way
across the unknown territory of the future marketplace. Across the danger-
ous plains, in the territories of warring tribes, desperate rations, wagon break-
downs, disease, privation, all the doubts and fears seeming mountainous. The
draw, the draw of potential gold rushes and open spaces draw those into a jour-
ney that will kill many before they reach a path through the Rocky Mountains.

In the United States of America Department of Defense (US DOD), there
was a realization of the commonality of software and the desire to economize
and reduce redundancy by software re-use. This spawned the CARDS common
software repository, and the STARS demonstration.

Where does the mythical distortion of the value in software come from? It
was Steve Jobs that famously stood up and complained about how long and
expensive software development was. He complained how expensive it had be-
come, all the while colluding with other silicon valley global corporations to
hold down wages and remuneration to top performing personnel by not poach-
ing them from one another. Apple, Google and others (not name shaming but
proving the point with names people are more likely to know, these weren’t
alone) underwent many lawsuits from unhappy employees held down by the
board room.

And in the rush to make software more economical came the worst language
of bloated code and excess, as a direct misunderstanding from those same play-
ers as what good code should work like. There came C++. It was hailed as the
great white hope for faster and more effective software at a reasonable price.
It was lauded and celebrated and adopted all around, new sets of fresh young
Ph.D.s launching into a period of Code Renaissance. Soon after, that fanfare
went away. People woke up to the reality of C++ code. Remember the dreaded
Windows Vista? Did you hear about all the service packs / service patches they
had to toss over the wall to disgruntled owners? Remember the GNU BadVista

24 Untrapped Value: The Problem

software campaign? Steve Jobs mimics calling it a "Vistaster"? Well, there was C
inside as the low level kernel. But the rest was C++, including .NET framework,
and C#. While Steve Jobs wanted to improve code with new software ways1,
the people developing OS X for Apple kept the BSD kernel. So even as the
corporates wanted to improve costs, what they unleashed was a problematic
programming language that didn’t handle the underlying garbage collection,
the instantiation, and deconstruction of software objects, plus a raft of new
DRM digital management, and profile bizarity, as well as expected by group of
people unfamiliar with the internals and therefore helpless.

It wasn’t just operating systems: TAO - The ACE ORB, MIRO, and many other
bloated C++ development systems made larger and bug prone code that was
written into a generation of technical papers that concluded about the flaws
and failings of bloated software.

After some momentous losses attempting to dethrone Linux as the operating
system of choice for servers, most corporate software companies like Apple and
Microsoft called a truce with Torvalds.

Whatever your computer interest back in the 2000’s, the fundamental need
for code to be reliable and cost-effective met the horrible bloating and con-
fusion as C++ libraries caused a raft of problems where otherwise plodding
predictable C had done job better. It was a reality check for the value of soft-
ware done within the bounds of a human understanding always works better
than the automated software systems that aren’t visible or transparent.

The Linux kernel, through all this, was using the same 1970’s Unix software
technology better and faster than "new and improved" software development.
Are there add-ons within the Linux kernel code base that are C++, probably,
but the reason C often beats C++ in performance and bug issues isn’t the gram-
mar and the syntax, it’s that C is EASIER TO UNDERSTAND, not that it lacks
easier to use but hidden features like in C++. This revelation seems bizarre to
most, but that’s because few people have suffered under the lashes inspecting
many code bases, as I have - over 5000, including C, C++, C#, FORTRAN,
ASM, JAVA, and others to see WHAT MISTAKES and failings normal program-
mers make. And my review of the least pretentious and working C++ are the
ones that don’t use any of the overloaded classes, inheritance and so on. The
most predictable C++ is almost all C by features. C defeats not because it’s
adorned with automated features, not because you can map it out correctly
in pretentious Stroustrup. It’s not just what software does that programmers

1. Steve Jobs’ original rationale for C++ was to reduce the costs of software development, and
in a neophyte karmic redistribution, it ended up in opaque code with odd behaviour as innards
of objects change without warning. Forcing additional man hours debugging.

Untrapped Value: The Problem 25

understand, but what it does that software developers DON’T understand that
causes problems.

I use this background knowledge as a pretext for the ways and outcomes you
wish to arrive at when you reuse code.

The Costs of Bad Software

The cost of bad software is a real problem, and anyone can fall victim to it,
literally and figuratively.

From Russia Television:

A Pentagon review at the beginning of 2020 found more than 800 soft-
ware flaws with the F-35, and defects that rendered its gun unusable.
Though “most” of these issues were fixed by that summer, a number of
issues that could “injure or kill pilots or otherwise jeopardize the plane’s
security” remained. At a current lifetime cost of around $1.7 trillion, it is
the most expensive military project ever undertaken, and even with the
jet entering service, it already requires costly modernization upgrades. -
https://www.rt.com/news/553992-navy-commander-fired-f35/

The costs of software problems isn’t just lost deliveries and stolen cryptocur-
rency, it could be planes falling out of the sky. It doesn’t matter how much
money you spend nor how many hours you invest into the program. Let me
underline the gravity outlined above by pointing out, as an control theory en-
gineer, that the F-35 avionic design is inherently unstable therefore it requires
computer control to stay flying. The only way to increase the performance enve-
lope of a manned fighter was to go beyond naturally stable designs. So software
is needed to keep the pilot aloft, not just fighting. Pleasant dreams to anyone
under an US Air Force base.

The most expensive project in history, the F35 modernization at $1.7 USD tril-
lion, suffers from the same plague of software problems as the smallest app on
the Apple iStore. It’s a pervasive problem, but will exacerbate situations when
the absolute complexity of the software, the larger then the more complex, is
hard for any one or any team to understand it all properly. It’s as if complexity
is a mountain and the higher it gets, then the steeper, wider, and longer is the
resulting climb over the top. The cost of bad software is DERIVED FROM COM-
PLEXITY. Because mistakes are made not just from simple causes but losing the
thread of all the ways data changes as it goes. Put another way, the desire to
do more things, from more places, unto other places in the software sets up a

https://www.rt.com/
https://www.rt.com/news/553992-navy-commander-fired-f35/

26 Untrapped Value: The Problem

snowball rolling effect of flow through software, like data flow diagrams that
could be printed out on 100 legal size pages in landscape orientation and then
laid on the floor from end to end, causes anyone tasked with describing all the
places that data goes in a single flow that has to stop and take notes many
times along a single finger path because no human brain can keep all the places
correct as the list grows. Did you follow that very long, run-on sentence all the
way through? It’s not 100 pages. Software at the core are ideas, so at the whim
of the human mind tasked to change it.

In this next section, you are going to read sentences that have a multitude
of complexity layered on top and underneath the words you read. Many things
I write are intended to deliver upon many channels at the same time. It’s why
you will have my words spring from your memory somewhen in the future when
your brain makes additional connections of what was writ. That’s when you will
realize how intelligent I am, and how hard it must be to operate under a brain
like this. You may or may not be familiar with all the kinds of theories I will
brush over, but I urge that of those meanings sitting in the same words, consider
just how a number of complex ideas each with their own dimensionality and
rules, can be reduced down by the essential characteristics to a base language
of abstract categories. As I often remark, if you want to solve a hard problem,
then study an even harder problem. Abstract categories are the hardest topos
in existence.

Complexity is both a curse and an opportunity: I resisted getting involved in
complexity based estimation software for this book because I knew it’s a morass
of unending ways to confuse the matter without anything really gained other
than some obvious truisms like “complexity is hard”. But it is so important to
new and improved software, it’s an unavoidable topic.

Nonetheless, I’ve spent many years reading abstract category theory, attempt-
ing to round out my algebrae, calculi, and set-heavy education and I stumbled
upon graphviz twice for different projects. In some ways, my journey to graph
theory, a blunted and stunted version of topos theories, took an indirect path
through neural networks and other varied connection theories. I started with
the idea that nodes are computers and then swung around theories back from
neuron approximations, back to nodes are automata (less complex finite state
machines) in cellular automata theory, to Hidden Markov Models(HMM) that
model probabilistic systems, to control theory state variables as linear and non-
linear systems of derived equations, and then back to nodes are 1-objects, 2-
objects, ..., n-objects of a set of morphisms that obey a set of functor mappings
that are described by the shape of their forward and backward surjec/injec-
tiveness and whether they create mapping shapes that may be identical (iso-

Untrapped Value: The Problem 27

morphic up to isomorphism) or some lesser shape, to simple ordered pairs rep-
resenting destinations and sources of edges and nodes. I am an advocate of the
generic use of connection theory, no matter how complex those destinations are,
and yet the simplest explanations are the obvious least helpful ways to imagine
what a source/destination/node/point/object/cell/neuron might be.

Nonetheless, in order to make sense of the wider kinds of places, or perhaps
nouns, that one might arrive at, by means of verbs or actions that transform
from/to locations, is to present complexity in the raw basic form of a simple
directed or undirected graphs and show you just how hard the interplay of
places and actions can become very quickly.

A confession about myself

In order to appear as merely a transporter of facts and opinions, and not a
motivated card sharp pushing onto you untold misfortune, I will set the record
out for why I grew to detest C++.

My deep belief about object oriented code is not rooted in the programming
language C++ itself. I can use it as I might. I find that most people that code
in it are just too lazy to learn how to code properly. It’s not hard. What these
higher level programming languages teach through hiding and opaque sections
of function, hidden in the bowels of a libc++ that can change how it operates
from one unseen update to the next. The crafter of average code is like an Uber
user. An leaser doesn’t care about the dents, he won’t go and clean it for a fresh
ride on Monday. He does what he’s told and probably has no more time than
that to make it work.

What you want in a software engineer is a programmer with craftsman-
like professionalism like the technical guilds of the middle ages. Not the rent-
seeking lazy ones that propserity spawned at the end of the age of guilds but
the honest humble ones that enjoyed their unchained conditions when noble-
men ignored towns business to fight Guelphs versus Ghibellines wars. You want
someone that leaves things better than they got them. You want them to hold
off on leaving for beer, spend the extra unpaid time, to make sure it can be
better. You want them to live inside your code.

And then there’s the scientific perspective. I found out when I tried to use my
stable and working Kalman filters for localization into a MIRO C++ code base,
it crashed. Not my code, the MIRO wrapped around my software. My Kalman
filter was built from the ground up, it was tested at every layer. It generated
beautiful and smooth trajectories for movement of ground vehicles, even with
disturbances and noise from ground travel, and it never lost it’s operation to

28 Untrapped Value: The Problem

segment faults or corrupted data. Never, I plotted it all out to show. But when
it was added and caused the software made or used by others to crash, they
had no idea why it didn’t work, they couldn’t diagnose what was the cause in
time to use it for a demonstration. But in reality, it was never my code that was
the problem, it was their understanding of a massive software base they didn’t
understand that was the root of the problem. Imagine if you are the one that
can’t know where your data was morphed before it go to you, and how long it
was delayed when it left your software through a hidden level. It’s a big deal
if your software has timestamp inaccuracies and that software is designed to
run a robot in real time. Looking at the error statistics for a mobile robot, errors
and noise in orientation - the angles you predict have changed - are the greatest
sources of drift for a computer driven robot by order of magnitudes more than a
few centimetres of translation drift. Most people use very little more than tem-
plates and class inheritance, some operators that make it look easy in the code
but in reality it just leaves people guessing as to what happens with standard
object code beneath. It’s all capable of being reduced to smaller simpler code.
How can I make that grandiose claim? Because, in parallel, the RISC - reduced
instruction set chips - from ARM are winners in the great electronic miniatur-
ization of computing hardware application over other chip designs with CISC
- Complex Instruction Set Chips CPU’s (Computer Processing Unit) and GPU’s
(Graphics Processing Unit). It’s why Soft Bank’s CEO bet heavily on ARM for the
exploding smart phone / cellphone market of the future. The hardware is an ob-
jective layer for comparison and lower power use and faster clock cycles from
a RISC architecture in no way prevents one from completing tasks that run on
CISC chips with less instructions. This is the local winner of the perpetual hard-
ware arms race. In parallel, one is capable of mimicking or duplicating some of
the C++ behaviour with some formalisms on how one writes C software.

I decided never to allow my software to include opaque interfaces that can
do anything naughty or unseemly to my data beyond my sight. I would rather
make my own reduced capability object-oriented code. And that’s what I did.
And do. I create object-oriented data structs with pointers to functions to repli-
cate the inheritance of classes. I use file borders to allow for code hiding and
data abstraction as a way to reduce security. At the same time, I reduce super-
fluous functions or methods into #define macros to reduce the code branchings.
Anything else I leave to the Gnu compiler collection (GCC) compiler for opti-
mizations as needed. I rarely use operational code, most in scientific prototype
code. If you do this, and hide lower level structs into hidden files, you find faster
flowing code without the need for bloated garbage.

For a good starter on GCC, there’s a refresher by Brian Gough called, An

Untrapped Value: The Problem 29

Introduction to GCC[8] that’s a first blush exposé. Of course, if you wish the
complete detailed nitty gritty details of GCC there is the book, Using GCC[14]
by Richard Stallman and the GCC community coders.

Let me give you a more familiar example. I had a girlfriend living with me for
a few months and after some time I agreed to let her son and his girlfriend live
with us. These two young kids were down on their luck, but they also had major
behavioural attitudes that they can’t see prevent them from sorting out their
own lives. One day the son came to me and told me that the dishwasher was
leaking. He didn’t diagnose it, he didn’t fix it, and he didn’t mop up the water.
Welcome to the level of the Uber generation. I didn’t figure out the problem for
a few wash cycles but I eventually realized the rubber seals were dirty and not
forming a water tight seal. I wiped them down, and cleaned the bottom of the
water outtake manifold and the problem ceased. It isn’t just a code problem, it is
a generational commitment problem. All the advances from the 1940’s through
2010 came from a generation of Western developers that sought out and made
quality. They didn’t have an outsource to subcontract to, they were it.

I can’t claim most are as above, but you will want to preclude the latter as
much as possible while seeking to attract the most of the former.

Now, following a reductio ad absurdum viewpoint, then why don’t I program
entirely in assembly language for surely the best performance sheds even as
minimal bloat of C? Well, I am not against it, I have programmed assembly for
Intel 8086X, 80x86, Motorola 680XX, Freescale MPC 5XX, series, and so on, for
small projects. I believe that the principles (strong axiomatic beliefs) of the Unix
philosophy allow for easier portability as well as common object abstractions
like files that it makes little sense to program for one CPU type exclusively.
In fact, with how fast instruction sets for assembly language change as new
processors are created, it makes more sense to store the knowledge inside a
longer form inside a language like C. If quantum computers arrive tomorrow,
there should be more than the lower level to bridge to.

That doesn’t preclude allowing optimizations where necessary, and C has the
asm protected word for just that purpose. That option never disappears. But
with assembly language it takes orders of magnitude more time to test and
debug because it is all down at the smallest granular level. But, if it makes
sense for your purposes and you don’t care about the limited nature of the
work there’s no reason not to include some assembly language with other code.
It’s entirely up to you how you program your application.

Now, with my malignance to one particular software (I did code in C++ at
General Dynamics for a spell so I can’t be blamed as without personal, viceral
knowledge) doesn’t mean that I can’t or won’t use code in a language I don’t

30 Untrapped Value: The Problem

like. But what I want to make clear to you that a lot of the problems that come
from using systems like C++ (problems that were predictable yet nonetheless
caused a generation of computers to work poorly) have more to do with lazy
or non-deliberate programmers not doing a good job of writing software, from
clear program data flows and other proven techniques, for the longer term, and
in most cases these same programmers were being rushed to meet ridiculous
project milestones that prevent their best most deterministic work from shining
through.

This book is a way to show people better, and by adopting and adapting things
you Eschew the One True Way! find floating around in the public domain, still
accelerating project milestones to ambitious levels can be done without needing
to start from scratch. Or chaining people to their desks.

Let’s make a rough economical estimate. Suppose that working into an exist-
ing project of abandoned code will net you a gain of 40% on your investment of
resources. I mention this rule of thumb many times in the book because that’s
the way it will sink into you (if you end up following my advice and getting 60
to 80% net gain, I am certain to get those numbers to collate). Suppose this is
true and remains so over many software project renovations into your own code
base. Let’s say that the original code base was 10,000 hours - which is roughly
5 person-years. Logically, if that was the effort put into each of ten projects, and
you exploit each of them one at a time, year after year, that may reasonably be
estimated like compound interest. Then, after the 11 years of code leveraging,
you may be in possession of a code base worth 289,254 hours. That’s taking
one person, working part of a year and leveraging what’s been done by many
teams roughly equated to five people for a year. Of course, some might be a
wunderkind solo programmer. Some may be snippets of a large corporation,
perhaps even NASA. If these assumptions hold true, then at $50 per hour you
would be in possession of a code base worth roughly $14.4627 million USD. As
a means to store, retain, and grow value, there are few activities short of war
and vices that cause that kind of value growth.

Let’s make a moral argument in favour of the economical ones. There is no
greater value from a holistic ecological perspective, to minimize the energy
wasted, to minimize computer resources needed, the manufacturing carbon
dioxide emissions, and so on. To minimize the collective effort into software
development that must be expended, worldwide, is to deliver to the world the
best in developed software. There will be an upper bound to what is needed
for all applications, all programs, all servers. An upper bound to the various
designed kinds of porting, building, developing testing, localizing and rolling
out. Before that end, there must be a combining and improving of the overall

Untrapped Value: The Problem 31

software on offer into a more significant, diverse, flexible, portable, and under-
standable than exists today.

The eventual better way won’t come in a perfect proscriptive way. That’s the
problem with today’s software reuse: there is no one true way.

Eschew the One True Way!

Chapter 4

Knowledge Reuse by Dialog:
1993 to 2022

Do Not Dwell In The Past,
Do Not Dream Of The Future,

Concentrate The Mind On the Present Moment.
—Siddhartha Gautama, The Buddha

In this Chapter, I reply to the work of an earlier exposition of a fellow techno-
crat expounding the value of software reuse for the US Department of Defence
(DoD) military development community, as a form of dialog. I have copied two
large sections, under fair use for analysis, of the thesis of Captain Donald F.
Burns III; his master’s thesis at The US Naval Postgraduate School, Monterey,
California in 1993. I asked and got his approval to use this in an novel and
honest format. I asked for permission and sent my draft of replies to the sec-
tions for his consideration. I know you might be too young to look back on
your careers, but for us seasoned people it’s rewarding to find out how one’s
work was received and appreciated. And appreciation is my best critique of
Captain Donald F. Burns III’s work I can summarize: his pragmatic grounding
in the project development culture, and a thorough review along the software
design development of DoD makes his perspective as a project manager looking
outward exemplifies how many if not most technical managers would approach
the problem, even in today’s technology ecosystem.

I would like to use this for two fold reasons: one, that it exemplifies the
ideals of reuse are both universal and timeless as a form of demonstrating how
valuable reuse can be, and, two, because using his valid ideas from almost 30
years earlier is a great comparison of time and progress, how old problems have
and haven’t changed from back three decades; it’s a reflection of how hard,

33

34 Knowledge Reuse by Dialog: 1993 to 2022

impractical, and unmanageable the ideals may be. By comparison and contrast
alone, we realize even the simple presence of problems today haven’t an easy
answer if they haven’t changed in 30 odd years. It takes at least two things to
instill change: a realization that some things haven’t changed despite efforts,
and an acceptance that to change things one must alter how one goes about
achieving that change.

I would like you to accept Captain Burns III’s words as perfect and unassail-
able because it is unfair to judge any work from many decades ago given that
as the reply my work has the comfort and conceit of extra time, knowledge,
experience, and so on. This chapter is not made to make my work better, but
demonstrate how melding ideas over time makes for better ideas by leveraging
what was, which is the goal of this book.

The first section is Captain Burns III’s Software reuse and the Army program
development process Chapter III Section C: OPPORTUNITIES FOR REUSE:

Chapter III Section C: OPPORTUNITIES FOR REUSE

" The first step in applying reuse to any new system is to examine the
operational domain of the system under scrutiny. In essence, if the system
to be upgraded or developed is a missile, then other missile systems should
be considered as candidates for potential reuse contributions. Other areas
which should be targeted for review for reuse application should be sys-
tems which incorporate a particular characteristic or functional capability
identified as being conceptually necessary or required in the concept ex-
ploration phase of program development.

During the System Definition phase, a close examination should be made
of existing architectures in similar systems. Reuse requires that these archi-
tectures be examined for advantages and opportunities to incorporate both
hardware and software technology systems into the new system. Although
fielded systems generally contain less state-of-the-art or leading-edge tech-
nologies, reuse of existing or architectural concepts preclude large expen-
ditures on concept exploration -- essentially eliminating the re-invention of
the wheel. Even something as seemingly minor as the approach used to de-
velop the architecture in an existing system can be utilized to save time and
money in system development. Any reuse of architecture will necessitate
further investigation of the existing system for reuse of other components.

Reuse of existing systems specifications and associated documentation
can provide baseline requirements for new systems as-well-as systems un-

Knowledge Reuse by Dialog: 1993 to 2022 35

dergoing upgrade. If nothing else, a comprehensive review of requirements
for currently fielded similar systems should highlight shortcomings in re-
quirements identification and definition. Test procedures, standards, and
results of similar systems should be examined, again with the idea of
baselining. As mentioned earlier, testing is critical and can lead to dev-
astating results in the end product when incremental testing shows the
system development to be on target, but the final product falls short of
overall performance specifications. Only after a project is complete and
undergoing operational testing does it become apparent that the system is
inadequate, usually requiring more time and money to fix the problems,
if they can be fixed at all. Reuse can potentially save considerable time
and money if applied at this stage of the software development process.
Even if actual requirements and specifications systems are not reused, the
contribution of examination and comparison will pay valuable dividends
even if demonstrating what not to do in software development.

The next step in the software development process, preliminary design,
is the first phase in which actual coded modules can be examined for po-
tential reuse. Applying reuse at this phase requires examination of those
systems identified in the previous phases and as having similar require-
ments, specifications, performance characteristics. Careful scrutiny of se-
lected target systems while simultaneously establishing the preliminary
design should provide opportunity for the developer to compare and con-
trast actual modular breakdown with proposed modules. Because reuse in
this phase entails identification and comparison of functions or hierarchi-
cal modules which can contain hundreds of lines of code, it is possible that
actual code as-well-as module concepts or functions could be utilized in
the developing system.

Reusing actual code will substantially reduce time spent on detailed de-
sign. It may be possible to incorporate directly (or after slight modifica-
tion), any reusable modules identified during the last step. Direct injection
of reusable modules will eliminate time spent on detailed design during the
coding phase. Additionally, this will also have positive impact on related
testing, providing early information which could potentially impact other
modules and associated testing. If direct reuse of modules or hierarchical
functions proves impractical, reuse can still be helpful in the decomposition
of the proposed system. Although not absolutely certain, the probability is
high that new systems, unless incorporating radically new technology, will
have some commonality of function or design with existing fielded systems,
thus offering potential for reuse of decomposed forms.

36 Knowledge Reuse by Dialog: 1993 to 2022

During the coding concept and testing phase of software, the traditional
concept reuse is applicable. That is, the traditional concept of line-by-line
review of coded software, classified by standard domain analysis. This ap-
proach would be used for those modules which have not been the recipi-
ents of imported reusable modules identified in previous phases. Although
it may be sound easier to commit these detailed modules to standard en-
coding procedures, the developer still runs the risk of generating errors
in the code. And, as mentioned earlier, testing must be considered, devel-
oped, and tested. Testing of the new code can be time consuming. And
while a line by line search (by domain) can be time consuming, it may still
be quicker and cheaper than developing the individual coded lines. Reuse
at this point also offers the potential of utilizing previously debugged and
tested code, thus saving time. As sufficient code becomes catalogued,it may
be someday be possible to draw nearly 75 percent of new programs from
reuse libraries, either as functional modules or as individual lines of code,
with the remaining 25 percent consisting of the requisite software bindings
and new code to utilize technological advancements.

Although integration and system testing cannot directly benefit from
reuse, the two areas will benefit indirectly. Because reuse can significantly
reduce design and development times and thus the time spent on the as-
sociated testing and debugging cycle, the program should have more time
in the overall schedule for integration and system testing. Additionally, the
use of previously developed, and successfully tested and deployed software
systems components can substantially reduce the integration debugging
process time.

The maintenance phase of reuse candidate software programs should be
referred to throughout the development process of new programs. Each
step of the candidate programs for reuse should be analyzed for potential
inclusion in the developing software program and then cross referenced
with the maintenance documentation to determine faults or problems in
the original programming. Any anomalies and errors detected and cor-
rected in the original software and its test plan can then be applied or im-
plemented into the new development. If correctly documented, the main-
tenance phase of programs targeted for reuse provides corrective guidance
useful in cutting error detection time found in the original programming,
and prevents repetition of errors found in reused software components.

Clearly, software reuse is applicable throughout the development pro-
cess. It can be both cost and time effective, but there are limitations that
should be readily apparent. Only successful, well-documented programs

Knowledge Reuse by Dialog: 1993 to 2022 37

should be candidates for reuse. Programs which suffered from habitual
teething problems during development should not be used, even if the pro-
gram has been fielded. While a fielded program can be judged to be at
least marginally successful, software which suffered through slow and er-
ror prone development generally suffers from poor planning, design, and
execution, thus providing a poor model for new program development.
As with any program development, a critical analysis thus should be per-
formed of the risk involved with reuse candidate programs. Obviously, high
risk programs based on dubious software programs should only be referred
to for the lessons they can provide in error analysis and detection."

A Reply to Captain Burns III’s Chapter III Section C: OPPORTUNITIES FOR
REUSE

To start, when Burns III talks about operation domain, in terms of military
speak, is the application domain of a war fighter. Many Object Oriented Pro-
gramming (OOP) Layers exist between the application and the foundation code
leaves many objects across any bespoke object hierarchy of the operation do-
main; e.g. missile telemetry needs system plant model for control of motion that
is governed by physics laws and therefore a set of physical constants and vari-
ables. While constructors are constructors, software objects like Kalman filters,
extended Kalman filters, and so on that estimate movement with a probabilistic
approach with differing physical mechanics and dynamics, have a set of func-
tions that they use to work properly that are unique for a missile versus a tank.
The physics equations are different, but most software Kalman filters are like
a toolbox that could be applied over a large variety of applications (operation
domains). To describe it in a conceptual way: every software program is like
a set of functions as blocks that build a unique pyramid from common bricks.
In this perspective, the reuse can be applied most readily to the common parts
of the operations design, and less readily to the unique parts. Like Figure 4.1,
while a romaine lettuce is a kind of food, it’s a more specific kind of food that
just “food” that can apply to anything. The more general parts of code are the
most common, the least general parts of software are specific to the specific
application domain.

From a generic tool box of software creates a pyramid of similar programs
using overlapping bits at varying levels that are general and unique parts that
aren’t. I tried to think of a way to describe it better with a software specific

38 Knowledge Reuse by Dialog: 1993 to 2022

The specific to general, advanced to common is a common truism made by human
ontology

context, and then I remembered the old OSI - (Open System Interconnect)1

layers describing internet traffic from one application on a client talking to a
server across the internet. The seven layers are Application (nearest the user),
Presentation, Session, Transport, Network, Data Link, and Physical (the wire
connections in a wall governed by electrical physics laws) layers. Notice that,
in every stage, a packet gains and then loses size as that protocol is added to
/ stripped off the message and passed onto the next layer. Without considering
the actual software flow, this represents how the common pieces of data through
transport are larger while the least common (Application layer) are also the
least general elements of software.

Looking at the code from another perspective, it’s important to recognize
that the implementation architecture at many levels can be substituted with
something from another kind of process and still execute to similar performance
standards, More than identical performance, the same need can be satisfied in
many ways. Here are simple examples: you can substitute for TCP/UDP local
network protocol from a TCP/IP internet protocol in a communication modules
(in fact Linux puts both of these available at the kernel level). From Figure 4.2
above it shows that merely changes one or two layers in the overall process.

If this is the case, then why is it so hard to determine how reusable code can
be? It’s a reality of the nested system confusion: hierarchies of hierarchies. In
any software program, server, library, or core module there are systems within
systems. It’s not clear, especially when the documentation is lax, just what inter-

1. https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-
between-the-osi-sevenlayer-network-model-and-tcpip

https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-between-the-osi-sevenlayer-network-model-and-tcpip
https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-between-the-osi-sevenlayer-network-model-and-tcpip

Knowledge Reuse by Dialog: 1993 to 2022 39

OSI Layers by message size as seen across the seven layers(from OSI 7 Layers);
layer headers are inserted and stripped off sequentially on both sides of the data
transmission.

acts with what and where does it head: what data types are needed to get the
whole thing started and initialized, what data can be saved for later, and what
is extra fluff that can be ignored. The ultimate question for every code review:
how can I get what exists to do what I want it to do?

But how can this be if they spend so much time looking at it? Because com-
plexity isn’t easy for most to follow. There are many pieces that can be swapped,
but if you do you might have to change the format, decrease the width of the
data, renumber outputs, and create new ways to handle an interrupt, and on
and on. For example, while the Linux operating system gives you simple func-
tion interfaces to provide input and output into the Linux kernel. But, if you
don’t use the API they give you, there’s no guarantee you could duplicate it in
an easier way. It will take far longer to find a faster way to duplicate the same
behaviour, than just make a test program and send data then read the returned
output from the kernel. It’s always possible, but it’s rarely economical.

What this comment does highlight is that there are identical parts and similar
parts, then perhaps there are opposite parts that do something we can predict
is the opposite of the first parts. Does any code source give you synonyms and
antonyms for functions? Again: different time, same problem.

If one catalogs system components at different complexity/ granularity/scale

https://www.electronicdesign.com/unused/article/21800810/whats-the-difference-between-the-osi-sevenlayer-network-model-and-tcpip

40 Knowledge Reuse by Dialog: 1993 to 2022

levels, one can make better use of the available software components. Yet how
many software code bases allow easy access to all layers at any granularity?
Very few, and hence the problems pointed out in 1993, exist today. Has anyone
fundamentally changed how they teach software WITH AN EYE TO reuse? Does
every design step have a “research existing software” phase?

There’s another reality, you can find granularity to how things work. There
might be a function that works on whole files, while at another level it is reading
line by line from the file. There are functions that send data one bit at a time, a
byte at time, and others that send internet packets of 1500 characters and com-
pile the returns into a 5 MB file. The programmers have had to work out how
to marry the gigantic and the minuscule to accomplish all the tasks expected.

Another complexity difficulty for both , some programs can be dynamically
hooked to many libraries that provide data, if you change the configuration the
same program changes how it uses different libraries, it breaks older interfaces,
and sometimes you can’t realize at the GUI anything has changed. You can
even copy over a library with new code and unless it fails you won’t detect it
until the library uses the new code. There are system warnings and so on, but
remember there are also network-based techniques like remote procedure calls,
callback functions, that access system components invisibly to the user and the
developer. They can change running systems.

Burns III makes an interesting point about testing inside an application, and
identifies direct injecting "reuse modules" that would be needed for testing of
specifications and requirements. Direct injection of libraries is a common prac-
tice on many operating systems so that’s a If a reuse module is a library of
modified / upgraded code components, then it’s vital to be able to test these
separately as well as used together inside a program. Do many software libraries
provide parallel testing of modules at all levels, all granularities?

It’s important to make a distinction of how software generally worked in
1993, for perspective. When this paper was written in 1993, the conventional
nomenclature was a program runs in user space, a server works in remote
machines connected by some communication format, and applications were
business programs that corporate offices used like word processors and spread-
sheets. You may not be aware, but applications in cellphones are actually op-
erating inside the operating system space inside smart phones (back in 1993 a
"smart phone" was a personal digital assistant with spotty internet and if you
were really posh a cellular) which is different from the 1993 business appli-
cations that were whole scale programs loaded into user space on a machine.
If this is confusing, I accept I’ve failed at making a distinction, then the way
things work today is radically different than the way they worked back then.

Knowledge Reuse by Dialog: 1993 to 2022 41

The frames of reference for any program designer are vastly different, but on
the outside we are oblivious to the radical changes. There are blurred lines
around all these different ways to program software, all contributing to the
complexity we all take for granted. There were no virtualization platforms that
allowed one operating system to work within another program at different
scales. There were few GPU’s that were as complicated as modern CPU’s to
offload all the graphics work onto. In 1993, there weren’t application specific
integrated circuits (ASIC) apart from CPU’s that contain the effort built into
many old software libraries, only faster and more efficient than software. To-
day, one can expand the complexity along many dimensions that weren’t seen
as possible back then.

At the end of any analysis for any application domain, you are left with the
basic things that define software: there are hierarchies of objects formed into
files that are clearly scoped modules, there are libraries that combine a group
of modules pulled together and archived to find objects within them. There are
development modules that are being created, they get combined with working
code and the outputs are tested to see where they make mistakes / errors or if
those errors stay hidden until some other module exposes the failures.

At the design stage, reuse of code will work with no effort spent if the re-
quirements, specifications, and test outcomes involve a pre-made module that
meets or exceeds the new design’s requirements, specifications, and outcomes.
It will require no rework if there are tests available for every granularity, for
boundary conditions for all specific to general functions.

If the needs are identical, then no work is needed (development, integration,
testing) and the project can move past this module. If the module doesn’t work
as needed, then a differential analysis determines if and what needs to change
to make those requirements meet. If the module can’t be salvaged or modified,
with an economical plan, then there’s a case for starting over from scratch. If
the modifications can be made, they are planned into the development plan.

Here’s another very serious problem; standards and requirements change.
Not only do software conventions force changes to meet new design paradigms,
evolved software QA (Quality Assurance) guidelines, accounting standards,
contractual arrangements, legal liability issues including strict liability, human-
critical and mission-critical systems requirements, Underwriter’s Laboratory
safety changes, Technical Society (like IEC/ISO or IEEE) Standards, scientific
discoveries leading to new hardware, and even now ESG (environmental, so-
cial, and governance) compliance mandates to keep investors happy. It’s easier
today because tools are more powerful, but the mandates programmers must
please have grown exponentially at the same time. That means that changing

42 Knowledge Reuse by Dialog: 1993 to 2022

code has become the standard, not the exception.
Looking at a project development process from the macroscopic level, in the

era of reuse, the waterfall model may disappear in favour of a perpetual evolu-
tionary spiral process (PESP); it’s possible the boundaries of the design process
will become skewed to a re-re-re-redesign (ad infinitum) of the maintenance
software over and over, iteration after iteration. When you tie in the new needs
and new problems, it’s no wonder why.

We may see an end to the traditional waterfall, the development cycle, and
even centralized planning.

Jumping to a comparable, the 29 years of Linux operating system as a project
is a resultant of billions of spiral model design processes by many independent
or teamed developers, inserted and pulled at random intervals, to then be pulled
by (downloaded into source trees with other existing software) others to be
tested and a slew of bug tickets complaining about what’s broken. And every
so often, a team of people stop code insertions and they pull together a release
candidate that gets as much of it all working to no one’s satisfaction, and then
it’s released. One day after the release, people are back to inserting more code
into the bleeding edge up revision. The entire process is a direct injection code
fest, 24/7/365.

Take the concept of a direct injection module, let’s call it a sublibrary, testing
of a sublibrary on it’s own should allow one to send it, complete with it’s test-
ing programs, onto another group to verify your results. That different group
should find results similar unless there’s a particular hardware bug or software
architecture disconnect between the two computer machines under inspection.
That’s all part of wide testing as many have found out the hard way, debugging
as they have.

For the sake of like comparison, let’s define a sublibrary as the smallest com-
puter machine language code that combines to make all the larger software
targets like alleles combine to make your DNA.

But the idea of direct injection of a sublibrary, is the essence of the reuse
problem from start to finish: one group designs a software module to solve a
problem, then they test it and find it’s performance satisfactory and then they
ship it to other groups that reproduce the results, or find things to fix, or fail
to get it working. The realization here is that any reuse mechanism must never
lose sight of the core process begins and ends with work transmitted between
groups for the purpose of reusing in various applications, operating systems,
CPU/GPU/MCU/ASIC hardware architectures, with a greater variety than was
anticipated at the start.

It would be most valuable to allow the receiving team to anticipate how well

Knowledge Reuse by Dialog: 1993 to 2022 43

that sublibrary will work in the new environment, to anticipate and allow their
design to anticipate how much of the processing time will be used by all sub-
libraries working together. It would be invaluable to a designer in the prelim-
inary design state to make predictions about how much work is already done,
how much processors have extra capacity, and how much memory will be free.
The ability to deliver more than "will this work?" has significant implications
for tomorrow’s designs. This would achieve the early information needed by
designers presaged by Burns III in 1993.

Indeed by considering made sublibraries versus developing new ones will
help the search and allow designers to focus on missing or inadequate subli-
braries from the catalog or alternatives. Pre-existing tests and pre-existing data
sets are also important and encourage reuse by giving future designers finished
products to use right away rather than wait for an preliminary design (I don’t
use alpha and beta testing through out this book to keep the system advance-
ment as wide an interpretation as possible) to be fielded to collect data and be-
gin testing. Every pre-made test on their own gives a developer ready examples
to consider and what is lacking that will be needed to meet requirements, or
meet code coverage. Reuse is needed by all design stages to allow new designs
to take advantage of the prior effort: These are all elements of stored value.

A library by my nomenclature is a collection of sublibraries into a complete
set of data creators and manipulators of varying models and descriptions. They
are assembled for the use of a program or user, most often far wider than any
one developer will use. A catalog of functions and data, like the API of a library
is what current developers create. This is the way these objects are offered and
documented. But there are many ways to describe the functions and apply the
code and it’s not always clear to the satisfaction of the next set of developers
and the eventual users. There are many ways to describe the purpose of any
code, it’s up to the user and not the documenter what is needed, and that’s
rarely obvious to both sides.

While a goal of 75% software reuse is a worthy goal and can be achieved,
recent history suggests that the only way to arrive at 75% renews demands
that the interface to the code must widen to meet a broader and wider range
of potential developers for an even larger set of users. To meet the code base
reuse goal, more documentation and better documentation are needed.

It’s a paradox, the more code on offer, the more it takes to find within the
code what the developer wants if it’s not documented better. Another facet of
system complexity that isn’t scrutable from the outside perspective.

Another innovation to achieve that goal would be make the testing units -
and even the debugger - provide more explanation to the developer than just

44 Knowledge Reuse by Dialog: 1993 to 2022

the API.
Any library system that helps catalog all the functions as they are added

would also make it easier to reap the rewards of reuse.
In the new era, the maintenance phase takes on a whole new meaning in

2022 versus 1993. Today, electronics are faster and cheaper that 1993 kitchen
appliances, with planned obsolescence every two years or so because upgrading
and improving one device costs more than simply abandoning it for newer pro-
cessors and larger memory machines. It has become most industries standard
modus operandi. That would have been unthinkable to throw out a desktop com-
puter or workstation every 2 years. And yet in many ways today’s smartphones
are superior to many computer stations of the 1990’s.

So, in this climate, the maintenance phase takes on a whole new meaning; it
is an eternal background activity. New hardware add-ons are designed into the
existing hardware core architecture, specific software to use the new hardware
is developed, and the toolbox of hardware and software expands for the next
generation of third party software developers to make their applications on top.

The maintenance phase today is the a perpetual swirl of foreground and back-
ground activities. Very blurred lines, but nonetheless a steady stream of oppor-
tunities to inject into the process. that still exists for any software development.

In this climate, a project designer would be better off knowing what code
bases are available, what functionality is already available and for short, sharp
projects adopt a very simple strategy: dovetail or piggyback.

For a piggyback, determine if it’s possible to get the existing code to be used
to deliver the needed data to the new module without touching any of the un-
derneath architecture. A piggyback combines the two into a serial relationship.

For a dovetail, determine what’s missing from the existing code and design
a module that will work in parallel with the existing code but also delve into
the underneath architecture. Together, the existing code and new code form a
bigger interface inserted into the rest of the system. A dovetail combines the
two in a parallel relationship.

In a piggyback, testing will concentrate on the new module because it’s rel-
atively novel and the previous software will have been tested. It slants the as-
sumption about errors to remain isolated to the new software, while exceptions
will pop up. The presumption that bugs won’t be in the older code presupposes
it was tested for the entirety of possible uses, of which no one can be certain if
those parts were never used elsewhere.

In a dovetail, the errors will exist in the new module and may exist in the old
module as well. There won’t be as much certainty as to the isolation of errors.
Both components will need to be tested in parallel.

Knowledge Reuse by Dialog: 1993 to 2022 45

In any kind of code layering and retesting the same code many ways will find
more errors than simple code coverage.

In response to Burn III’s predilection to judge software at the project level,
teething pains in operation and so on, that, given the complexity and layering
of any library, it’s hard to write off any code as the location of all the ills and an-
other part the location of all the benefits. Therefore there will be a distribution
of code qualities throughout any code base, regardless of the entire results.

The ability to review code and find code quality from any developer and
provide the improved code in a software catalog for wider use is as important
as the programs and applications in total.

Burns III is entirely correct is that the end user, level and user application
there will be much pain and suffering on underperforming software. But, as
software code modules advance on down to smaller and smaller modules and
smaller portions of poorly working, poorly tested, and poorly documented code,
there is a way to make the quality therein live up to the higher standards of
the rest.

How this would be achieved can take place in many ways, but no matter
which prefers to the designer or developer, which goals are the priority, there
will be a better code base in the future for others to reuse and therein delivers
the value over and over to the rest of society.

Leverage Strategy #1:

Leverage middle ware and application code on top of the Linux operating sys-
tem. Or RTEMS, or BSD, and so on. If you piggy back all your code onto a
sophisticated code base like a proven kernel, you might achieve both perfor-
mance specifications, reduce obsolescence, and minimize redundancy as the
code base underneath evolves for you. Of course, this strategy would sacrifice
the need for larger software teams but require a constant overwatch of the
rapid advances taking place inside the kernel project. If one adopts principles
like backwards compatibility, upwards compatibility, and so on then one can
work in an isolated code bubble with certainty.

Leverage Strategy #2:

Use the NASA re-use standards. It’s easy to focus on the narrow area of how
you work on your software project, but if you adopt practices that are pre-
existing as a background activity to your work, you have allowed yourself to
exploit the reuse lessons learned by others at their expense. Even if you don’t

46 Knowledge Reuse by Dialog: 1993 to 2022

reuse a single line of someone else’s code, you will make life easier for the next
developers using your code.

Captain Burns III’s Chapter III Section D: REUSE INHIBITORS

Captain Burns III’s Chapter III Section D: REUSE INHIBITORS

This section is another valuable way of dialog by replying to another tech-
nocrat’s exposition of the struggles within a large organization, with seemingly
limitless funding, but with a many stove-pipe defocus and random time frames.
Before you read this section, I want to make a declaration. I wasn’t aware of
this work when I started this book, I found it about halfway through my book’s
writing. Long after I wrote the the beginning of this book. You will see the parts
I am alluding to later on. If only I had read this in 1994!

"Although the software reuse procedure for new program development is
fairly straight forward, there are a number of factors which have so far pre-
vented employment of reuse on a widespread basis. These inhibitors cover a
wide range of areas, but can be condensed into several primary categories.
These categories cover

1) standards,
2) training and education,
3) management,
4) lack of centralized and cataloged assets,
and 5) legal and contractual issues [Ref.49 39:pp. 1-8].
While the management category would seem to encompass the reuse in-

hibitors from the program manager’s perspective, in actuality, all of the cat-
egories bear some impact on reuse implementation. Each category contains
inhibitors which actually affect areas outside what could be considered the
bounds of that particular category. And within the each category,the separate
inhibitors also carry overlapping influence.

The following is an analysis of five primary categories of software reuse
inhibitors. It will focus on the individual factors within each category and
their impact on specific areas, applications, or implementation procedures and
techniques of software reuse.2

2. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 47

1. Standards

a. Lack of Standards

The lack of standards in such areas as hardware and software architectures,
and commonly utilized software languages, perpetuated by that the DoD re-
quests and requires and by what the industry and contractors provide, con-
tributes greatly to the difficulty of attempting to implement software reuse.
This is especially true of the military attempts at software reuse. Because the
military uses civilian contractors to develop most software, then each contrac-
tor generally has commercial interests which produce software in a preferred
commercially marketable language, there tendency by the contractors to de-
velop DoD programs in the same language of choice. Once the program is
developed, it is then usually translated into the DoD preferred Ada computer
language. (The term "usually translated" is used because the requirement for
DoD to use Ada is fairly recent. A large amount of equipment utilizing a vari-
ety of software languages has been fielded prior to the implementation of this
requirement, therefore it is impractical to expect this code to ever be compiled
into Ada. A factor impacting the compilation of Ada in programs currently
under development is the loose enforcement of the regulation. For any num-
ber of reasons, the software development contractor may be exempted from
delivering a final software product in Ada.) However, because this is a higher
order language, each line of which may be the transposition of several sepa-
rate lines of another code which subcommands in turn can be composed and
routines, it does not decompose easily or simply when attempting to examine
the code it for potential reuse.

From the hardware perspective, the problem seems somewhat simpler to
understand. Although two different programs may be written in the same
language and may even have very similar applications or domains, they may
be designed to operate in very different hardware architectures. The differ-
ent hardware systems and their basic approach to program execution may
effectively prohibit porting or reuse of other program segments onto targeted
hardware. Whereas some architectures rely on hardware solutions to specific
problems, others rely on software solutions to address those same problems,
consequently, the hardware design will dictate the software developer’s ap-
proach to the program development.3

3. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

48 Knowledge Reuse by Dialog: 1993 to 2022

b. Lack of standard or common development methodologies

Although the DoD is governed by a host of regulations designed to provide
control and structure to the development process, civilian software developers
are under no such regulation. Each software development company has its
own internal program and guidelines. Consequently, the development process
described earlier, which so readily lends itself to a structured building block
approach and provides significant documentation so easily adaptable to reuse
analysis, is not followed by those outside the DoD. As a result, adequate doc-
umentation for potential reuse may not be available. The usual drivers of
poor or insufficient documentation is shoddy program design and incoherent
structuring of modules, both of which dissuade reuse implementation. These
programs often suffer a painful development process and are generally plagued
with problems throughout their life cycle, making them unlikely candidates
for reuse.4

c. Lack of Common Notation for Describing Designs and Requirements

Although seemingly minor, this inhibitor to software reuse complements both
the Lack of Standards and the Lack of Standard or Common Software De-
velopment Methodologies. Just like spoken languages with their own unique
alphabets, software languages have their own symbology and notation. A pro-
grammer experienced in one language may only a vague understanding of
another, rendering any attempt by the programmer to analyze a program tar-
geted for reuse an exercise in futility. Although most symbology and notation
has comparable representation in every language, the cost of translation and
transposition can be prohibitively expensive for a project with such a dubious
potential payoff.

Another problem occurs when attempting to measure the performance of
programs against an accepted standard. The lack of commonly accepted hard-
ware performance standards and software metrics prohibits the developer
from effectively comparing the performance of one program or program seg-
ment against another. This is a very complex concept, as measuring perfor-
mance is as measuring is more than just operating against the clock. The

4. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 49

measure of software performance must include allowances for hardware in-
duced performance, as-well-as broad parameters which define singular com-
putations and program executions. The measure of hardware performance on
the other hand must take into account how each specific piece of software goes
about the execution of its tasks, and negate those effects to accurately mea-
sure performance. The lack of standardized metric to test either hardware or
software components prevents any real attempt at even examining the broad
base of existing software for potential candidate reuse programs.5

d. Lack of Methodology for Extending standards

There are literally hundreds of software development and consulting firms in
operation in the U.S. Many of these firms are currently engaged in develop-
ment or consulting efforts with the DoD, and are often in direct competition
with each other. Consequently, there is seldom a free exchange of information
between firms on progress in either software hardware development. Addi-
tionally, each of these firms measures its progress against its own internally
accepted standards, and while some of these standards may be shared or sub-
scribed to by many firms, not all firms agree on all standards, nor are they
necessarily the latest standards. Precisely because most of these firms are com-
petitors, any advances in metrics, design, hardware, or development processes,
are often kept secret by the developers to gain the most from the advancement,
either in monetary or technological terms. It is seldom in the firm’s best in-
terest to advance the general knowledge of competitors. Current efforts by the
industry to track progress and standards of performance consist of deriving in-
formation from trade publications, advertising copy, and reverse engineering
efforts. Consequently, there exists within the industry no mechanism or body
of regulators (other than the DoD) to decide what are the appropriate stan-
dards for the industry, how to ensure compliance with these standards, how
and when to upgrade these standards, and finally, how to disseminate this
information throughout the industry. As with the lack of standards, the lack
of a mechanism to promote and disseminate those standards inhibits reuse by
acting as a (negative) force multiplier for an already crippled industry.6

5. copied verbatim from Burns III Thesis
6. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853
https://apps.dtic.mil/sti/citations/ADA270853

50 Knowledge Reuse by Dialog: 1993 to 2022

e. Lack of Standardized Definitions of Reused, Common, Shared Software

In an industry bereft of standards, it is not surprising that a common defi-
nition for reused or shared software cannot be agreed upon. This is a simple
situation of putting the cart before the horse. It would be impractical if not
impossible to define such things as reused, common, or shared software with-
out first addressing the industry wide problem of general software standards.
Obviously, software reuse is inhibited by the lack of standardized definitions of
what constitutes reuse. (If you can’t describe it, you can’t define it, and if you
can’t define it, you can’t find it, and finally, if you can’t find it, you can’t use
it!) Additionally, the lack of a regulatory body or dissemination mechanism
adds to the inherent reuse inhibitors.7

f. Lack of Well-Defined Reuse Methodologies

The compliment to the lack of adequate and standardized definitions for
reuse or shared software is the lack of any well-defined or standardized reuse
methodologies. While the industry cannot settle on standard software develop-
ment models, it would be totally unrealistic to believe the industry can settle
on any standardized models for reuse implementation. Again, any attempt
to implement an undefined concept across an entire industry can only meet
with failure.8

2. Training and Education

a. Reuse Inhibits Innovation and Reduces Competitive Advantage

Within the industry, software reuse is viewed as a rehashing of old ideas and
technology. In an industry where there are literally scores of software

producers, innovation is a market discriminator. A key strategy in marketing a
software product is to discriminate the program from its competitors. This is
usually done by a focusing on some new feature or gimmick. Consequently,

reusing previous released software eliminates this potential marketing
approach. An additional factor that the software firm must consider is the

7. copied verbatim from Burns III Thesis
8. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853
https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 51

actual software engineering workforce. If the aforementioned workforce views
software reuse as a restraint on creativity or a hindrance to innovation, the

company may be hard pressed to maintain experienced and talented software
engineers. The perception that a firm cannot engage in software reuse while
keeping talented, cutting edge people on the payroll, and thus not produce

innovative, cutting-edge competitive software products is a tremendous
inhibitor to actual reuse application. This is true of the software firm, whether

operating in the commercial market or the DoD contractor arena.

b. Lack of Readily Accessible Information on Reuse

Although the concept of around for years, there is dearth of information
readily available on the subject. General industry attitude combined with the
lack of standards and methodology has left software reuse in its infancy while
the primary focus of the industry promoted evolution of program engineering.

Software reuse information is skewed by rumours falsehoods about the sub-
ject. This is the result of the ill informed or misinformed generally interjecting
their bias into the available information. It is important to remember that
programmers are often paid by the number of lines of code they generate, and
consequently find it in their best interest to inhibit something like reuse which
they might perceive as a threat to their livelihood.

This overall lack of quality information on reuse has stunted interest in the
subject and the proliferation of usable information. The same programmers
who may see reuse as a potential financial impingement are also the same
programmers that write industry magazines. It is entirely possible that infor-
mation about reuse could be stifled for the reasons of self interest. Without
accurate and adequate information or any mechanisms to spread this infor-
mation, it is doubtful that reuse will ever be implemented on a wide spread
basis. 9

c. Limited Training for Reuse

For those interested in reuse, whether they are managers or engineers, con-
tractors or the Government, there is little or no training available. As men-
tioned earlier, there is a dearth of standards within the industry. Consequently,
very few companies or organizations are inclined to invest money, time, and
resources into training personnel to engage in or manage reuse of software

9. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

52 Knowledge Reuse by Dialog: 1993 to 2022

components. The lack of training also impacts the amount of information
available on reuse. There is a dependency cycle in which information is needed
to inaugurate training, but training is needed to develop information, Once
the cycle begins, it will be self-sustaining. However, getting the cycle started
may be a monumental task. 10

d. Lack of Knowledge and Training of Data Rights and Licensing Procedures

Although this might be considered as a topic under the Lack of Available Reuse
Information category, it is really more of a legal problem than an informa-
tion problem. Proprietary rights and data rights of published or contracted
software are by law the property of the developer (except where contracted
developers give up those rights as part of the development project) and can be
used only under license from that development firm. For any potential reuser,
there must be a license agreement, not just to use the software, but possibly
to decompose it, alter it, and finally combine it with other code from similar
sources. There are a number of problems with this concept.

First, to submit a program or programs to reuse will require substantial
documentation of the software and testing. The producer, in order to protect
his interests in this process will need to engage in management of the software
which, for an independent producer especially, can take considerable time.
Either the producer manages the program himself or the firm establishes an
internal mechanism to manage this process. This would require manpower,
facilities, equipment, and cash. Obviously, this investment must be weighed
against the potential profit to be made through licensing reusable software.
An additional problem is potential liability for software problems which may
come from a firm’s reuse software. In an era of intense litigation against over
producer over producer liability it could be catastrophic for the developer if
his software caused a major software crash for another developer.

For the potential reuser, the problems are even more complex. The potential
reuser must either be ready to spend great amounts of time and money to an-
alyze potential reuse candidates, or he must develop a mechanism to conduct
reuse business. Although this sounds relatively simple, the establishment of
a reuse management mechanism for the potential reuser would be costly and
have a tendency to grow. The essential structure would need to include a man-
ager steeped in software engineering as-well-as software contracting. A bevy

10. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 53

of software engineers familiar with internal projects requiring reusable com-
ponents would be required to research and analyze each and every potential
reuse candidate program. The section would require both lawyers and con-
tracting personnel to work out the details of agreements which would allow
the software engineers to examine other programs as well-as use favorable
components. And finally, any effort of this type will require a multitude of
administrative people to manage the records and documentation.

A final problem which may plague the potential reuser is the fact that many
software forms are here today and gone tomorrow. Although the programs are
copyrighted, company may no longer be in business. Any reuser is bound by
law to license the software for reuse. This means that the reuser must find
an organization or person with proprietary rights over the software. This can
be a long and tedious process and may not be worth the time and effort to
conduct a search versus just developing the software from scratch. Until the
legal fundamentals are worked out and guidelines established and firms are
ready to make a concerted effort to implement software reuse, this area will
continue to be a problem and will definitely impact reuse implementation. 11

e. Software Common Practice of Redesign/Redevelop Versus Hardware Incremental
Development Practice

Within the automation industry, there are two distinct practices with respect
to software and hardware development and improvement. Firms generally ap-
proach hardware upgrades or revisions using incremental improvement tech-
nique. Their approach to software on the other hand, is one of new program
development instead of measured improvement.

Essentially, firms utilize existing hardware platforms and apply focused
technological improvements to specific areas of the platform, incrementally
improving performance. There are several reasons for this hardware improve-
ment approach. First, the pace of hardware improvement moves only as fast as
technological advancement. Although revolutionary improvements do happen
within the industry, most of the effort is focused on improving existing technol-
ogy. Consequently, great technological strides or revolutionary improvements
are few and far between. Second, is the matter of economics. All of the firms
in the industry are in business to make a profit, and each firm does this in

11. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

54 Knowledge Reuse by Dialog: 1993 to 2022

a variety of different ways. Firms make money on providing upgrade compo-
nents to existing equipment -- again, an effort to capitalize on technological
advancement. Another method for gleaning a profit commonly utilized by the
industry is to offer a wide variety of models utilizing common components or
technology similar to practices found in the automobile industry.

Finally, and most controversial, is the practice of utilizing planned techno-
logical obsolescence and controlled technological insertion. This method calls
for utilizing combinations of components which have a limited or planned
life-span with respect to leading-edge technology. This planned obsolescence
is coupled with carefully calculated technological insertion. Essentially, a firm
will time the improvements as a marketing tool to boost sales where current
machines offered for sale have lost their technological edge to the competition.
This idea ties in to the concept of maintaining a desired level of market share.
If a firm wished to maintain its current level of market share, the firm may
hold some improvements in reserve to counter competitive efforts by the com-
petition to increase market share. And finally, incremental improvements are
the backbone of the lucrative upgrade market mentioned earlier.

Software development on the other hand is viewed as a cottage industry
within the automation field. Because software development is generally less
equipment and personnel intensive, is viewed as being easier than hardware
development. This view is predicated on the industry’s lack of standardization
with respect to almost every area of software development. Instead of teams
of engineers working together to develop improved hardware, the software
environment is populated by individuals, meticulously and painstakingly de-
veloping and testing a program on the targeted machine. The industry views
software development more as an art form than a science. subject Conse-
quently, software developers are generally subject to less management and
control than hardware. This lack of tight control eliminates any incentive
within the firm to utilize software reuse. After all, creativity is viewed as an
asset in the software field and reuse is held to be in direct contradiction to
that idea. And much like artists, software developers reflect values and beliefs,
consequently, left to their own devices, few opt to review old programs for
usable parts or pieces. Finally, because there are considerably fewer resources
required or utilized in development, it is viewed as being considerably easier
than hardware development.

It is necessary to make a clarification at this point. Software is commonly
released in versions, with each version representing an improvement over pre-
vious versions. These improvements are usually nothing more than refined
or debugged previous editions of current software. Therefore, these new ver-

Knowledge Reuse by Dialog: 1993 to 2022 55

sions of the software are essentially not true revisions or design changes of
the programming. Eliminating version revisions as true improvements, actual
software improvement comes in the form of new programs, offering new ca-
pabilities, tools, and quicker program execution.

The two different approaches stem from the manner of development for each
of these areas. Hardware development is expensive due to it’s nature. Develop-
ment or improvement of hardware products requires expensive laboratories,
equipped with state-of-the-art test, diagnostic, and measurement equipment,
capital intensive production facilities, expensive distribution networks, and ex-
tensive training for maintenance personnel. Hardware is the product of teams
of tightly managed engineer operating in a structured environment. Improve-
ments in hardware are incremental or marginally evolutionary versus revo-
lutionary. Firms have found it in their best interest to tightly manage these
assets to appreciate the highest possible return on the dollar.Whereas soft-
ware improvements seem to reflect flashes of individual brilliance, unencum-
bered by management or large quantities of equipment. Management is less
apt to indulge itself in an area that defies standard organizational structure,
management techniques, and time lines. Until the industry institutes software
standards, individualism at the expense of reuse will remain the norm.12

3. Management

a. Lack of Program Office Incentive to Initiate Reuse

Without exception, software development within the DoD has been focused at
the individual program level as opposed to a broad-based focus aimed at mul-
tiple reusable applications. Because each Program Manager is tasked with the
development of his particular program and will be judged accordingly, there
is little interest on the part of the PM to go beyond the program mandate.
Even with programs that must be tied together, such as the Army Tactical
Command and Control System (ATCCS), which requires the interface of the
separate software development programs of the five BFAs, there has been no
effort to exploit software reuse, structure standardization, or interface bind-
ings. The PM’s area of responsibility, which can include both hardware and
software development, really only encompasses a small domain with respect
to either of these areas. Consequently, the PM has only a limited ability to
influence anything outside of his mandated area of responsibility. Coupled

12. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

56 Knowledge Reuse by Dialog: 1993 to 2022

with this limited ability to influence outside areas, is the political danger to
the PM of expanding his control or influence into another PM’s domain or pro-
gram. Although the Army presents itself as an apolitical organization, which
is true of the tactical and operational portions of the force, it is not neces-
sarily representative of the acquisition and procurement areas. These areas
are structured along the lines of civilian organizations and are involved in
similar pursuits. The program development and acquisition field is mostly the
domain of the Army’s civilian workforce, and very much emulates the politics
the civilian industry it mirrors. Domains of influence and spans managerial
control within the Acquisition Corps are often jealously guarded, with inter-
lopers being shunted, ostracized, or victims of political paternalism.13

b. Lack of Personal Recognition or Economic Incentive for Developer of Reused
Components

Putting all the factors together, it is obvious that there is no incentive for the
individual developer to either develop or utilize reusable software. The devel-
oper is generally paid on a by-line production basis, consequently, to produce
reusable code or implement such code would be tantamount to reducing or
eliminating one’s livelihood. Additionally, software development management
is generally pulled "from the ranks," perpetuating the relaxed, almost loose
management atmosphere prevalent in most development companies. Because
of the relatively unregulated development atmosphere, there is little guidance
or direction aimed at reuse employment or development. As mentioned ear-
lier, the lack of industry standards and formal mechanisms to disseminate
information or govern rights of reusable software serves again to inhibit the
individual utilizing or developing reusable software serves again to inhibit
the individual software developer from either utilizing or developing reusable
code. Because code and documentation are not readily available without ex-
tensive legal negotiations and because there is no royalty mechanism in place
to reward the developer for his efforts, there is no incentive to move in this
direction, especially for the individual.14

13. copied verbatim from Burns III Thesis
14. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853
https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 57

c. Lack of Trade-Off Mechanism Between Requirements and Reuse

A requirement is by definition, a need. Software is written to satisfy the
need. Any differentiation between the requirement and the performance of
the software does not qualify as meeting the need. In order to implement
reusable software, the requirements must be reasonably flexible or generic in
nature. Unfortunately, however, software requirements are not usually flexible
or generic. Consequently, it difficult to find the necessary middle ground to sat-
isfy the demands of both. The problem stems from the development process.
The requirements for any project are drawn up early on and are the result
of mission need statements generated from the user community. Because these
needs are drawn up without regard to software development or software reuse,
no compromises or trade-offs are established. Consequently, there is little room
for software reuse if the requirements are to be effectively satisfied.

d. Lack of Reuse Cost Models or Metrics

As stated earlier, an industry wide lack of standards in software development,
architectures, and metrics has effectively deterred the development of any rea-
sonably reliable cost models for software reuse. This is almost the proverbial
chicken and egg situation. In order to determine the cost effectiveness of im-
plementing software reuse, it is necessary to evaluate existing software reuse
cost models. However, without effective and widespread utilization reuse, valid
cost models cannot be developed. As with any new technology, it often requires
investment of a great deal of time, money, and resources to begin the initial
venture. Only after relatively large and risky expenditures of capital does a
company normally begin to see positive returns on investment. The current
state of the software reuse industry is much the same way. The current mea-
sure of risk has so far inhibited reuse and the associated models which could
someday prove its profitability.15

15. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

58 Knowledge Reuse by Dialog: 1993 to 2022

e. Limited Vision or Leadership for Reuse

As stated earlier, management of software development is very much an inside
job, consequently, those boosted to leadership or management positions are
often interested in maintaining the status quo versus implementation of new
cutting edge ideas. This is not necessarily because those elevated to manage-
ment are against new ideas, but more because of the reputation established
by the company before the new leadership took over. Essentially, some com-
panies are known for certain software traits, designs, or architectures which
are accepted and expected within the industry. To break with this established
convention can be costly in terms of lost customers. However, the greatest
inhibition comes general lack of knowledge about reuse in general. For the
manager, the requisite questions of how to classify software, where to find the
necessary reusable software candidates, how to navigate the legal obstacles
to reuse, and how to motivate the actual developers to implement reuse are
insurmountable simply because of the relative infancy of the field and the
lack of managerial experience or established guidelines in this area. There is
one other simple, yet looming reason for the lack of reuse implementation by
management. A great number of those rising to managerial positions in the
software development field do so by default. Most lack the drive and aspira-
tions found with managers in other areas of business. Consequently, there is
a marked reluctance to aggressively pursue such controversial and dubious
endeavors as software reuse.16

f. Lack of Knowledge and Training on Data Rights and Licensing Procedures

Software, like nearly every other product on the commercial market is sur-
rounded and supported by a host of laws designed to protect the producer’s
product, his ideas, or development process from being copied without per-
mission or monetary compensation. Copyright laws similar to those covering
audio and video tapes and discs govern the software industry. However, unlike
audio and video tapes, software, although relatively easy to copy or pirate,
is of little of no use without documentation, and of no use unless it can be
decomposed. Therefore the problem here is not piracy, but licensing - the au-
thorized use of all or a portion of a piece of software (to include documenta-
tion) by another company in exchange for monetary compensation. This is a

16. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 59

relatively new field with respect to software, and lacks precedents for establish-
ment of guidelines or rules. Because of the vagaries of software development
and business, questions and concerns addressing the potential profitability
of a program which contains reused software, and potential liability of the
owner of reused code, and potential licensing of software components which
are composed of new code as well as reused code pose special problems for
software development companies. Although many companies are faced with
similar problems which impact the decision making process, very few face
the situation wherein their product can have an indeterminate effect when
imported into another program. The potential outcome of such a situation
could be devastating if for some reason the reuse software creates problems or
systems failure. The issue of who is responsible, the importer or the original
developer, is very much in question in such cases and has yet to be determined
in potential licensing agreements. The issue of product liability in cases of
failure is of only one problem however. Just as important, at least to those
individuals who develop software is the issue of by-line payments. Should
the individual developer be paid for the reuse of his product, and if so, how
much, and how should this issue be approached for a software program which
contains reused candidate for software reuse? This may be moot if the target
software is altered to facilitate reuse. It does however, raise another issue - that
of technical propriety. If a piece of reuse software is altered to facilitate reuse,
does the original developer remain liable for problems? Who controls licensing
of altered reusable code? Finally, when the Government engages a contractor
in software development, the Government generally requires the proprietary
rights with the software. This presents problems when the software contains
reused code. What are the legal rights and obligations of the original developer
of the code, and what are the rights and obligations of the second developer or
reuser with respect to the different parts of the code? Who is responsible for the
performance of the code, and who takes responsibility for failure? These and
other issues have yet to be addressed by either the Government or the software
industry. Until these questions are answered however, potential legal obstacles
will continue to be major obstacles in implementing software reuse.17

17. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

60 Knowledge Reuse by Dialog: 1993 to 2022

g. Contractors Not Paid for Productivity

It should be clear by now that the bulk of inhibitors work in concert to prevent
the widespread implementation of software reuse. But regardless of the wide
range of reasons for lack of implementation, the bottom line in most cases
is money. Today, contractors are not required by the Government to utilize
reuse. And because of all the reasons stated above as-well-as the implications
for the industry -- widespread implementation of reuse would substantially re-
duce the number of competitors in the business -- there has not been a rush to
reusable software. Further, it would be ludicrous to assume that any developer
would either design a program to be reusable or utilize reusable code without
some sort of incentive, either in terms of more follow-up contracts or direct
monetary compensation, while at the same time facing possible elimination
from the industry by the very thing under development. A developer interested
in perpetuating his business realizes that reuse could be a serious threat to
continued operation. As pointed out earlier, developers view reuse with some
skepticism, realizing that widespread implementation could change the his to
software face of the industry, eliminating some of the players and the way
business is done. For any concept with such a potentially catastrophic impact,
both the short and long term monetary rewards must be enormous. The cur-
rent system falls far short of offering this type of reward.18

h. Other Potential Reasons

Finally, there are a number of obvious inhibitors that should be mentioned.
These inhibitors need little or no explanation, and are listed as follows:

(1) Budget and schedule pressure.
(2) Increased organizational interdependence due to reuse.
(3) Redesign versus redevelop mentality of program offices.
(4) Profit and greed on the part of the developer.
(5) Software is not viewed as an asset in program development.19

18. copied verbatim from Burns III Thesis
19. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853
https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 61

4. Lack of Centralized Catalog of Assets

a. Too Few Libraries

The current approach to utilizing software reuse is to catalog lines of code and
provide access to that code through a system of libraries. These libraries would
categorize code by a multitude of characteristics and provide the code and its
search relevant documentation through an automated and retrieval system.
Currently however, there are only a few woefully small libraries currently in
existence. Although the library concept is the most reasonable approach to real
world implementation of software reuse, it also presents a number of unique
problems. First, who is the proprietor of the library system -- the Government,
the commercial business concerns, or some non-profit organization? Second,
what categories are logical and reasonable for the classification of the very
broad spectrum of software? Next, with such a prolific amount of software
already in existence and more being produced every day, how many of these
facilities will be enough to meet requirements? And finally, who should pay
for the initial capital investment necessary to establish a series of libraries
and their requisite automation links? These issues will be some of the first
and most important to be addressed once the Government and industry begin
to accept and develop software reuse on a widespread basis.20

b. No Easy Way to Search For or Retrieve Components

Touched on earlier, reusable code will most likely be made accessible through a
series of libraries. Although this should make the job of locating large quanti-
ties of reusable software components easier, the task of finding the right com-
ponents within this large reservoir of software can be monumental. A major
inhibition to reuse is the time required to locate potentially reusable software
that conforms to the needed template. Even with automated libraries, the
shear volume of potentially reusable code could literally take weeks or months
to comb. It can take twice that much time to test. Another problem is how
to search for the necessary code. There are millions of potential categories or
software classification, ranging from overall program classification to subrou-
tine and individual code segment classification. Most of these components fall
within the domain of several of these potential categories, making the task

20. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853

62 Knowledge Reuse by Dialog: 1993 to 2022

of assigning code to a specific category even more difficult. Any programmer
seeking to utilize reusable code will need to have a detailed description of
the type of code required. The process could be equated to trying to find one
specific piece of an unassembled jigsaw puzzle. Until a coherent and easily
utilized search and retrieval system can be established and implemented, soft-
ware reuse cannot be a viable development tool.21

c. Defined Way to Test or Accept Components

Having examined the classification and storage problems as-well-as the search
and retrieval, the next logical step is to examine testing and acceptance crite-
ria. Once a developer has waded through the system to locate reuse candidate
software, it must be tested to ensure the need or requirement. Currently how-
ever, the only test available is to actually integrate the reusable code into the
program and test for functionality. The testing process can be expensive and
time consuming. Of great concern to any developer is the quality of potentially
reusable software. As with any endeavor, there is a right way and a wrong way
to do things. The same is true for software. Shoddy or unproven techniques
used to develop software make for an equally shoddy or unreliable product.
Poor quality software can make integration difficult or impossible. It can also
lead to difficulty or impossible. It can also lead to difficulties when trying
to layer or host application software on top of an operating system utilizing
reused software, or vice-versa. But of even greater concern are the proprietary
rights issues described earlier. Should the software prove unusable, is the de-
veloper still obligated to pay user and licensing fees? Further, does the library
as serve licensing agent or should each interested party engage in negotiation
to arrive at some mutually agreeable arrangement? And in reference to the
quality issue what is the developer’s recourse after discovering he has inadver-
tently reused a poor quality piece of software? These and other questions must
be answered through the legal system, library system, and evolving efforts to
standardize the industry before they can stifle software reuse in it’s infancy.22

21. copied verbatim from Burns III Thesis
22. copied verbatim from Burns III Thesis

https://apps.dtic.mil/sti/citations/ADA270853
https://apps.dtic.mil/sti/citations/ADA270853

Knowledge Reuse by Dialog: 1993 to 2022 63

d. Configuration Management Across the Library Network

Software products generally go through an upgrade/update process that
works to create newer and more refined versions of a particular program.
Often these changes or upgrades are so prolific and frequent that five or more
versions of the software can be in use simultaneously. Often these changes or
upgrades are so prolific. The latest version is usually the most refined and er-
ror free of all the configurations available. Keeping up with these changes and
associated documentation means replacing current versions contained in the
libraries with the updated versions. This can be a costly and time consuming
process, and leads to more questions. Specifically, should upgraded versions
of software be provided to developers currently using earlier versions of the
software? Are amended licensing agreements necessary? Clearly, as with the
other categories of inhibitors, a great deal of work will be necessary to over-
come both the obvious and subtle problems in an industry wide basis.23

5. Legal and Contractual Issues

Most of the legal and contractual issues concerning the implementation of
software reuse have been mentioned above. There are complex issues with far
ranging implication. Addressing these problems through the legal system will
take years, and in some cases will result in dubious outcomes. The complexity,
cost, and extent of these issues, possibly more than any others, will prevent
the software industry from accepting and adopting reuse. Few companies to-
day can stand the withering legal assault that marks a product liability suit,
nor can most companies accept the staggering fines imposed for copyright in-
fringement or piracy of proprietary data. Neither do most companies believe
in their best interest (profitable) to be obligated to maintain possibly legally
mandated technological upgrades of software in libraries, insure reusers re-
ceive upgraded software and appropriate documentation, or maintain large
staffs of legal personnel to look after the company’s best interest with respect
to reuse. Therefore, most companies have so far given reuse a wide berth. And,
because expense to address of these issues, firms will maintain that distance
for the foreseeable future. "24

23. copied verbatim from Burns III Thesis
24.

https://apps.dtic.mil/sti/citations/ADA270853

64 Knowledge Reuse by Dialog: 1993 to 2022

A Reply to Captain Burns III’s Chapter III Section D: REUSE INHIBITORS

This aforementioned passage is a wealth of information, from legal, to
project, to user, to management, to individual, to creator, to software developer,
to hardware developer, to education, to licensors, to liability lawyers, and so on.
There are a number of grim realities and prescient conditions contained within
this assessment. Here are some replies:

Lack of Standards

There are many standards for software by design itself. There are a few pro-
posed software reuse standards and those have existed for a few years. I cover
some of them very briefly (because each one is a paper or a book on their own)
in Section 5: Proposed Methods.

The US DoD has many standards that apply to reuse, and the most important
I’ve found is the The Department of Defence Architecture Framework (DoDAF)
(https://dodcio.defense.gov/Library/DoD-Architecture-Framework/). It has a
metamodel (a very important construct recommended by many reuse models)
and expands on the 4+1 viewpoints for systems design. Here’s the DoDAF syn-
opsis in it’s own description:

The DoDAF enables architectural content that is "Fit-for-Purpose" as an
architectural description consistent with specific project or mission objec-
tives. Because the techniques of architectural description can be applied
at myriad levels of an enterprise, the purpose or use of an architectural
description at each level will be different in content, structure, and level
of detail. Tailoring the architectural description development to address
specific, well-articulated, and understood purposes, will help ensure the
necessary data is collected at the appropriate level of detail to support
specific decisions or objectives.25

Since 1993, the DoD has achieved a break through in both policy and ex-
ecution at adopting a common, standard model from which all components (
intercontinental ballistic missiles (ICBM), tanks, ships,) fit into it. Whether
or not the complete DoD entreprise, the world’s largest budget, has adopted
and follows this model remains to be seen.

The DoDAF contains the following model views:

• All Viewpoint (AV)

25. https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_background/

https://dodcio.defense.gov/Library/DoD-Architecture-Framework/
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_background/

Knowledge Reuse by Dialog: 1993 to 2022 65

• Capability Viewpoint (CV)

• Data and Information Viewpoint (DIV)

• Operational Viewpoint (OV)

• Project Viewpoint (PV)

• Services Viewpoint (SvcV)

• Standard Viewpoint (StdV)

• Systems Viewpoint (SV)

ADA as the common programming language has been around since 1993, and
has remained as such. That’s another standard achievement.

Lack of Common Development Methods

From a very short search of the internet for software reuse on one of many
search engines, one can find:

• Protocols API (Communications/File Format/...)

• Standards (Technical/ESG/Safety)

• Guidelines (CMMI SW Levels)

• Design Requirements

• Design Specifications

• Project Lessons Learned

• Repositories

• Open source libraries

• Tools

All of these are readily available with many documents and examples of many,
all one search away. There were dramatic efforts in the late 1990’s and then
again in the 2000’s. There’s a lot more that’s been written, good and bad, about
the ideas that make it software for all. You can find many examples of any of
these to educate you along many other dimensions of software reuse knowl-
edge.

66 Knowledge Reuse by Dialog: 1993 to 2022

Another way to fulfill the goals of reuse is to consider all the surrounding
technologies. Reuse can take many forms. Computers are, after all information
passing systems. The fit, function, format, form, and rationale inside any com-
puting technology revolves around other theories, and very rarely stays static
for long. So even if reuse development methods do exist, it’s unwise to fix your
work onto any time-dependant single technique or technology. Everything be-
comes obsolete. Perhaps the most glaring example is the waterfall design model
itself, in the presence of accelerated development cycle that takes weeks in what
used to take years, has become outdated. It’s very rare for anyone to begin with
a blank canvas, unless they are creating something as unique as it is expensive
to design, like quantum computers.

Lack of Common Notation for describing Designs and Requirements.

Since 1993, there have emerged many requirements contexts - ways to define
and describe a system design - that meet many different industrial needs. Real-
time systems evolved out of the generic computing beginnings. More impor-
tantly, from a military / army and perspective, mission critical and safety critical
systems designs spawned out of the original flight systems, rocket systems, and
other dangerous application requirements. Requirements of many kinds have
grown out of the original limited nature of computing as a building-filling ma-
chine that merely collects records. This explosion of needs looks in no way to
be slowing down, and probably has accelerated.

Nonetheless, one problem Burns III notes that isn’t in dispute is the generally
underwhelming state of software documentation haven’t surpassed the needs of
modern users of the software left by older people. Indeed, it’s a self-preservation
behaviour in some industries, to make code as obfuscated as one can to avoid
the older, more expensive software developers to be supplanted by younger,
less expensive new developers. Making layoffs harder is an eventuality of many
application areas with or without great competitive pressure. If you fire the
one guy that understands the hard bits it makes it difficult to achieve even the
original success.

Design Standard for many fields exist. In the open there’s the 4 + 1 architec-
ture, the DoDAF 2010 Version 1 and 2 Architecture Framework, NASA Study of
Systems Engineering, amongst a field of many.

The fact is there are so many operating across many disciplines that have
captured, synthesized, and presented for free as the culmination of a lifetime’s
of systems design experience, working systems, with both successful and disas-
trous outcomes. A quick search search of the internet brought me thousands of

Knowledge Reuse by Dialog: 1993 to 2022 67

pages of software design, guidelines, and standards. Too much information for
anyone to dutifully adopt in another lifetime.

This common notation complaint is a valid one, still. It’s unlikely that many
will decide to make all notation common; it does seem an improbable likeli-
hood.

Now, on the other hand, many strategies, many use cases, many views, and
so on, that can describe a function or process within the finished code. But, and
this is the singular realization, does that the code module reflects its position
within the original design or the final design. Does anyone close the loop before
between the written design and the final code?

Performance metrics are another area for concern as above the numbers and
measurements abound. These notations are unlikely to be common. But the real
question is does the data go back into the software design and reuse? Wouldn’t
the value of performance metrics be most useful at the preliminary stage of
another design cycle? Coders fixate on delivering into the final working product,
is there an opposite stream of effort reporting back for the next design? It seems
the most value is stored at the beginning of every cycle, and not as an aside.

If you recall the common infographics about the timing of changes and their
relative cost during the development process you will see that changes at the
beginning are the cheapest, while those attempted at the end are the costliest.
It’s a truism that information at the beginning has the most value, ergo.

One difference between the hardware design community and the software
design community comes about by how well they appreciate these realities.

If you design electronics badly, if you don’t make certain that your design
choices are correct, then when you build a test board you find out that either
some of it won’t work or none of it works through short, dead pins, race con-
ditions, and so on. It’s junk. Given this reality, hardware is motivated to make
the changes before disaster.

On the other hand, with software, as systems get bigger with more complex-
ity, you can get some of it or most of it working barely even if it’s poorly, slowly,
or not up to the performance metrics.

I suppose the dichotomy of hardware versus software makes one team almost
religiously pedantic about confirming the new designs will work. And on the
other hand, another tends to be lax about performance at the start, supposing
they will burn the midnight oil towards the end in any case.

Fighting cultural norms is as important as any other factor restricting soft-
ware efficiency and reuse through better practices adoption.

Extended standards has become another standard within software and within
design.

68 Knowledge Reuse by Dialog: 1993 to 2022

Reuse Readiness Levels (RRL)

NASA has made a pivotal first attempt at standardizing reuse levels. They have
created Reuse Readiness Levels[11] (RRL) as means to measure how "ready"
they are.

From NASA’s report[11]:

Through extensive discussions, the WG identified the nine topic areas
that were deemed important for measuring the reuse maturity of software.
Alphabetically, they are:
 Documentation
 Extensibility
 Intellectual Property Issues
 Modularity
 Packaging
 Portability
 Standards Compliance
 Support
 Verification and Testing

This is the widest and most reasonable way to estimate all value that is in-
cluded. If an entire criteria is missing then the value for that subelement is
essentially zero. It makes it pretty clear when considering source code from a
pure quantitative perspective. However, my experience tells me sometimes the
best code comes from sources with the least spit and polish. And support is a
relative factor, if someone saved code 10 years ago and hasn’t opened it since,
it’s unrealistic to ask for support. Digging into the code makes a qualitative
determination.

Training and Education

Training and Education reuse inhibits innovation and reduces competitive ad-
vantage. It is a tangible deficiency that today’s coders still aren’t taught from a
perspective of salvage over fresh design. But perhaps the fact that it comes later
with experience makes it a better topic for advanced coders, if they get time
and help (AHEM) to make that fresh start.

The Axe analogy: Common - Leading Edge - Bleeding Edge

The bleeding edge of high technology: software made for novel hardware, novel
algorithms (at one time octal trees were novel to the crowd familiar with binary

Knowledge Reuse by Dialog: 1993 to 2022 69

trees), and lesser known methods is subject to a rule of thumb: The Axe Wedge
analogy.

Here is my analog for effort versus novelty in software: The Axe Wedge (Fig-
ure 4.3). The main concepts at play are three: bleeding edge are the novel add-
ons to code bases, normally from inventions on their way to production quality
code. Bleeding edge software is usually known by very few people, primarily the
inventors. Inventors aren’t guaranteed to be the best coders, they are normally
fulfilling the hardware working from a naïve perspective. And they don’t nec-
essarily care about the finished product (inventors would rather go on to the
next big thing than stick around to debug that last invention, generally). The
leading edge are elements of software better tested, better designed (perhaps
even redesigned) and are less prone to obvious errors. Common are software
elements that everybody understands, or has access to. There’s little to be done
at this level, save understand how to apply practised software.

So the general relationship is the more common the idea, the more quality
the software should be. The less common, the fewer people that have solved
the problem and designed the software version, then the more likely the code
is to be of low quality. As time advances, the bleeding edge moves towards the
leading edge, and thence the common part of the axe head.

As you examine your next salvage effort, you would do better to assess just
how far along from bleeding edge the software is likely to be. With this rough
rule of thumb, you can plan adequate resources appropriately.

This is a common and interesting mythical belief. People often mistake the
bleeding edge software as the only point that matters when making the next
killer app. While making the cutting edge will make the path harder, there are
fewer or none that have worked on this particular problem, or very few have
succeeded in getting this working.

Invariably, though, the outcome never just rests on that novel algorithm by
itself. The rest of the background, the leading edge, the middleware , and the
common core must also work, and in physical mobile systems like autonomous
cars, that also requires everything else must be working.

Let me give you a real example. In 2005, a team from Carnegie Mellon Uni-
versity (CMU) had developed a very novel autonomous Humvee vehicle with
a special perception module on the roof for the DARPA Grand Challenge com-
peting autonomous vehicles held in the California desert. The CMU vehicle,
H1ghlander, suffered some kind of failure that prevented it from winning the
contest. When it was working, it was clearly ahead but once the fault struck
they lagged behind. After ten years, they discovered what the cause of the fail-

70 Knowledge Reuse by Dialog: 1993 to 2022

The Axe Wedge of effort and novelty: from the bleeding edge, through leading edge,
onto the common components of software; Bleeding edge has the least experience,
most bugs. Leading edge is better tested, better made but not foolproof. Common
are developed to levels we expect.

ure was26. It had nothing to do with the novel hardware or software. There was
an accident before the final race, and in that accident the vehicle rolled over
during a trial run(Figure 4.4). In that event, a broken filter inside the vehicle
failed during the race. The more novel CMU vehicle lost to a less sophisticated
Stanford’s Stanley vehicle. Every component inside a design, whether or not you
reuse a vehicle as the base of your design or not, is involved in your ultimate
success or failure.

There is a wealth reuse accessible information but factors like corporate uptake
or buy-in will force dedicated employees to learn in their own time, in already
few hours they have.

Training courses for reuse are indeed few and far between. This is another
reason for this book.

Licensing and data rights, including fair use, are in short supply.

26. https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-mystery#toggle-
gdpr

https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-mystery#toggle-gdpr
https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-mystery#toggle-gdpr

Knowledge Reuse by Dialog: 1993 to 2022 71

Left: Red Whittaker and the broken filter from CMU’s H1ghlander. Right: CMU’s
H1ghlander crash before the big race, the DARPA Grand Challenge.

https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-
mystery#toggle-gdpr

The one realization for this is perhaps to contain a great deal of this surround-
ing material into the repository that supports reuse. That may be the means to
break the status quo. If one includes the resources close to the developer may
end this part of the problem spectrum.

Software Practices vs Hardware Practices

Evolution versus revolution. Is there a way to get the benefits of one without
the liabilities of the other? The hardware practices must be aimed at evolution
because risking product failure by extending beyond the proper design, test, and
evaluate before the product launch makes hardware flow slowly. It is a reality
that people will overextend their work in software because the marketplace
offers returns. You can’t avoid your competition spending on cheaper software
monkeys worldwide to advance features that you can’t match. However, if you
exploit the magic of reuse, making reuse easier, you can make your effort pay
off better in the long run. Remember, the more code you write, the more you
have to debug. If every layer you make is better designed (model is the number
one word from surveyed studies) then you can meet the features race.

Lack of Program Management Incentives to Reuse

This is a priorities reassessment and not a skills, methods, and motivations chal-
lenge. The fact is that if people want change they have to pay for it. You should

https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-mystery#toggle-gdpr
https://spectrum.ieee.org/cmu-solves-12-year-old-darpa-grand-challenge-mystery#toggle-gdpr

72 Knowledge Reuse by Dialog: 1993 to 2022

pay for what you want to see in the marketplace, and government, as the biggest
purchaser in the national market, must be the leader. There must be the will,
and government prioritization to support the value of reuse. Reusing actual
code will reduce the time spent on detailed design only when customers are
rewarding reuse with money. It should become a requirement to declare how
much code will be reused on the new project, and perhaps any donated code
by large corporations received tax write offs to produce this code in the open
domain for others without encumbrance.

Looking at the motivation from a managerial level, perhaps the same manage-
ment should widen the user base to beyond the non software users. Many other
sciences could use the basic code if there was a better interface, like visual pro-
gramming plug and play GUI mechanisms. Perhaps bringing onboard software
neophytes like college undergrads and high school students will also expand
the spectrum. Any web browser is a potential user interface to your software.

There are some developments in current systems, some software reports bugs
and error reports right back to error collecting servers for analysis for mainte-
nance development teams. There’s a lot of beta testing in gaming software by
free time donated by users.

There is one great distinguishing problem between military procurement ver-
sus civilian procurement is the problem of scale: the scale for economies. When
you design to build 2000 units, there’s a smaller profit limit and even larger
downside risk for cost overruns and expanding scope of work. If one can create
the right motivation to exploit the majority effort for even the smallest unit
numbers, to find ways to profit via reuse, then you can motivate every project
management. There’s even value to be extracted from reuse after any project by
second and third parties outside the original scope. If there’s a way to get paid
for the code by many smaller parties, especially with parts developed by private
institutions with public funds, there’s a way to coax reuse.

Here’s a perfect example of novel project management reuse: in Burns III
view, projects with teething pains are not the best for reuse. Taking a holistic
view, a management view to review all code, to salvage the best of every project,
across the success spectrum, would be a way to educate managers in the par-
ticulars of what went right and what when wrong as well as the technical value
salvaged. It’s a perfect starting place for new managers.

On the government side, projects during the funding process become stove-
piped (working in isolation to limited objectives and outcomes) due to the need
to focus on the project’s limited resources, especially timeline. Due to the pro-
cess restrictions. expanding mandates and wider goals are not in the purview.
These realities force them not to take on side issues, nor delay to deliver group

Knowledge Reuse by Dialog: 1993 to 2022 73

outcomes for other projects. It forces extras that all might provide benefit off
the table or to the right on delivery. Work silos are the foundational means
that propagate the isolated nature, and limited coordinated projects. There are
project offices that begin to unify work, especially the special projects offices,
but there’s no way all projects will coordinate fully until there’s mandated law.
Until the mentality changes, projects that go over budget either can’t deliver the
numbers they plan on or must await further authorized expenditure.

In parallel and largely along the same vein, the civilians in DoD aren’t as
apolitical as the mandates require. As a way to bypass that problem, if the
reuse libraries and search repositories were used at the other side within the
contractors, then the reuse would be adopted multilaterally and the impact on
the end users will be delivered. There are many ways to maintain a discrete
distance of the reuse from any other software-related problem.

Lack of Personal Recognition for Reuse Components.

A valid reason behind project management motivation must be seen in parallel
with the motivation of workers: a royalty scheme for reuse by those that refur-
bish code they reviewed would create positive reinforcement for these impacts.
It makes perfect sense to pay for the benefits you want. If an experienced re-
viewer measures the suitability and the potential value for reuse. Sort of like
a salvage yard wander or the MASH field hospital triage. A group acting as
a clearance house for improving software along every dimension: documenta-
tion, testing, code coverage, software classification, optimizations, portability
for other hardware will provide starting points for many others.

c. Lack of Cost models

Cost models go hand in hand with motivation into reuse of code. There are
many ways to use measurement:

• Pay for reuse salvage;

• Estimate reused code as leveraged value;

• Pay a share to code refurbishment teams; and

• Keep public open repositories for the public benefit and claim a tax credit.

Any of these may solve the chicken / egg time causality problem.
Limited vision leadership for Reuse
On a whim, I searched my twitter for a twitter handle for software reuse.

There was a software reuse account. It was started in 2008. And it stopped

74 Knowledge Reuse by Dialog: 1993 to 2022

posting in 2010. That’s the way it is, unsupported ideas like design ideas, that
haven’t been solved for many ideas, those ideas remain in the offing when the
conditions aren’t solved, they take the perseverance to wait until the circum-
stances collide. Luck is a coincidence (as philosopher Paul calls luck) of the
right things colliding in the that point in time, that sparks wide acceptance of
an idea that’s arrived. Leadership of any idea can’t continue on for free forever.

Burns III’s observation that a lack of knowledge about licensing and copyright
and fair use are a major obstacle for the status quo to change. Those hurdles
have diminished with the advent of free software licenses like MIT license, Free
Software Foundation Gnu Public Licence (GPL) and Lesser GPL, Apache licence,
and so on in versions that appeal to many developers for the broad areas they
cover.

Unlike audio/video, when a software house ceases to do business, the fin-
ished product can be decomposed from the program form back to the code.
Songs and movies can be copied on for ever, no matter the media. Sure, there’s
an internet archive that you might find the files, but you’re unlikely to find the
source and documentation that was only stored on old computers. It took me
a week to find and copy my old thesis copy I found on a 3 1/4 inch floppy
disk set onto a USB stick using a 25 year old laptop computer. I’m surprised it
still works. What is the motivation from former employees to search through
files on ancient computers to find stuff for use by someone else? There would
be motivation if there was salvage money in it. There must be a pay for play
motivation to get people to find what a world wide salvage effort. There is also
an obstacle in the other side of legal issues: how does one improve the downside
risk for old code donated that removes legal liability from anyone that doesn’t
want the code? Google gave away the protobuf-c project with indemnification.
How do you motivate goodwill donations with fear of legal repercussions. If you
improve code and it breaks something, does that legal jeopardy involve just you
or the original designer? This is an unresolved legal point. Another difficulty lies
in the government’s priorities. Legal and legislation would make some of these
easier. There is less valuation of productivity when the costs are in the design of
units produced. Developers could be compensated for the code, government can
waive liability on former developers. Why not allow tax writeoffs for companies
that donate code for public use as well as payment of a low Fair Reasonable And
Non-Discriminatory (FRAND) license fee to the companies. The government has
many ways to change the levers of the economy and evolve the status quo.

Knowledge Reuse by Dialog: 1993 to 2022 75

Budget and Schedule.

1. The best reuse scenario allows new designs to use the reused code by not
delaying budgets nor schedules. This is the gold standard, extra value for zero
extra cost.

2. Interdependence is a good concept to exploit. If tests made by one group
solve testing needs of another group of developers, even when the first group of
developers aren’t even aware of; interdependence is valuable as asynchronous
and mutually beneficial.

3. Programs officer’s mentality of blue sky carte blanche desire to start from
scratch is a hard desire to overcome. Professional management want to do
things that impact their career, to be the first to create a novel thing, or build-
ing from the ground up is a far more motivating project than just working to
eek performance gains out of many small things in a maintenance phase. It is
the pioneer spirit and mentality that skews away from risk adverse methods to
riskier ways that reflect on higher recognition and fame for the managers that
want to win. Program managers would change their tune if the compensation
penalized the riskiest behaviours and rewarded the most efficient ways.

5. Software not seen as an asset. The value of software would change if the
programs in total revolved around the software and not the reverse.

4. Lack of Centralized Catalog of Assets Burns III How to define? How to
advertise? How to pay for software reclamation? How to categorize?

Search applied to the code is the significant deficiency underpinning most
code, forcing code stranding.

There are functions people want, there is code written to solve the need.
How does one marry the two up?
No way to test and accept the code isn’t as big a problem if the testing, verifi-

cation, and validation as NASA defines it becomes the gap to be bridged, at the
end. Any repository that provides the code in a way that non familiar users can
find, test and be satisfied; will be the way to finalize the novel search method.

Another grim reality. Most code isn’t ready for public viewing, not in an or-
ganized and clean state. How can we motivate people to go back into the code
and make the improvements needed for the mainstream to exploit?

5. Legal/ Contractor Issues
Until the liability / and license issues are solved across many nations there

may be no appreciable change in the status quo of software reuse.
N.B. I will point out that even the reuse of this chapter, but copying out of

.pdf files graciously and magnanimously donated by the US DoD publications
process, it took significant effort to reformat these two chapter sections back
into text format, requiring even a look at the requirements for documentation to

76 Knowledge Reuse by Dialog: 1993 to 2022

exist in a reliable form, towards the reuse of all information hard won through
shared experience.

Chapter 5

The ReUse Software Movement

Overthinking
Is The Biggest Cause

Of Unhappiness.
—Siddhartha Gautama, The Buddha

This chapter explores demonstrations of software reuse concepts, models,
processes and repositories, in brief, to give you a quick survey of all software
reuse ideas. Like every chapter, this is a work in progress and the

Looking back to look forward

In the late 1980’s and 1990’s there was a drive across many US Department
of Defence organizations like US Air Force, the Special Project Office, Office
of Navy Research and others to rework and remake software developed across
many different applications but the same client into a transformative reusable
libraries entreprise wide. There was the Software Technology for Adaptable,
Reliable Systems (STARS) project, the Central Archive for Reusable Defense
Software (CARDS) project and the GRASP (Graphical Representations of Algo-
rithms, Structures, and Processes) project at Auburn University. Truly, the USA
is such a large enterprise that I doubt all the actors knew during their work of
the depth of parallel work in the meantime.

This ReUse movement went onto the demonstration and then... nothing.
These ideas, all reasonable and obvious in most cases, never did see any

traction and I know why.
The proposers of CARDS repository had a vision of what the library storage,

description, performance metrics, and knowledge base. And then the STARS,
CARDS, and GRASP wrote up their final reports and moved onto other work.

77

78 The ReUse Software Movement

Project teams, working on the actual systems went back tot he bench and con-
tinued to use whatever their company, team, or personally they had available to
them. They had deadlines and demonstrations to achieve, and they were just as
concerned about reaching these very real goals that mean a paycheck than the
esoteric dream of reusability. Private companies that compete together for work
weren’t going to share for free, nor allow others into proprietary code - which
might also mean system security to anything they shared - that everyone put
down the dream that seemed impossible. They went back to unit and system
testing to their own standards, and they tested as adequately as they could for
the new products they competed to make. After all, they had their demonstra-
tions to make. All of this effort, while dutifully recorded for posterity, died on
the vine. Like many good idea that are thoughtful, optimistic, and altruistic
there wasn’t enough traction to make things move on their own. Great ideas,
poor effort, and accepting early defeat.

On the other end of the spectrum, there were plucky, determined upstarts
creating new source directories, and new software repositories, and the ama-
teurs, neophytes and junior technocrats drive a mighty way towards complete
working systems. They sleep, eat, socialize little for a turbulent campaign to
make it work. And they it working to some degree. They announce it with great
fanfare and celebrate the real accomplishment. And after this thunder clap, the
darkness and dead silence. These accomplished few gain the accolades, write
a document or conference paper, and either go onto bigger and better things.
And, errors and all, all that work from every competitor that never got the
contract, never went on to augment that work.

And then there’s me, I searched and found a delightful software library collec-
tion repository. It seemed to have all, or most, the important things for a better
way to communicate the software function and form. I knew it had a quirky (
less common) name. It stood as a definitive and wonderful oddities. But, one
problem. I couldn’t remember the name. I can’t activate the right memory areas
to find within my own knowledge the name of the software archive. I can’t
remember that odd name. I tried many recollection techniques, I tried

Menagerie? No.
Curiosity? No.
Aha! Rosetta Code!
Here’s the Introduction to Rosetta Code:

Rosetta Code is a programming chrestomathy site. The idea is to present
solutions to the same task in as many different languages as possible, to
demonstrate how languages are similar and different, and to aid a person

https://rosettacode.org/wiki/Rosetta_Code

The ReUse Software Movement 79

with a grounding in one approach to a problem in learning another. Rosetta
Code currently has 1,181 tasks, 347 draft tasks, and is aware of 865 lan-
guages, though we do not (and cannot) have solutions to every task in every
language.1

It took me 38 (April 29 -March 23, 2022) days to figure it out. I ran across
a hyperlink that ran backwards to the website. I am so mad at myself for not
making more of the more to be made. Why didn’t I bookmark it? How many
people run across the word “chrestomathy” more than once in a lifetime? And
that was the goal of the implementer, to make a memorable name, to stand
out. I even recognized and made particular point of remembering this side-fact
- associated with but not a substitution for -the library website name. And this
forgetfulness of the obvious is something important and timely, because when
writing a book particularly about software reuse, to have a unique name and
for a software collection that was free and open source, and forget it, does a
lot to underline that there are many problems making it hard for people even
when people are not trying hard to make it. It’s a huge flag to mark that the
problems are real, and they are not easy to solve in one way alone, as can be
seen by all the parallel stove-pipe failures that won’t sink in. There are serious
mishandlings of software even on the marketfront of the internet can make
information hard to traverse.

But from this, I’ve made the singular discovery, by which I mean that in order
to appeal to the needs of people that design things in depth, many pages of use
cases in Universal Markup Language (UML), many facets of the same objects
across differing design perspectives (hierarchy, data flow diagrams, communi-
cations, etc.) , and so on, that we must make everything at the single level. The
distance from man to knowledge must be no more than 2 graph cardinality.

All functions must be one-depth from the reviewer, and all knowledge actions
must allow the user to arrive at that knowledge from any point within 2 path
steps or less. For those not as familiar with the ideas here I will make a simple
category theory example. Most people call it Topos theory if they understand
it better but I normally go no further than abstract categories because they
are mathematical objects without a lot of restrictions on behaviour so they are
normally a good starting place. Abstract categories are philosophy. Concrete
categories are mathematics. Then after you understand better, you can delve in
any direction you wish. From an abstract level there are only two things, two
objects. There is data like a pear as a point amongst a set of fruits. And then
there is a transition, an action known abstractly as a morphism. Acting on a pear

1. from website:Rosetta Code

https://ncatlab.org/nlab/show/graph
https://rosettacode.org/wiki/Rosetta_Code

80 The ReUse Software Movement

Graph cardinality 2- At no more than 2 nodes away from man for optimal human
search

moves it into another data domain. But in concrete category the morphism is
called a 2-object because it sits above the data on another "level". So cutting a
pear makes pear slices - one kind of morphism - and smashing a pear with a
hammer makes another data point to land at from the pear object to another
kind of data range you land on. But the smash and slice functions are both
defined on another level, they are data above operating on the data 1-object
pairs. And so layers upon layers can be made, and are defined and held within
toposes as pullbacks, pushbacks, and dualities, and on and on. There is a science
of mathematics called category theory and while they understand things they
are as equally lost as zoology because they cant encompass their knowledge
into a reductionism like gravity as a field (which is a skew-symmetric ring in
category theory) to arrive at the standard model of category theory like we
have a standard model of subatomic particles that all obey QED - our friend
Feynmann’s quantum electrodynamics. It is my prescriptive criticism that at the
age and awareness of the two fields, zoology and category theory / topology /
topos theory, will both suffer in dark ages until they find their reductionism.

But, to make things accessible, the reusable library must be one level deep, it
must as Grady Booch might call it the concept level. Functions and data must
exist in ways people can scan through quickly, read a synopsis, and use. That’s
it. In order to create an acceptable interface we must keep it at the level of
abstract mathematics. Because, as you have probably intuited from above, one
can make an infinite number of concrete n-objects for all the morphisms that
can be layered on and on. Inside the code, all objects- all concepts - will be

The ReUse Software Movement 81

1-objects.
Now, that doesn’t mean the library doesn’t possess higher levels of knowl-

edge. There will be layers of complexity, but that won’t be inside the code,
that’s been the problem with all these efforts they’ve tried to mimic the com-
plexity outside of human perception in one way. There will be dualities, there
will be synonyms, homonyms, categories of kinds of functions. There will be
ontologies, taxonomies, subsetting, and on and on. But the complexity will ex-
ist outside the code. Code will be small pieces people can cut and paste, or run
with libraries configured.

Scalar Word Salad: Interpreting a Survey of Reuse Thinking

I used a survey of the literature from some of each of the software reuse
reports, papers, and workshops proceedings on the matters surrounding reuse
of software. You will find many references throughout, but in order to not ap-
ply my own biases to the subject (since I brought my own ideas about what
works into my understanding of what reuse should be) I combined the text
from all reports into one simple text-only file, then eliminated small words,
proper names, and reduced words using background subtraction to compose
what all these smart thinkers decided were the dominant words representing
importance in software reuse. Now, there’s a little bit of interpretation in this so
I asked my self how to define the background. What I decided to use was that
any word representing ideas that would exist whether or not any software was
reused, so things like memory, hardware, software, firmware, store, biggness,
time, locations, cities, nations, contractors, owners, and adjectives like always
and so on were not directly relevant to the ideas of reuse. With this, I had 2MB
of words. Cutting out words that would exist if there was or was not software
reuse make it a scalar analysis to get to the heart of the matter. That’s what I call
background subtraction: it cuts out all obvious ideas that would be there with
or without the core ideas. What must be left is central to the idea. I stopped
when I had distilled to text down to 55,708 words.

Here’s my rationale:

Bluntifying

Basically, any written work holds a bunch of important ideas, linked to im-
portant words by grammatical & syntaxical yet unimportant words, describing
relative associations, done by people for organizations (we write to speak to
people, not buildings, but we tell others which buildings we are in). My analysis
is an analog of sensor fusion techniques: to background subtract all the words

82 The ReUse Software Movement

that would exist in the ideas before and after any software reuse, that would
leave many concepts in their relative order for consideration as significant in the
prosecution of the topic, in this case software reuse. So this analysis ranks by
histogram the dominant ideas attributable by the largest population of words.
Are the ideas obvious or relevant? That’s for the reader to surmise.

The salary cap for all the people involved in these documents, from univer-
sities to NASA, was in the tens of millions, if not more. It’s no wonder that
many great minds come up with similar reasonable takes on the main ideas.
They can’t be far off about the general topics that should be included in better
software reuse. But it’s also a big trap of large organizations that sink into group
think and tribalism like Not In My Backyard (NIMBY). The temptation is to re-
ject ideas that aren’t invented or supported in the culture(s) that writes these
assessments. So my analyses looks into the scalar word histogram to look for
two glaring things: the most common words and the missing words that they
all seem to have ignored, overlooked, or discounted.

I call this kind of analysis bluntifying:

bluntifying the word histogram scalar product of documents’s words reduced
to the residual core ideas that represent a topic in the minds of the
writers.

I am aware people have done this kind of thing before, but not perhaps quite
like this, there are some heuristics applied to the interpretation to decide what
is a topic that would be background like the idea of software whether there was
reuse of software or not, and there was noise inserted by the optical character
recognition that didn’t create all the words perfectly, so there wasn’t a clear list
of data. It had to be manually considered. I erred to leave some words in that
may be valuable even though they weren’t on the face of it important. There
were many hours spent vetting the data, removing the French “Bags” words
(beauty, age, goodness, size) since these are descriptors that would apply both
before and after, removing variant time concepts like now and then, removing
conditionals like ’if’, ’then’, and so on. I imagined it might take a night and a day,
and had to continue plugging away four days later, mainly on stubbornness.

Does this analysis hold value? On the one hand, this is a gross oversimplifi-
cation, perhaps a figure has the word software 11 times, might that sway the
outcome for the connecting words surrounding software(software, hardware,
and firmware are all removed given they would exist with or without software
reuse)? Of course a book of 270 pages may have an entire chapter devoted to
the same concepts that link to a section of a journal or one page, the works
will not be weighed the same. On the other hand, the fact that words appear

The ReUse Software Movement 83

more than others is significant because they deliberately chose not to include
other words at the same time, or, in other words, any words signifying other
concepts were not added were therefore deliberately left out. An omission or
commission is for the final determination of the reader to conclude, and that’s
why I believe the work is valuable to you. You may see in the predominant
words a meaning that assists you, that may not occur to others. These papers
and books represent the thoughts of many many educated, experienced, and
positioned people. It’s no accident those words come up to represent the ideas
and concepts over and over, it does tend to support their relevance in relation
to the central topic. There will be many words that are just used to connect
what these people think is important, take away all the “the”, “and”, “a” and
other background noise of grammar, syntax, and style you reduce it to words
representing concepts. And, can one argue that we AREN’T influenced by the
words presented to us in a work as much as the hidden concepts the authors
were trying to convey? I argue we do if we don’t look for the hidden meaning.
Bluntifying makes the interpretation strict and plain, more so than reading with
our internal time-varying biases.

The single biggest criticism of this method, even as I finish the list off for the
histogram, is how does anyone certify that when one person says construction
in one work, how can we be certain that the same meaning is meant by another
organization with completely different knowledge and culture? To this I reply:
and how does anyone certify this in any other analysis, either? Mankind uses
an imperfect language full of words with multiple meanings, to the level of
roughness and uncertainty, that how does anyone extract any value out of any
written work? A join in a mathematical sense is a product of ideas in various
toposes, and completely different from the normal convention. You need to
know a great deal of math to verify words are potential concepts even if the
words may be innocuous. Of course, if you are reading this, I can be assured I
won’t have to worry about my losing out on the sale...

Some of these works were photocopied and the ocular character recognition
program won’t get all the words, there will be inevitable uncertainty.

So the naive inference is that the most words will correspond to the topics
that these export BELIEVE are at the heart of the problem.

In my analysis, I spent hours reviewing, fixing the noise from the optical
character recognition errors, and the

If you would attempt to do this kind of analysis on your own, you need not
unless you have a person with a extremely extensive language knowledge, one
that understands the idiomatic use of some words in one field that differ from
the average vocabulary, no matter what the language. You need to identify

84 The ReUse Software Movement

words that might be synonyms even if they aren’t practiced in many areas of
knowledge. This is still epistemology as a problem of the widest possible asso-
ciation for allied concepts.

Of course, if all the talking heads are wrong, then the work is by itself moot.
Perhaps, but the evolution to discovery of the essence or the pivotal ideas must
start from somewhere, and where everyone else started from, is a natural start.
With none of the associated associations alive because we scalar-producted the
sentences to one dimensional ideas - is a great synopsis of what ideas are in-
cluded and what aren’t. It may show an important idea that’s important by it’s
unexplained absence. If the previous efforts failed and these were the idea start-
ing points, then it makes sense to examine what the causes might have been.

Tomorrow’s discoveries come out of yesterday’s assumptions.
At the end of using both heuristics and computer sorting I was left with a

list of 1228 word histogram bins counting ~55,000 words with a word count
high of 1283 use for ’model’ and a minimum of 5 uses for the lower threshold
words like abilities, administration, and administrator. That was good to see. In
this histogram of bluntified words and by inference concepts leads us to these
rankings: Figure 5.2 shows the 1228 words in a histogram with 5 occurrences
or more. The histogram is very large, but it obeys the Gaussian distribution,
which was a surprise. Not an entire surprise, I always assume a Gaussian, but
it was validating effect to see one.

The top 10 words from all these texts about the software reuse topics are
outlined in Table 5.1.

Word Histogram for all words down to 90 counts in Figure 5.3. The word
counts down to 5 count, at which point words were considered noise, is in
Figure 5.4. It turned out to be more work that a brute force chapter by verse
comparison, but in a novel way it extends the hidden meaning into a common
format. I will learn to automate it when I do it again, but grinding away at in-
terpreting words made me conversant with the possibilities. Here are the three
major words defined:

architecture (countable and uncountable, plural architectures) The structure
and design of a system or product.

model (plural models) (software architecture) In software applications using
the model-view-controller design pattern, the part or parts of the
application that manage the data.

object (category theory) An instance of one of the two kinds of entities that

The ReUse Software Movement 85

Software Reuse: Bluntified shows the histogram of the most salient 55,000 words
from my survey of software reuse literature. The largest word count is for the word
’model’. While you may argue the value, it’s uncanny how many educated, experi-
enced, and well-funded software applying organizations think the same things are
important.

Bluntified Histogram of words, top 100 from 1283 to 90 count words

86 The ReUse Software Movement

Total Word Histogram (down to 5 count)

Word Count
model 1283

architecture 1032
library 671

test 615
object 616
class 576
verify 528

analysis 501
requirement 498

process 502

Table 5.1: Top ten words from bluntified analysis

form a category, the other kind being the arrows (also called mor-
phisms). Similarly, there is a category whose objects are groups and
whose arrows are the homomorphisms from one group to another.

So, combining the major important factors together and it’s confirmed what
people think is important, and what they haven’t appreciated as also important.

From my analysis, I arrive at two conclusions: model is the primary idea
encapsulated into the idea of reusable software. People need a model to cling
everything to. The second is the general lack of recognition that keyword, the
idea connecting idea that we use to bring many different people from various
background into understanding ideas we can share, is completely ignored in
the workings explained. A model is the way we describe a form like a skeleton

The ReUse Software Movement 87

The Keyword Importance: Keywords link both Concepts 1 through R and Ideas 1
through S to functions 1 through N and Data 1 through M.

to others. But once they understand the general gist of the structure, they begin
to look for the important bits to them. In this case, they will need an ironclad
way to describe how TO FIND topics INSIDE THE MODEL. That’s the biggest
problem. Developers fixate on one and ignore the other, without exception.
And we wonder why people can’t find what they are looking for in a reasonable
time. I discover that the association middle ground, as shown in Figure 5.5, is
the missing vital mechanism.

My analysis draws a distinction of the consensus important factors, and the
missed opportunity in keywords (which I expound in section6).

Not to divert fully from considering what people said, the next section out-
lines what I found to be were the highlights of the literature’s concepts for
reuse laid out in the next section.

88 The ReUse Software Movement

Proposed Methods

Apart from my above-outlined math argument for what makes the vital im-
portance

Basili: Quick Fix Modeland More!

Victor R. Basili proposed the following software reuse models[3]:

1. The quick fix model;

2. The iterative enhancement model; and

3. The full reuse model.

Basili’s Quick Fix Model: [3]:

The quick fix model involves taking the existing system, usually just the
code, and making the necessary changes to the source code and the accompa-
nying documentation, e.g. requirements, design, and recompiling the system
as a new version. This may be as straightforward as a change to some internal
com- ponent, e.g. an error correction involving a single component or a struc-
tural change or even some functional enhancement. Here reuse is implicit.

Basili’s Iterative Enhancement Model: [3]:

Iterative Enhancement [5] is an evolution, model which was proposed for
software development in environments where the complete set of requirements
for a system were not fully understood or the author did not know how to
build the full system. Although it was proposed as a development model, it
is well suited to maintenance. The process model involves: 1. Starting with
the existing system requirements, design, code, test and analysis documents 2.
Redeveloping starting with the appropriate document based upon analysis of
the existing system, the changes through the full set of documents 3. At each
step of the evolutionary process, continuing to redesign, based upon analysis.

Basili’s Full Reuse Process Model: [3]:

The ReUse Software Movement 89

While iterative enhancement starts with evaluating the existing system for
redesign and modification, a full reuse process model starts with the require-
ments analysis and design of the new system, with the concept of reusing
whatever requirements, design and code are available from the old system.
The reuse process model involves: 1. Starting the requirements for the new
system, reusing as much of the old system as feasible 2. Building a new sys-
tem using components from the old system or other systems available in the
repository developing new components where appropriate.

Basili’s[3, 4, 2] models refine and restrict the ideas of reuse to the concepts
that you understand

Tracz: Three C’s 3C(Concept/Context/Content) of Reuse

Will Tracz wrote a software journal and then book[15] back in the 1990’s
during one of the revivals of software reuse, and then wrote a book on
it. He was summarized at a workshop on reuse with his very inspired 3 C
model(Concept/Context/Content)[AD-A226-985 REUSE IN PRACTICE WORK-
SHOP SUMMARY]:

The conceptual model for reusable software components was an outgrowth
of the Concept/Context model initially proposed by Tracz in his disser-
tation work at Stanford. The model, referred to as the 3C model (Con-
cept/Context/Content) is based on defining three facets of a soft- ware com-
ponent:

(1) The "concept" behind a reusable software component is an abstract
canonical description of "what" a component does. Concepts are identified
through require- ment or domain analysis as providing desired functionality
for some aspect of a system. A concept is realized by an interface specification
and an (optionally formal) description of the semantics (as a minimum, the
pre- and post-conditions) associated with each operation. An Ada package
specification with its behavioral semantics described in Anna is an example of
a reusable software concept.

(2) The "content" of a reusable software component is an implementation
of a concept, or "how" a component does "what" it is supposed to do. The basic
premise is that each reusable software component can have several implemen-
tations that obey the semantics of its concept. The collection of (28) stack
packages found in Grady Booch’s components is an example of a family of
implementations for the same concept (a stack).

(3) The "context" of a reusable software component is 1) the environment

90 The ReUse Software Movement

that the concept is defined in ("conceptual context"), and 2) the environment
it is implemented under ("contentual context"). It is very important to distin-
guish between these two types of contexts because different language mech-
anisms (inheritance and genericity) apply differently to each. Furthermore,
these two contexts clearly distinguish between type inheritance and code in-
heritance.

One can use type inheritance to describe the concept of a software compo-
nent in terms of the operations and types found in another software compo-
nent (what we are calling its concept). In other words, by using inheritance
one can describe a new concept in the context of an existing concept. At the
conceptual level then, the new concept "is a" specialization (subtype, or sub-
class) of the parent concept. Aggregation of concepts is accomplished through
multiple inheritance. Parameterization or generality also applies to concepts,
but its use is normally associated with passing data or furnishing contextual
information such as the type of data or data structure being manipulated (op-
erational context). In the 3C model, parameterization and inheritance play
different roles at the conceptual level.

Code inheritance may or may not be used in an implementation. One need
not observe conceptual relationships to access operations that may prove use-
ful for the implementation of a software component. There are two separate
contexts that apply to an implementation of a software component a visible
context, one that the user can manipulate (operational context), and a hid-
den context, one the developer has chosen to use in the actual implementation
(implementation con- text).

Interestingly enough, both the operational context and implementation con-
text present opportunities for variations. A software component’s operational
context is established by the user when, at instantiation or run-time, actual
parameters are supplied for formal generic parameters. The implementation
context is usually not visible to the end-user of a software component and
established at build time. The component developer imports a specific soft-
ware component or module whose operations are invoked by that particular
implementation. But, given the environment defined by the 3C model, it is pos-
sible that several implementations could exist that satisfy --the semantic and
syntactic properties of the module or component being imported or inherited
by the developer. Furthermore there is no reason why certain aspects of the
implementation context cannot be tied directly to the operational context. For
example, if the user specifies that "fast, bounded" stack of integers is desired,
then the stack package’s implementation, might import a list * package that
has been implemented as an array, rather than a linked list.

The ReUse Software Movement 91

One should note that while it is often the case that the concept and content
of a component share the same context, the context of an implementation
often subsumes that of the concept and * extends it with performance trade-
offs, hardware platform, operating system, algorithmic, or language depen-
dent contextual information. An example of a parametric conceptual context
is the type of element to be stored in a generic stack package (an instantiation
parameter). An example of a semantic conceptual context is describing a stack
in terms of a deque where certain operations are renamed and others are hid-
den. An example of an implementation’s operational context is a conditional
compilation variable that selects between UNIX and DOS operating system
calls. An example of a component’s implementation context is the importation
of a list package (which may have several implementations).

Software as a Service

Software as a Service (SAAS) is the updated software model. As a service
you modify an existing code base over time with the subscription fees and ex-
tended service agreements. As a service one must appreciate all the contribut-
ing factors that affect the value, the saleability, and the long term survivability
as a going concern. Mankind is littered with people that failed to appreciate
that wider requirements, that failed the software companies were doomed with
failed software projects.

I don’t argue that it will be entirely that it will be entirely responsible and
committed to a single path for all projects when you write some code.

I argue that if you only look down at a computer screen, then can you really
convince yourself that will be enough to make it last?

Did you think about all these side issues when you first started out? This book
isn’t written for you if you are planning on writing 10K lines of code (LOC). If
you are going to pump out 50 LOC then this is far too involved.

It’s ok. Don’t take these words to heart. It’s not meant as anything but a heart-
to-heart tough talk in an elevator from one floor to the next. On the way to a
coffee shop to caffeine up for your next blitz session.

You’ll live.
But think about it. Wouldn’t you want to make your life easier by doing so

well at this software ecosystem gig that you never have to worry about other
work to support you and your family?

When you were a university student, you can demonstrate your technical
expertise, project experience, and even some human soft-skills/ people skills.

92 The ReUse Software Movement

It’s a way to cut your teeth as the expression goes.
You make some source code, fix a bug, make a key design change, port some

code for a custom chipset, or device use, and in exchange you can claim your
participation in a real live software job.

I’ve often thought that if a concurrent version server (CVS is presented later
in 12) system had an automatic letter of reference generator included with all
committed code that it can describe your statistics from your additions to the
database, and it creates a custom, fact based "report" on your:

• numbers of lines of code improved;

• numbers of bugs fixed positive comments; and

• awards and milestones completed with or without supervision.

It would go a long way to describing a potential software developer hire to a
committee with the merits of an individual in an objective manner far better
than a polite but cryptic letter of reference or a mundane curriculum vitae and
resume.

I predict that, within 20 years, that this will be the objective standard for
anyone wanted based on software skills.

Here’s the hiring truth:
Skills exist outside of education, knowledge, and experience. What an em-

ployer really wants from someone isn’t a short list of accomplishments and a
long list of degrees, course titles, and awards, if any.

They all generally make the short cut into accepting any university level ac-
complishment that represents the fact that you can learn, even at an elevated
level. It may or may not be relevant for most jobs how much your knowledge
background is. I know that unless they want some really obscure set of knowl-
edge for the job, like your Ph.D. thesis, then any knowledge will do.

So, back to my original question as a valid examination of your ambition,
your career, and a software project.

Wouldn’t you want people to accept you for a known accomplishment, one
that you’ve poured your extra time into, and use that success as the basis of
your commercial worth?

Linus Torvalds is a multi-millionaire based on Linux. He’s world famous even
if it’s just the closet nerds and geeks.

Even if you want no reknown, reputation, or glory from your code, there
are no better ways to make a professional impression about you (and your
accomplishments) than how thorough, complete and professional you operate

The ReUse Software Movement 93

a software code base. It’s a best way to make that impressive aura to you and
your future.

Back when I started coding, it was important to find investors, make a sales
pitch, and capture capital, and then figure out how to get to market and some-
how get finished. Late night pizza sessions. Missed birthdays, missed class re-
unions.

Today, people complete software to relax, to make a social statement, to
record their cats making some weird art, to act like old hackers making a soft-
ware defined radio in their garage out of vacuum tubes and old soviet missile
components. Software is valuable, but code is now cliche. It’s quirky, It’s off the
beaten path. It’s in everything we use and it’s no longer special and unique in
any way. So one must adapt to the new reality. Instead of using one cylinder of
an engine to drive forward, you can find and harness many kinds of adherent
pistons to drive.

For Linus Torvalds, his adherents range from religious acolytes like summer
computer science grads, to student undergrad groupies that fall out of inter-
est when economics has better starting wages. He has leveraged the software
he guides and adherent’s workings to push the software juggernaut that Linux
has become. And will continue to exist long after Linus is no more. Into fu-
ture projects, into retrogressive projects for historical retrospectives. Even if the
Linux project falls into disrepair, even if the original code is lost, even if the
adherents all drift away, there will be amongst the discarded junk some rem-
nants, somewhere. Even if it’s just a dusted file folder lost in a filing cabinet.
Some old version manual will make it’s way into someone’s hands. This person
will read and heed the wisdom within. This person will go onto piece together
large portions of the work, understand the rationale, the file directory layout,
and get excited about all the possible wonderful applications that can be again
if only get it all working. And from that one reference, like the lone book of holy
scripture in A Canticle for Liebowitz, that’s all it takes for a person to dream and
create anew. From all the value that was stored in Linux, which was estimated
many years ago to be over $1 billion USD, that it’s all that stored value that has
what people want, it will draw them to it.

That’s really what, from a cynical perspective, is what great valuable things
possess, it’s the way that they allow people to get more without giving a lot,
there’s so much more in adopting something 80% good enough than rejecting
it and starting afresh. It’s what draws people to be lazy. Tools are useful, like a
hammer. You find your hammer when you need it, you hammer what needs to
be done, then put it away. You don’t saw a limb off your tree and whittle it down
if you can’t find your hammer. You might look some more, or you might go to

94 The ReUse Software Movement

the hardware store and buy another one, determined not to lose this one2. Once
you are finished with a hammer, you put it away. Linux works the same way.

According to Milan C. Babak of IBM, the longest software project in history
is the IBM Z mainframe development. It has been operating since 1964, that’s a
whopping 58 years. It’s claim to fame is consistent working for 24/7/365 oper-
ation for large businesses collecting transactions, Based on the design principles
of backward compatibility and effective user interface, it’s been the longest and
most dependable point of sale (POS) for big names you know like Walmart,
Banks, and Airlines.

so, if you look at the two largest software projects in history, the IBM Z main-
frame and the Linux kernel, it’s clearly that both project exceed $1 billion USD
developed value, have several hundreds of thousands if not millions of lines of
code, and long histories with many adherents. These are great upper bounds
on many business in software ambitions. Many companies struggle their whole
lives, their founder’s lives, without achieving the $1 billion USD unicorn in
value status.

Of course, by virtue of their relative positions in their markets that they in-
habit the pole positions and with good reasons. Point of sales software handling
hundreds of thousands of transactions per day, and the operating system within
a majority of servers worldwide, running many other operating systems within
virtualization containers on top of the core kernel with billions of servers world-
wide.

At this point in their careers, they enjoy both application pull (a market de-
mand begging for more) and technology push (novel technologies making in-
cremental improvements spurring value) in their respective fields. If this is the
model that ensures success, to imagine the perfect need - the so called killer
app - and the deliver a good starting point software code base, on top of rea-
sonable hardware, and continue to evolve and improve the system writ large
over a continual basis, to examine, reassess, and plan to optimize where the
needs are, to include new features and applications, and commit to perpetual
improvement despite setbacks, failed attempts, and delays.

Daunting as it may be, this is a guaranteed billion dollar value software
entreprise. The goal of anyone striking it out on their own with information
technology.

There it is. This is the proscriptive solution to your needs, a gold mine in wait
of a miner. Hard work, and this proven strategy will attain, in this time-tested

2. I have duplicate, redundant hammers all over my house like I have three copies of Green
Day’s Kerplunk in my CD collection

The ReUse Software Movement 95

way, proven for over 30 years despite massive hardware and software changes,
to continue to pull in the money and reinforce efforts year after year.

If you ever wanted the keys to a software kingdom, this is it. This is a le-
gitimate way for a legacy. All you need to do is to figure out what untapped
potential you can provide, what will drive you to succeed, and what unmarked
territory you can exploit. With this in place there is nothing stopping you from
spurring your way to victory.

Back to the ideals of software development.
In 2008, it was estimated that there were a doubling of existing soft-

ware projects every year. So, as well as the inspiration to discover the
next great application, that in order to go fast enough to meet your am-
bitious timelines, one must possess the skills to find, understand, and har-
vest/cannibalize/repair/diagnose/adapt and leverage (by leverage I mean ex-
ploit the work already made) these projects.

Here’s what these mean:

Repair -

make necessary changes inside the codes intent and mechanical functions as
is. This means to make the most of it you need greater understanding because
for many instances you will need to watch more than one piece in action, that
means unless you are lucky at what you look at first, this will take significant
work.

Harvest -

Minimal interaction with the entire code base, you find something interesting
and you extract it. You are taking half of something, not the You can make
a linear relationship between what you read and what you harvest. You don’t
need the build architecture, the global variables, as little as you require.

Cannibalize -

Pull working parts intact working the way they are and you find them. Your
learning about the code stops at the border of what you make.

Diagnose - Look into the workings of the in-situ code and understand how it’s
working and how it’s not working. Deep dive (I hate than euphemism because
no book acts like water) and you get into the minds of the developers.

96 The ReUse Software Movement

Adapt -

Adapt is the happy medium between ripping stuff out and fixing things on the
inside. In this case, more of a grey area than cannibalize or repair, in that you
take some parts out the way they work, and you include them by adding them
into your own code. In this way, you are changing the function and data of both
to make them fit together.

So, like the complexity versus size graph, the amount of work is commensu-
rate with the amount of stuff you plan to encompass. If you take out a piece
whole and don’t look at the innards until it crashes then it’s a risk of not com-
pletely understanding what you’ve installed.

There’s an entire industry for people with the problem of not having reliable
parts and supplies. Think aircraft carriers made in the 1960’s. The UK stores
a whole aircraft carrier in a river inlet just so they can cannibalize parts for
the remaining one. It’s called diminishing manufacturing. If you make this your
business then you will be in the diminishing manufacturing game as well. Any
obsolete and end of product run, like many dead software projects, which will
be the majority of all software, that has outlived it’s usefulness to the owners
it becomes part of the scrap heap for you. There are always gems amongst the
spoil. The facts of diminished manufacturing is that you have to learn when to
stop more work into tested and flawed code and when you are wasting more
time and effort that would be better spent looking in some of the alternatives.
There is a learning point where and when to seek value elsewhere, be it due to
a lack understanding, the code’s failing are not in your wheelhouse, or the long
term benefits don’t outweigh the sunk and extra costs to make it valuable. But
these are the obvious but not the only ways to use someone’s code.

There are many ways to use someone else’s code other than the straight as-
similation of it into your needs. You could do the following:

Make the other software into a cantrip; using the code as is, and understand-
ings it’s inputs and outputs only, compile it to run as a special set-apart program.
Like the Unix philosophy supports, pipe into it or from it data that you need for
something else without directly accessing nor caring about the internals.

Make it a Rando

Compile and execute the code to just sit there and do whatever it does. The
idea here is you don’t even care to understand what it does, you just use it as
a generic load that takes up space and resources within a working processor.
Think neutrons in electric fields. It’s there, but so what.

The ReUse Software Movement 97

Make it a security target

if you goal is to use it as a target for denial of service attacks, then you are better
off trying to attack it running first without the cheat codes of understanding it’s
internals.

Make it a stand-in, or standby

Knowing some of the functionality and API, use it as a temporary part of the
system (again without meddling internally) while you are examining computer
activities at the level of messaging systems, middleware, and so on. If you are
locked into a perpetual maintenance cycle, this can be a quick workaround.

Chapter 6

A Reuse Strategy beyond Fads

He Has The Most
Who Is Content
With The Least.

—Siddhartha Gautama, The Buddha

The first question you may ask yourself when you read this chapter is what
for and why is an author bothering software manager types with some idle math
presentation. Simple. In order for you to manage your software future prospects
you need to understand at the highest level from an objective perspective what
should be happening at any level of your software. If you can adopt and use a
rigourous math argument, then you can measure, analyze, and judge whatever
software dog’s breakfast your coders come up with. You’re welcome.

Erickson Composition

We need to mentally layout a grounding philosophy to describe the better way
forward in mathematical terms. We define idea and concept as fixed things for
the purpose of explication and explaination. Every philosophy gets grounded in
math. That’s how philosophy becomes (somewhat) useful.

I define a way to link keywords from things like functions and data within
a library to a generic set of concepts and ideas that any software developer
might use or understand. Keywords in a knowledge base (in this philosophy
they are internally connected apart from the library in question - we do this
with conceptual graph interface format (CGIF) developed by John Sowa inside
RULA).

idea1 (philosophy) An abstract archetype of a given thing, compared

99

100 A Reuse Strategy beyond Fads

to which real-life examples are seen as imperfect approximations;
pure essence, as opposed to actual examples.

Let all ideas related to software be known as nouns, places, patterns, objects,
archetypes, examples, somethings, someones, somewheres, somefors, arrived-
ats, destinations, sources, domains, ranges, co-products, 1-objects, and so on.

concept2 A description of supported operations on an idea3 type, including
their syntax and semantics.

Let all concepts related to software be known as verbs, actions, someways,
abstractions, somehows, arrivings, operators, products, transformations, func-
tions, functors, pullbacks, 2-objects, and so on.

There is then a product of the mashings4 of objects and con-
cepts (a multiplication like a cross product not a co-product like
an addition). I use a modified ncatlab.org definition for composi-
tionhttps://ncatlab.org/nlab/show/composition:

Composition is the operation that takes morphisms f : c → i

and g : i→ k in a category and produces a morphism
g@f : c → k, where @ is called the Erickson composite
of f and g.

So, I restrict the idea of abstract morphisms (a vague idea about actions) to
the idea of compositions in making software keywords. Is this reasonable? Who
knows? It’s a start at a beginning. And, I introduce the Erickson Composition
for Concept-Idea Products: In order for any idea I to be found elsewhere (for
example, idea i7 found at the same object location as the object k3 then i7 must
be acted upon by the concept c1 onto k3), then the composition is shown in
Figure 6.1.

The Erickson composition equation is then:

c1@ i7= k3

where @ is the Erickson composition morphism from one concept to one idea.
I restrict the domain of f, to the identities of every idea in your head. Not

mine. I restrict the destinations of composition to the range of keywords. Not

3. my modification from original
4. left undefined for the purpose of your use of whatever intermediate concept that suits your

cognition in pursuit of proscriptive advice rather than strict mathematical proof

http://ncatlab.org
https://ncatlab.org/nlab/show/composition

A Reuse Strategy beyond Fads 101

Erickson Composition: The Concept acts on the identity of Idea so that it can be
found within the keyword object

my keywords, yours. If you understand none of this just nod to yourself that I
have made defined linkages from ideas to concepts. QED.

Remember, the ideas, concepts and keywords all rest within your mind (the
software) and your brain (the hardware). The functions and data within a soft-
ware library lie inside the library and it’s documentation as the authors in-
tended, or not. The goal of this chapter is to set up an understanding of the
mapping between unknown work inside software and the things you hope to
find (or not find) in that candidate for software reuse.

Let keywords be the product of an idea object’s identity (iid) composed with
a known concept. For a generic composition, let the object of the product of one
concept with the idea’s identity be called a keyword.

k3id = idi7 ◦ Ca = idk3 = c1@ i7= k3

where k is the keyword, the identity of the object idi is composed with con-
cept Ca to arrive at ki.

This is what this means, and most software is already organized like this:
If you want a GPS data struct initialized in some code you don’t understand,
then you are looking for the generic keyword for GPSInitializeData (Words for
concepts and ideas smashed together like WordsSmashedTogether) or perhaps
just GPSDataConstruct or ConstructGPSData. That’s the basic syntax for key-
words of the Erickson Composition: you find the ideas composed together into
an identity that is unique.

Now consider an unknown software library you are intending to leverage,
and you wonder if there are or are not specific functions (functions not in your
mind but in the mind of the original software developers) and specific data

102 A Reuse Strategy beyond Fads

types (data types not in your mind but in the mind of the original software
developers) that can or cannot fulfill your intended purposes.

The case for finding out that a library is without the ideas and concepts you
need is a mirror of the argument I will now present. Just imagine every object
and concept I present in the negation form (¬i or ¬c). In truth, you will find
that most software libraries hold both the ideas and concepts you want and also
not-ideas and not-concepts you want or don’t want. For the purpose of clarity
I only deal with the existence of things to find, not with the non-existence of
things to not-find.

Let X be the range of functions or object methods that you want to use or
leverage.

Let Y be the range of data types or things that you want to use or leverage.
The first realization you make (without presenting any equations) is that you

will need time/resources invested to find out of there are all, some, or none of
the functions and all, some, or none of the data types you want. Any leveraging
apart from copying will lead to a gray area of what things are useful and what
aren’t as they are presented. This is where managerial judgment comes in.

These are the five situations of code reuse:

1. No functions and no data you want to leverage

2. Some functions and no data you want to leverage.

3. No functions and some data you want to leverage.

4. Some data and some functions you want to leverage.

5. All data and all functions you want to leverage.

The most unlikely and trivial situations are 1. and 5.. It is unlikely that you
will investigate an ice cream control software library and find nothing related
to ice cream control. And the situation of the library has all preferred functions
already in code with the perfect data types in the preferred format is also ideal
but unlikely. The realization for any of the situations is the effort needed to
determine an outcome will never be zero. And the cut-off point for too much
investment with not enough return is a problem. It’s a paradox in fact: if you
can’t be certain that one extra second of investigation, one extra dollar invested
won’t determine the certain outcome of the desired function or data exists or
doesn’t exist, then how can one determine the value spent as loss or profit?
This is like the sunk cost fallacy, but in reverse: it’s the reward certainty
determination. In other words, at what point can you get to that changes the
value invested from a loss into a certain money maker? There’s no simple way

A Reuse Strategy beyond Fads 103

to calculate it, nor definitive time condition to end it. I leave the creation of
these measures to economists or anyone else that uses numbers to feel better.
My objective of pointing out the problem is the bound I choose for this work.

Situation there are fewer y’s than x, and you need to search all x’s in y to
find the ones you want:

Let : x, y > 0, y < x, y 6= x

Let A be a set of topics the programmer is interested in. Let B be a set of
smaller items from which to find those items in A (B is a subset of A, A is a
superset of B).

The search space for any x, has a best case of 1 search (the first item is x = x

), and the worst case is y (the last item y is the x searched for). And if the
specific item you are looking for doesn’t appear in the searched set, then with
no memory, that is like you searched the whole space for nothing. That will be
the same for all no memory searches which is the worst case scenario.

So, assuming that all identifiers are equal to the searcher’s version under-
stood, there will be a total bounded number of searches as [x, xy− > x2] as-
suming no memory on searches.

Lets make the problem the opposite scale:

Let : x, y > 0, y >> x, y 6= x

Let A be a set of topics the programmer is interested in.
Let B be a set of larger items from which to find those items in A (B is a

superset of A, A is a subset of B).
The search space for any x, has a best case of 1 search (the first item is x = x

), and the worst case is y (the last item y is the x searched for).
So, assuming that all identifiers are equal to the searcher’s version under-

stood, there will be a total bounded number of searches as [x, xy] assuming no
memory on searches.

This is a far bigger number of searches, because y is much larger. These are
linear searches, like looking at a line of people and checking for one face (like
Bellman’s original theory).

The way to speed up hierarchies to search is to make complex search trees as
they call them (this book is written for spunky neophytes as well as computer
science experts) that divide the search sector into smaller and smaller groups
so you don’t have to look at all faces in the line from one idea or concept to
the function or data you are searching for. And many people have done so by
implementing that complexity ONTO THE LIBRARY of software.

104 A Reuse Strategy beyond Fads

This is what this book has lead you to. The pot of gold at the end of the
rainbow. The rainbow leads to an easy search and easy implementation. It’s
not that this single layer isn’t easy to implement, but that people were making
things unnecessarily complicated by organizing, introducing complexity that
may or may not mean anything directly to the operator looking for the one
thing they need. That’s why that complexity can’t be in the code. By making
internal decisions about what to include, what to show and what to hide, we
are unnecessarily making it harder for people that won’t use that particular set
of concepts to arrive at the one they want. Over complicated makes obfuscated.
In the end, the best starting position is to look at the index, not the table of
contents. Or, the table of contents but not the index. And so on.

So, what this means, we must allow for all the search, index, and other con-
cepts but make them particular to the user.

Let’s look at the complexity problem from the standpoint of multiple identi-
fiers that each are surjective onto the limited array of concepts within a library
in finite storage and finite functions.

Suppose that r represents an index number in set R for classification like a
mathematical society’s "Mathematics Subject Classification" that is a made up
number like the Dewey Decimal System.

Suppose that there are concepts c in set C that represent main numbers asso-
ciated in r above and would cover many sub topics in the "Mathematics Subject
Classification" from zbMath.org. I picked this at random and not with any bias
at all. So c in C are surjective onto r in R. That means there are more c’s in C
than r’s in R and they all map onto zero, one, or more r’s in R.

Suppose that there were keywords k in set K that represent keywords that
are in c above and are therefore would cover many concepts in c of C and
classification numbers r of R. So k in K are surjective onto c in C and r in R.
That means there are more k’s in K than c’s in C and they all map onto zero,
one, or more c’s in C (which map onto r’s in R).

I will stop the math here for the managers, they will fall asleep. I will add it
back in for a later version. For now, let’s assume this is all true (it has to be done
in CGIF which will require logical statements beyond a set theory perspective).

BORING MATH HERE

This produces an over-connected (as in many things pointing at one thing
from an arbitrary number of sets) rather than a one to one or minimal connected
set of concepts to ideas, ideas to functions, ideas to data, concepts to functions,
and concepts to data. So, the idea is that with a search using many kinds of
conceptual indexing, there are more chances that all it takes for one person to

https://zbmath.org/

A Reuse Strategy beyond Fads 105

Simple, over-connected keywords from many sets of concepts and ideas onto one
function and or data inside the library under investigation. In the large scale

The impact of keywords, that multi-connected keywords that activate other terms.

find the right ideas by any selected concepts is through intermediary keywords,
therefore allows more mappings onto the one concept that the coder wants.
There are many concepts pointing at one data point within the set y of Y.

Y?
∼= (Ra ∪ Cb ∪Kd) ≤ X2 ≤ XY

So to add together a union of three sets is in general less than the parabolic
of X2 and polynomial XY . The importance of this can’t be exaggerated as the
set sizes grow larger. Consider this in comparison to a library that grows more
complicated over every layer

Now imagine that instead of 3 factors, you have 20, 50, or 100 defined as
mutually exclusive concepts online that are surjectively mapped to the functions

106 A Reuse Strategy beyond Fads

The Ultimate Goal: keywords allow multiple ways to connect to what the software
coder is looking for without knowing all the correct, precise, ways to search for it.
The user doesn’t need exactly one correct way (in the understanding of the original
coders ideas and concepts) to find what they need. The new coder will get a range
of answers that might point at the wanted elements. Or, just as useful, demonstrate
conclusively the library doesn’t have what is needed. Quickly.

N over-connected ideas from many sets onto one brain concept.

and data at the bottom in y of Y, and a person connects from inside their brain’s
version of x in X onto any one of c in C, r in R, and k in K. Some of the concepts
may be negative morphisms, as in a not-associated not-belonging to concept as
a further way to allow a user to explain things their way. This is a totally new
way of examining the problem, insofar as I am not using Bogart’s Twentyfold
path ideas nor Rota’s Twelvefold way of combinatorics. I don’t care about the
search space if a human gives up after one or two tries. From my history of lost
cause software projects, I attribute this, a readily and easily searchable way to
find what they seek, as about 80% of the lost cause.

Above, we expand the problem to ideas that will influence the first search as
successful, as many as possible. I call this way over-connected; instead of 1, 2, or
3 chances to get it right on the first try, you might have 100 complimentary/anti-
complimentary ways. And after a couple of attempts, you either master the
technique or give up. Or you read a tutorial and watch a video of someone
doing it easily and that person is into the fold. I don’t expect everyone to be a

A Reuse Strategy beyond Fads 107

convert but if you can keep the adherent class growing as you lose a few, you
will supersede the majority mass to reach a billion dollar software value.

This doesn’t mean one or a few humans can set all this up. Setting all this up
would be a Herculean task for a man to create. And that’s how Sowa’s existential
graphs work their way in. ISO/IEC 247707:2007 is the way to embody layers
of complexity without adding to the stratifications of the code itself.

If you want to take part in my continued experiment about the importance of
precise keywords, this book is an experimental offshoot. At the end of the book,
I created an all-concept index, rather than a separated author index, concept
index, and symbol index located here Appendix B. Naturally, the makeindex
LaTeX style file can create a consolidated index because it makes key tokens in
any case. It is human beings that separate them for stratifications and order. If
you are thinking of any idea presented in this book, you can run a mini exper-
iment by looking in the index for concepts associated to what you remember.
IF this index works better than the usual indexes, that should stand out as re-
inforcing the importance of specific concept-idea-keyword associations that last
past reading something.

I cover Sowa’s existential graphs in detail in the RULA library later on in
Chapter 10.

Software As Essentials

Here are the four main intellectual components of any software/firmware and
in some cases from certain views hardware (if one allows for electrical analogs
of software concepts):

• Form: The layout of the things in the component, from different files to
the configuration system can be quantified;

• Interfaces: Like all components, these components interconnect to other
components like the operating system (e.g. Linux operating system func-
tion calls like fread() and so on)

• Data: the size, type, and volatility of the data that gets worked on by
functions within the component that interfaces to other components

• Concepts: Every software component includes the concepts that the soft-
ware developers had in mind when they wrote it from project require-
ments onto product specifications. Ideas like publish and subscribe for
communications, read and write for data interfaces to the operating sys-
tem, and so on.

108 A Reuse Strategy beyond Fads

If there is any way to inquire into software and reply in a way that will make
sense consistently, then lay out the above form terms on a piece of paper, review
the component you are looking at, and then fill in these 4 essentials and you will
have described most of what you are looking at. When you have defined these
essentials, the understanding that comes with that will make changing, modify-
ing, and improving your software even better. your workload less onerous, and
your plan to complete far clearer than any other critical thinking review.

If you take away one concept from this book, to divide software you are
forced to review into four stark ontologs as above, you will have sped up your
softwware reuse journey by many steps.

See Others in Your code

People will not like your work along one or more dimensions; how it’s built,
how it’s organized, and perhaps even it’s documentation. That’s the first most
obvious acceptance to the reality of making it easier to help other people: there
needs to be a way built in that makes it easier for others to HELP THEMSELVES
inside your code. That’s the first proscriptive lesson from my many searches
through over 5000 open source software projects. That’s the first and most vital
way to improve ease of use.

This book accepts the realities that people won’t be happy with the way it
is, but can be made happier if their transition of your code follows an easier
path than the current one, using traditional ideas of what makes a software
code base useful.

With that in mind, doesn’t it make sense as you go along, as one can, to also
make it easier for others as you make it easier for yourself, since everyone will
be leaving software for others to improve upon?

What’s your value proposition?

What will your value proposition to new, future programmers in this new cen-
tury?

It’s not syntax.
It’s not grammar, nor rules, nor code coverage.
It’s not cutesy names and TED Talks.
What you will win over observers and neutral parties like global corporations

is with the knowledge contained in this book that:

• Builds insight into the future of your software.

• Convince others to stop competing and begin collaborating.

A Reuse Strategy beyond Fads 109

Your better plan that plots many paths forward to: Greater ease of use; faster
code; more reliable because it’s beta tested and bug fixed worldwide; more
diverse clientele; a time-tested way to outlast that first burst of enthusiasm that
accompanies big new ideas and new workers; Keep a common understanding;
and and, ideally, making your code the most re-used in history.

Shifting people from neutral observers to followers - or more generically ad-
herents - from a sheer numbers perspective, is indeed a positive outcome of
a, from a macroscopic perspective (making your effort more significant), an
intersectional perspective (your ideas cross more people’s minds), and environ-
mental perspective (maximizing resource usage and minimizing waste). If you
tell people you are reducing project risk by dividing the work, decreasing risk of
milestone slippage, and the ecological benefits it will appeal to the economical,
the business minded, and ecologically friendly; you will stand greater chance of
people supporting you through marketing, through donations, and yes even
work.

There’s an even bigger untapped market for science; science fair projects.
If you can get a group to plan out and leave small "bite-sized" projects that
are within the capability of a high school student, and then provide periodic
supervision with meetings over the school year then this is an entire extra pop-
ulation to leverage. These projects can include difficult projects that win them
scholarships, then you will make your impact far wider with national science
fair recognition. I was the chief judge for a local science fair and supervised and
coached teams of science fair students at national science fairs. I’ve watched
our students walk away with $30,000 in scholarships. Even the younger ones
treasured the experience. This leverage will bring you more impact, especially
from the parent class, if you can cooperate to help high school students. And
it might even attract corporate sponsors. Many large global corporations invest
heavily in science fairs of one kind or another.

All these simple examples of looking at what you are doing from a few steps
away from the code, away from the desk and chair, from a viewpoint I call the
"holistic viewpoint" on the needs of software development. This is very hard for
people starting right out of university. We sit in classrooms of raw science: cal-
culus, complex calculus, finite element methods, logic, topology programming,
metallurgy, and so on being marinated in objective reality, all of it absurd and
beyond the grasp of most humans. But after tat, we strive to communicate and
find common cause with nonscientific people that aren’t aware nor concerned
with any of that. How does one "bridge the gap" for an unprepared bridge hole?

If you watch the advertising of the global multinational technology compa-
nies that sell technology, their face to customers is entirely "soft skills" of nor-

110 A Reuse Strategy beyond Fads

mal human advertising. They’ve transformed and adapted over the years from
accenting the latest tech, mainly from year after year of failed pro-tech advertis-
ing. The advantages are twofold: they appeal directly to normal people’s emo-
tions, to non-technical people, and the vague mentions of technology features
are mainly deceptive and restrict or hide from public viewing the weaknesses
and failings of that current design; and delays the realities of these aspects un-
til after the sale. Welcome to the world of $billion advertising for $multi-billion
global sales!

"Sell the dream, refund slowly the disappointment."
Add to the fact that these same companies are known to tamper with their

own products in order to goose new sales. This is the life you want, apparently.
Learn from these people, successful campaigns and companies, Take every as-

pect of your project seriously. Include the aspects that other people care about.
This is how you win the widen the appeal to get co-investment. In some ways,
these soft skills priorities outweigh the reuse of software projects as a pivotal
improvement. It recognizes, in parallel, future needs as well as the immediate
technical needs.

The bigger problem when renovating code is the nonunderstandable deci-
sions with no documentation that gives a first time user a bad impression of the
code and the coder. It’s not enough to make the code "correct" (to the syntax,
grammar, and format) and "complete" (that it contains all the memory and
functions that you believe the code needs) as if those barely acceptable math
notions are sufficient (mathematical sufficiency - it MAY be so) is when you
leave no rationale then people’s misperceptions will judge your code unneces-
sarily lacking (mathematical necessary - it MUST be so).

"But it works" is no excuse. But If you are not willing to heed, answer and
implement all justified changes. improvements, and redesigns yourself (which
can be very instructive to others that compare and contrast alternatives) then
you expect the effort of others to improve what you have started. You need buy-
in at some point. In fact, no matter how well you believe your code and coding
style is, the time-tested demonstrations of commitment to other’s software is
how long you can keep people helping your code.

When people invest in your code, they are acting in their best interests as
they believe helping themselves. That’s the singular, time-tested, and proven
performance metric.

There’s no guarantee that others will continue on they may take on a forked
trunk code, erase what new fangleds you’ve added, and keep it at a paused
level where they both understand and accept what the code does and what it
doesn’t do. To each his own.

A Reuse Strategy beyond Fads 111

But when the code base starts with much fanfare with much fanfare, high
hopes, and wishful thinking.

But check back in three years. Many code bases begin with lots of hope. You
will see many dead projects.

Here is the software reuse vicious circle5:

If people don’t know about your code, they won’t use it.

If people can’t use it from a simple high-level API, they won’t include it.

If people don’t include it, then they don’t talk about it, mention it to other
friends.

If they don’t talk about it to others, those valuable personal referrals don’t ap-
pear.

If people don’t refer to it, then you will be forced to make all improvements.

If you make all the modifications yourself then your life be altered and your
software will consume your life, your extra time, and your hope.

If you lose your hope, then your project dies.

Then you will give up.

If you give up, then your code may never be considered again, by anyone.

Programming languages come and go. Details of what you did and why will
fade. Code is the basis of software, but code ISN’T your software, it’s merely one
facet of your software. Your software are the ideas and how you present them.

You are even in the same situation as for your code. You are not just what
you look like, smell like, and act like.

I have written code since 1992, at least good code. I wrote BASIC back in
1988 very badly. I look back to my old code, at my master’s thesis code which
was written in back in 1999-2000, which was written in C for the Microsoft C,
and I can’t fathom why I made the choices I did, the style I used, the rational
of file names and so on. As you write more code, and especially when you read
better code, you will improve your style. Your programming knowledge is time-
varying, why not accept it?

Myself, when I am trying to augment code inside someone else’s code base,
I adopt their style. I try not to destroy their style too much. I try to adopt a
light touch. The goal is to make it less confusing if they find my edits and

5. I wrote this BEFORE reading Captain Donald F. Burns III’s thesis. This is from my experience
with 5000 code bases

112 A Reuse Strategy beyond Fads

modifications they would be more likely to use it. Have you ever coded anything
while thinking about someone else using it 100 years from your typing?

By adopting idiomatic styles, and different file layouts, it gives me a broader
understanding But what makes me improve?

What is in the comments. Comments are the chain of logic outside the code,
not the code itself. File names, code divisions, library and sublibrary names,
code structure, they make it all easier to understand, not just the semantics but
the intent.

When you re-read what you’ve done, you want to make an easy mental list
of the changes, that optimizations the documentations, all make it easier to
understand and what needs to be improved.

None of this is code-related. Your brain ignores the things it understands,
and when you’ve looked at over 300,000 lines of code (LOC) you ignore the
mundane declarations, the clear logics, everything about what is in front of
you. If the code is like this, then your effort going forward will be minimal.

Here’s another reality: if you ever need to improve speed, or improve mem-
ory size for a restricted memory footprint, then you need to know what changes
need to be made easily and quickly to fit the new needs. Every change must in-
corporate code working differently than it was developed. If you haven’t wanted
for the right packet on the internet, then you haven’t dealt with things like in-
terrupts, If you need new user inputs, then you need to setup, calibrate, and
devices across many kinds of input/outputs schemas like single bit, multi-char,
serial buses, and so on. If you need to divide the work over many processes, you
need to know how to setup shared memories, mutexes, and what to separate.
Your brilliant code, your intelligent designs, all depend on the sustainability in
the long term.

Tom Calloway’s Take

Tom Calloway was so frustrated with Chromium this is what he spent time
compiling in 2009:

How you know your Free or Open Source Software Project is
doomed to FAIL (or at least, held back from success)

This was inspired by my recent efforts to look at Chromium, but these are just some of the red flags I generally
have observed over the years written down(and denoted as points of FAIL (POF)).

== Size ==
* The source code is more than 100 MB. [+5 POF]
* If the source code also exceeds 100 MB when it is compressed [+5 POF]
== Source Control ==
* There is no publicly available source control (e.g. cvs, svn, bzr, git) [+10 POF]
* There is publicly available source control, but:
* There is no web viewer for it [+5 POF]
* There is no documentation on how to use it for new users [+5 POF]
* You’ve written your own source control for this code [+30 POF]

https://spot.livejournal.com/308370.html

A Reuse Strategy beyond Fads 113

* You don’t actually use the existing source control [+50 POF]
== Building From Source ==
* There is no documentation on how to build from source [+20 POF]
* If documentation exists on how to build from source, but it doesn’t work [+10 POF]
* Your source is configured with a handwritten shell script [+10 POF]
* Your source is configured editing flat text config files [+20 POF]
* Your source is configured by editing code header files manually [+30 POF]
* Your source isn’t configurable [+50 POF]
* Your source builds using something that isn’t GNU Make [+10 POF]
* Your source only builds with third-party proprietary build tools [+50 POF]
* You’ve written your own build tool for this code [+100 POF]
== Bundling ==
* Your source only comes with other code projects that it depends on [+20 POF]
* If your source code cannot be built without first building the
bundled code bits [+10 POF]
* If you have modified those other bundled code bits [+40 POF]
== Libraries ==
* Your code only builds static libraries [+20 POF]
* Your code can build shared libraries, but only unversioned ones [+20 POF]
* Your source does not try to use system libraries if present [+20 POF]
== System Install ==
* Your code tries to install into /opt or /usr/local [+10 POF]
* Your code has no "make install" [+20 POF]
* Your code doesn’t work outside of the source directory [+30 POF]
== Code Oddities ==
* Your code uses Windows line breaks ("DOS format" files) [+5 POF]
* Your code depends on specific compiler feature functionality [+20 POF]
* Your code depends on specific compiler bugs [+50 POF]
* Your code depends on Microsoft Visual Anything [+100 POF]
== Communication ==
* Your project does not announce releases on a mailing list [+5 POF]
* Your project does not have a mailing list [+10 POF]
* Your project does not have a bug tracker [+20 POF]
* Your project does not have a website [+50 POF]
* Your project is sourceforge vaporware [+100 POF]
== Releases ==
* Your project does not do sanely versioned releases (Major, Minor) [+10 POF]
* Your project does not do versioned releases [+20 POF]
* Your project does not do releases [+50 POF]
* Your project only does releases as attachments in web forum posts [+100 POF]
* Your releases are only in .zip format [+5 POF]
* Your releases are only in OSX .zip format [+10 POF]
* Your releases are only in .rar format [+20 POF]
* Your releases are only in .arj format [+50 POF]
* Your releases are only in an encapsulation format that you invented. [+100 POF]
* Your release does not unpack into a versioned top-level
directory (e.g. glibc-2.4.2/) [+10 POF]
* Your release does not unpack into a top-level directory (e.g. glibc/) [+25 POF]
* Your release unpacks into an absurd number of
directories (e.g. home/johndoe/glibc-svn/tarball/glibc/src/) [+50 POF]
== History ==
* Your code is a fork of another project [+10 POF]
* Your primary developers were not involved with the parent project [+50 POF]
* Until open sourcing it, your code was proprietary for:
* 1-2 years [+10 POF]
* 3-5 years [+20 POF]
* 6-10 years [+30 POF]
* 10+ years [+50 POF]
== Licensing ==
* Your code does not have per-file licensing [+10 POF]
* Your code contains inherent license incompatibilities [+20 POF]
* Your code does not have any notice of licensing intent [+30 POF]
* Your code doesn’t include a copy of the license text [+50 POF]
* Your code doesn’t have a license [+100 POF]
== Documentation ==
* Your code doesn’t have a changelog [+10 POF]
* Your code doesn’t have any documentation [+20 POF]
* Your website doesn’t have any documentation [+30 POF]
=== FAIL METER ===
0 POF: Perfect! All signs point to success!

114 A Reuse Strategy beyond Fads

5-25 POF: You’re probably doing okay, but you could be better.
30-60 POF: Babies cry when your code is downloaded
65-90 POF: Kittens die when your code is downloaded
95-130 POF: HONK HONK. THE FAILBOAT HAS ARRIVED!
135+ POF: So much fail, your code should have its own reality TV show.
Anyone want to guess how many POF Chromium has?

If your code is built for developers, then remember they have a say in how
good your code is. Developers are your employees that hang their hat else-
where. Developers KNOW ENOUGH to fix minor problems without asking (as
I write this, I fixed my WordPress installation of Dennis Hoppe’s encyclopedia
without help). If your code is for users with NO TECHNICAL ABILITY, then how
much worse will they rate it if it doesn’t work?

Enough of failure, let’s look at the unipolar success of an open source, bazaar-
developed, software goliath.

Chapter 7

Linux: The Pinnacle of Software
Reuse

All Conditioned Things Are Impermanent
When One Sees The With Wisdom
One Turns Away From Suffering.

—Siddhartha Gautama, The Buddha

Let’s explore the world’s most successful open source project: linux.
The first linux kernel (operating system) was release in 1991 by then Finnish

student Linus Torvalds. The first official version was 1.0 released in March 1994.
I was graduating from Royal Military College at that time- readying for final ex-
ams, and went on to serve in Army units. So my awareness didn’t come around
for several decades.

Today is some day in March, 2022. That’s 28 years of an open source CPU
operating system linux kernel, originally made because corporations made the
Unix kernel too expensive for young hackers to use. Do you believe that any
of the original code resembles any of the original written files. Some of the file
names, probably for continuity. Some of the names of elements of it, sure. But
very little of the original code remains. As of this date, the main trunk Linux ker-
nel is on version 5.17-rc5 (release candidate 5). It is maintained and developed
by hundreds of thousands of contributors. All this despite the recorded fact that
Linus Torvalds is a horrible person to work with. The complaints are legendary
and from what I’ve seen it’s probably deserved. As a difficult individual to get
along with, there’s not been a shortage of turmoil, upheaval, calamities along
with all the success.

The kernel is supported by Google, Microsoft, Red Hat/IBM, and many other
Fortune 500 technology companies. The book by Eric Scott Raymond, The

115

116 Linux: The Pinnacle of Software Reuse

Cathedral and the Bazaar (2004) illustrates the consequential intellectual bat-
tle between Microsoft, the cathedral of software developing, and the Bazaar,
the free, open source Linux formless insurgent forces of Linus and an every
varying array of developers. Microsoft, for all it’s commercial might, could not
out compete with the independent, asynchronous massively parallel subversive
and altogether chaotic development in Linux. About the middle of 2010, the
corporate titans sued for peace with Linux and worked to exploit it, not stop it.

Let’s not expect, after heeding the words within this humble book, I will
propel you to the near limitless level of this computer colossus.

Google claims to have a code base of greater than 2 billion lines of code.
There is no way that anyone, any group, will understand all of this. From a sub,
sub, sub, project in this repository (BTW I’ve read Google’s former CEO’s Eric
Schmidt’s open source project lex back from before he got rich and famous and
it’s, frankly, pathetic) will undergo lobotomies language changes, QA testing
regimes, regression testing, uprevisions, and forks and so on and live many
lifetimes.

But if you can make your code compelling, outlast the first set of developers
to hang on a decade, you have made something significant. A project that stands
the test of time is a project worthy of merit.

Various nomenclatures, like dialects spoken by an in-crowd of technocrats,
perhaps adopted from various education and company settings, make it hard
to unify along a common set of ideas that will map one to one with ideas in
anyone’s head.

The most hated design decision I have seen inside many code bases, is the
refusal to make a headless version of the software - without a GUI - available
at the same time as the project. It’s a common way to obsolete all the good
ideas inside your code. Most of the GUI kinds of the past 20 years were poorly
thought out, were adopted provincially, and many disappeared as the better
designs - ones that were portable across operating systems - appeared and took
over. It’s an added layer of complexity to try and get a buggy GUI extracted from
on top of the members and methods that people really want to use. GUIs from
the late 1970’s and 1980’s are hard to find any source code at all, so there would
be a struggle to get these working at all. If you want to help people adopt GUIs
on top of your code so be it, I don’t think that’s a bad thing, but make sure your
work can exist without any one GUI. The more things you connect to, the larger
testing regime to make it all work, and keep it working as more code is added.
If you were smart, you’d let people fork GUI types as they prefer and make your
code work with all of them. That way you don’t pick the losing horse, you don’t
alienate people that want the other work alone, and you give yourself things

Linux: The Pinnacle of Software Reuse 117

like science fair projects (more on this later) for added co-investment. This is a
great way to get companies to invest in your work, let them manage their own
GUIs. But maintain a headless version of your system so it can work anywhere,
from a server to a smartphone.

Back to the question about does your code look the same? There are probably
hundreds of thousands of code improvement commits (inserted fixes like diff
and patch) to the linux kernel. When numbers like that are there are very little
line by line changes still like the original main trunk release 1.0. But. if you go to
include headers, which must be common for people over generations that never
delve into the kernel, and they look remarkably similar to the include headers
through previous generations. More, different headers perhaps, but a familiar
code partitions, and so on. Devices have increased, by type and commercial
brand, but the location of devices relative to the rest are in the same spots. Com-
munications protocols have added for the latest wire communications, more
protocols have been added, but they still use the same file paradigm for most
actions to open, close, read and write as they did in the original 1.0 version.

Making a successful reuse library / repository is a commitment to the long
term.

More than great code.
More than the best people.
More than good fortune (because you can expect all kinds of fortune).
What this book sets out it the way to format the best outcomes from my

learned and experience reading code projects that went extinct.
Like Michael Kerrisk’s man7.org project, in addition to his great book The

Linux Programming Interface, man7 provides easy, well-laid exemplifying of
all the powerful capabilities within the linux kernel, my code project example,
RULA - Re Use Library Abstraction, founded on the IEEE SA Open software
gitlab zone is a starting point. Unlike Mike’s work, where (I can confirm that
Mike is a great guy after interacting with me over the COVID lockdown he
graciously forwarded me a pdf copy of his book when mine was stuck in my lab
on the army base.) Mike’s work is offered as is to be taken as is and used the
way expected within the Linux kernel, my RULA library is meant as a starting
point for your own work, where you can expand, chop, reorder and so on as you
like. Go ahead and clone your own main trunk and let me know occasionally
if you are still there. Expand in any way you wish, I’d love to hear back about
your insightful work.

adherent (noun) a person that has membership in some group, association,
or religion.

118 Linux: The Pinnacle of Software Reuse

It’s interesting to note that you could make the mapping between someone’s
allegiance level as a function of their emotional attachment to a group. As an
outsider, one has tepid feelings. As an association member, feelings about the
group are in the middle of the range of social attachment. As a member of
a religion, the emotional attachment is at the peak of the human experience.
What’s more important to your software success - your lines of code or number
of followers? Your

Why did I feel my observations were valuable enough to write them in a
book?

Because I’ve spent countless months, helplessly, and hopelessly scanning
many projects for my own code needs. I’ve scanned code from famous people
like Ken Silverman, the young C prodigy that sold the original game engine for
DooM to id software, to university groups of professors and students making
community projects like Player/Stage/Gazebo, funded by DARPA to accelerate
progress in mobile robotics, to dreamers and schemers and vaporware make
believers. Many projects start full of enthusiasm. If you think that writing code
is tough, and it shouldn’t be if you use all those design methods they teach you,
fill your head full of, at engineering colleges, then imagine how hard it is to
arrive at a tarball, unpack it, run doxygen, or just reading the code directly or
the directory tree, and not having those designs, not having much more than
ReadMe.txt file I have downloaded over 5000 projects in my career.

Most times I wanted to leverage someone’s work positively so I could speed
myself to results. The outcome was a career full of lessons on how to avoid my
predicaments.

Whatever you believe in your code, if is unclear, if it is laid out nonlinearly,
and if it is to incorporate various parts contracted out into a longer term rerole-
back into the project as new messages, new processes, new threads, new ser-
vices that are complimentary then organization and form become bigger and
bigger in importance than code generated daily. I am a silent witness to many
individual efforts that went for naught.

The biggest problem with any project is understanding.
All the human errors, great and small, that we all suffer from on a transient or

periodic basis, arrive at from misunderstanding. So, the solution here is that we
all must make things more understandable, greater understanding and lower
confusion, and that will allow greater applicability, more ease of use leads to
more use, more ways to use it will lead to more demanding absolutes from
anyone and anything, will guide more people to your work to selfishly satisfy
their needs easily, and cheaply and without much fanfare nor to-do. The com-
plimentary goals. ease of use, understandably recognition and project can take

Linux: The Pinnacle of Software Reuse 119

an unknown trek and take and can be weighed down by many global factors
you cannot control and may have unforeseen global events like war, political
upheaval, that will ruin your best-laid marketing plans you pay for.

Chapter 8

Organizational Considerations

Complexity Expands with Knowledge Hierarchy

The second biggest problem that fails software projects is the problem of
hierarchies. The layers of things make it harder to see all that’s inside. The
layers, the kinds of layers that absorb content, agglomerate ideas, and stratify
knowledge make the needed important details hide out of obvious sights. It is
both a blessing and a curse.

But, how can one man or even a small team of developers write all those
diverse ways for people to understand quickly and efficiently? That brings me
to another project area dutifully funded by the USA government and was fully
intended to make this problem manageable.

Another effort, outside the scope of software in the field of epistemology (of
course few like to look across the borders of one research area as they all tend
to get comfortable in their sameness) brought about a mechanism for knowl-
edge transportation, exchange, and storage. It’s funny, you pay people to think
apart, but left to their own devices they make it easier to cooperate and refuse
to consider their own principles (principles: strong beliefs) to be where the re-
search must examine. This other field was remarkably and gifted in examining
the language of knowledge using the seminal work of Charles Sanders Pierce.
There is a gold mine in the works of Charles Sanders Pierce, if only we delved as
deeply there as we did in foreign entanglements. Another American mathemati-
cian stands out as one that guides the efforts towards a standard for knowledge
base acquisition, transportation, and storage. John F. Sowa wrote extensively
in the construction of conceptual graphs and the main architect of the ISO/IEC
247707:2007[1]1 Common Logic Interchange Format and Conceptual Graph

1. https://msb.isolutions.iso.org/obp/ui#iso:std:iso-iec:24707:ed-1:v1:en

121

https://msb.isolutions.iso.org/obp/ui#iso:std:iso-iec:24707:ed-1:v1:en

122 Organizational Considerations

Interchange Format that pins a mechanical/mathematical process to the pro-
cessing of information. This is a needed background effort to the foreground
operation of making library functions into an understandable set of concepts
for many different humans to identify. The US Department of Defence (DoD) in-
vested in the making of a knowledge association system that went into projects
like Central Archive for Reusable Defense Software (CARDS), STARS, and grand
hierarchies like DoDAF

Just to give you the problem of human mapping of all data that might be used
by anyone person to find things, consider these simple - oversimple - examples
just surrounding the use of acronyms, mathematical categories and keywords as
things that point at one thing people try to find. Think of them all as occupying
the same zero level space, and anyone of them can point to the object someone
is looking for. In this case, there is a cardinality of one. Define the things you
are searching for are set x elements of A and the total keywords are set y as
elements B:

Stratifications

stratification (countable and uncountable) the process leading to the forma-
tion or deposition of layers.

If there is one thing a lead developer, business manager, system architect, ex-
ecutive vice president can influence, if not every line of code from inception
to adolescence, is the stratification of the project. It’s one of the first factors
that starts as a cliché slide for investors and management meetings, that then
gets tossed over the wall to the code monkeys to forget and tarnish, whichever
comes first. Management must NEVER lose control of the software stratifica-
tion. Here’s why:

Stratifications make details nonobvious:
Layers by organization.
Layers by categorization.
Layers by association.
Layers by development.
Layers on alpha/numeric ordering.
Layers on temporal ordering.
Layers on reverse temporal ordering.
Layers on personal preferences.

Erickson’s Rule: the greater the stratification, the lesser the information is eas-
ily accessible.

Organizational Considerations 123

From Erickson’s Rule, we realize that information hiding and layering are the
causes of difficulty with software. Ordering, the function that makes stratifica-
tions, gives the many ways to confuse the point for those that didn’t make them.
We build layers into things like we store papers in file folders in filing cabinets.
We want to ignore the details, summarize what we did previously, and only
pull open the file folder when we need it. It’s both an advantage and a curse.
On your side, your stratifications make sense. When you open someone else’s
filing cabinet, the order makes no sense, to you. Software is and will remain
a distillation of human thought, the less you understand where and why those
thoughts are, the less control you have over the finished product. You need
your software to make sense to everyone involved in the process. For those
that claim a project failed because the software didn’t work, I state the project
masters lost control of the stratification so they couldn’t impact the parts that
weren’t working well enough.

If you don’t understand where people are putting things, then how can you
honestly report on progress and quality?

Stratification is inevitable, with the failings of any other stratifications of lay-
ering, even in software, knowledge, and every other field including epistemol-
ogy. We can’t expect humans to benefit from your work until you pave the way
for them.

The problem of understanding is larger and wider than the software domain.
These are the problems of epistemology so it’s been around over 2000 years.
Plato, Socrates, Pythagoras and others didn’t solve it then. The knowledge of
problems is the problem of knowledge, they are one and the same. Every person
will need their own way to find their way to understanding WITHIN YOUR
WORK. Since you don’t expect to sit on the shoulder of every

Areas to Improve without total renovation:

1. Globalize variables.

2. Add localization.

3. Language conversion of code and documentation.

4. Isolate security elements.

5. Reformat error codes.

6. Replace local printf() type functions with an operating system version like
perror() and associated functions and structs in Linux.

7. Customize code for an operating system in general (OS, Proper model,
Dialect, threaded operation, etc.).

124 Organizational Considerations

8. Lobotomize: cut off the head GUI.

9. Functorify - Replace the function model with another one without re-
placing the data structs and members. For example, instead of get/set
for system variables you replace with network confirmation versions like
Transact with a confirmation and a data mutex.

10. Employ common design patterns in place of custom code.

The critical path in the age of distributed, asynchronous, software development.
The old standard we all learned back in the olden days was based on an

understanding that teams were stood up and given a full design cycle, perhaps
years, in order to chart all the work out from a complete life cycle with a water-
fall model. Then came the acceptance that the best way was to adopt a spiral
model - which the unix development model (make a proof of concept then im-
prove it) is based on, was a way to rapidly approach the target without as much
lead time, perhaps accepting the reality that people join work done by others.

What this means in the latest software is rather than a single waterfall or a
first iteration spiral, you have to predict and anticipate a multi-pronged attack.
You need to prepare for many paths open and available at the beginning. You
will be better served if you get ready for many critical paths as alternatives. It
gives you options to community fill development, to contract out development,
and to test at alternate milestones that lead you to a faster success state.

With that reality of more and perhaps better, you just need to concentrate
on three keys:

1. Make it clear, make it understandable by potential adherents.

2. Make it yours, commit to do all the background tasks like git documen-
tation and release versions as much as the code. Chase down bugs.

3. Divide and conquer, make it clear what segments are and be flexible
and accepting of a potential multitude of non-critical paths to become
the critical path making them all live. The more flexible you are (and as
Linus Torvalds is accused of, promiscuous) then you aren’t working your
way into a dead end as much as charting many paths to victory.

One of the bright spots I can report to you concerns the ideas of microservices.
A microservice is a smaller (presumably over internet messaging systems) mid-
dleware (a transport medium for many other kinds of applications and exe-
cutables) concept is that if you are aware of it, then you can avoid a lot of the
headaches and dead ends by designing to make a smaller, less ambitious but

Organizational Considerations 125

no less effective microservice instead of a large monolithic program. It give you
a way to pay for features and extra services from other providers by dividing
the work. It makes the effort smaller to start but can expand in any direction
you wish. It can give you a marketing copy in initial stages for venture capital
security or product pre-sales, and then even off ramps if the situation for prof-
itability is downgraded. It even gives you a way to cancel future work based on
test and evaluation of submitted code. It allows you to target effort at flaws,
defects, and overall performance in any direction.

There’s a good book on microservices from Sam Newman, called, Building
Microservices that goes over the topic from a macro level and presents new
design patterns to suit the workings. Here’s why microservices is a good concept
to use; for most of the reuse models presented in this book one starts from
working code to better working code. For microservices you can simply plan
in upgrades with new code and deprecate the old code you started with in the
process. To the user, no drastic changes can be detected.

Tools Identification

For each activity in the existing or potential reuse process inside your orga-
nization, you can start at reuse by assessing your own tools. Get your team to
describe how your existing tools might support reuse- perhaps because they pro-
cess source code/documentation in a novel and perhaps proprietary way. Assess
each potential tool’s importance to reuse - do they provide your organization
with a unique advantage? Assess the feasibility of existing tools - will retooling
or reconfiguring these tools make a significant improvement in software reuse
feasibility. Would automated tools drastically accelerate your reuse activity? Do
you possess tools to assess the maturity development level of bespoke software?

Hire the Coder

There’s a simple change one can make to the entire mindset of organizing
for a new goal of software reuse. The simplest way to get the valuable asset
of code modifications right without a lot of fuss, organization upheaval, tools
learning and so on, is to consider hiring the coder and his code as a mercenary
for the duration of the intended work. The people closest to the source are the
most knowledgeable, if it hasn’t been too many years. People put a lot of effort
into their own code bases, and then work a job to support themselves. Or it’s
a hobby, and so on. The way you hire them is up to you, whether it’s just to
document the code, make the changes you need, or as a full time employee

126 Organizational Considerations

designated to maintain the merged code forever. It’s just another way to handle
the work by considering the people involved as committed to your success as
they are to the success of their hard work, paid or not.

Chapter 9

Legal Aspects of Code

None of this forward-looking interpretation expounded herein can be assumed
to apply directly to any singular element of code that you may decide to lever-
age. One must understand the ways to reuse under fair use. Here’s a beginning
to a very large area on it’s own.

Rejection Is Part of The Game

In writing this book, I had to come across many idea sources for various as-
pects of this book. In the spirit of reuse, I wanted to leverage previous work in
demonstration of leadership, and give credit where credit is due so I needed to
ask for permission to use more than just a little snippet so the original authors
and artists might be heard in their own voices and not through my interpreta-
tion. After all, that’s what you are doing when you use other’s software, you are
reapplying another’s ideas. Of course, this won’t be possible for everyone, you
will find people that refuse to share for any number of reasons. And all reasons
are valid, to a point. Rejection is part of the game (Figure 9.1). I applied to
David McCandless to use his very large and symbolic lines of code graph about
the relative size of various “code bases”1 up to the human genome at (his count)
3,300 billion “lines of code”. I wanted to be fair and use a good exemplar for the
benefit of my audience but also make you aware of his work. This is a snippet
(Figure 9.2) of his image included to demonstrate to my audience through my
criticism of his actions exactly what people don’t understand about the law of
fair use. Expect to get rejected in your requests to use. But that doesn’t mean
you are in the wrong if you use them with fair use principles in mind.

1. David included the human DNA which isn’t strictly computer operation code - it’s human
“building code”.

127

128 Legal Aspects of Code

Rejection is part of the game.

Rejection doesn’t mean you don’t have a reasonable grounds to use their
work, or a part of their work, under fair use. And that’s what he just did; he
furnished me a perfect example of fair use.

What I wanted to do was share his ideas, unvarnished and untainted by my
analysis or need to criticize2. I believe this is in the spirit of my book. I wanted
his work to stand on it’s own. But in the end, by rejecting my request for permis-
sion to use his copyright what he has done, in my analysis, is to furnish me with
a perfect exemplar of how and why copyright owner’s are in serious ignorance
of what fair use means and how any copyright is not an absolute. That’s the
purpose of this chapter identically - Legal Aspects of Code.

Think about it; no one jumps out of a car and hits you with a Cease and Desist
letter when you say, “Mickey Mouse”. Disney wants you to chat about your time
at Disney Epcot Centre. What they can’t do is stop you from in the same breath
explain, “That Disney’s Epcot Centre is old and crumbling.” Because that’s your
right under free use to criticize.

The Four Considerations of Fair Use:

Back to my target. In order to demonstrate that you can still use something
provided you maintain the spirit and letter of the law of fair use as I will lay out
here, my considered fair use3 is presented by clause and term of the “US Fair
Use Explanation of Section 107” of The Copyright Act. These elements would

2. I never set out to castigate David McCandless nor his work, but when he furnished me with
what he did, the eureka light bulb went off about how to leverage what was on offer.

3. More information on Fair Use: www.copyright.gov

https://www.copyright.gov/fair-use/more-info.html

Legal Aspects of Code 129

the core of any case judged for or against you, so you must find your way
through them in the beginning. Read the fair use Section in the country you
live in before you use. You must consider the following in the US:

First consideration (these considerations are copied verbatim from the US
Government website More information on Fair Use: www.copyright.gov4):

“Purpose and character of the use, including whether the use is of a
commercial nature or is for nonprofit educational purposes: Courts look at
how the party claiming fair use is using the copyrighted work, and are more
likely to find that nonprofit educational and noncommercial uses are fair.
This does not mean, however, that all nonprofit education and noncom-
mercial uses are fair and all commercial uses are not fair; instead, courts
will balance the purpose and character of the use against the other factors
below. Additionally, “transformative” uses are more likely to be considered
fair. Transformative uses are those that add something new, with a further
purpose or different character, and do not substitute for the original use
of the work.”

For my work, I am creating a commercial use work, and that may be consid-
ered a violation of fair use as detailed above in “Purpose and Character of the
use”. However, what I am doing is not simply copying the information. I am
adding a transformative character to the introduction of the work to describe
how fair use may apply. I am showing both a request for use and my criticism
of that rejection as part of the analysis of the data, which by the way isn’t David
McCandless’s data, it is public knowledge, his graph is merely a transcription
of public data. I need to show my audience what the fuss was over, his images
are helpful to some. The lack of his image would dampen the understanding
of the relative size of lines of code code bases in consideration. Under the first
consideration, my use of David McCandless’s work is inevitably fair use.

Second consideration:

“Nature of the copyrighted work: This factor analyzes the degree to
which the work that was used relates to copyright’s purpose of encouraging
creative expression. Thus, using a more creative or imaginative work (such
as a novel, movie, or song) is less likely to support a claim of a fair use than
using a factual work (such as a technical article or news item). In addition,
use of an unpublished work is less likely to be considered fair.”

4. Copyright US Government 2022.

https://www.copyright.gov/fair-use/more-info.html

130 Legal Aspects of Code

I am using a partial image from a previously published book, not from his se-
cret collection, not from an upcoming rehash of the same book. I obtained the
image from the internet not his book, from a third party already critiquing his
work. As mentioned above, David McCandless took data from public sources
about the relative lines of code involved in various organization’s work, Mi-
crosoft’s operating system Windows 2000 for example, and put that public in-
formation in the same chart with words, numbers, and colours. Microsoft own’s
information through copyright on Windows 2000 about the size of the code
base is not David McCandless’. So David McCandless is using other’s copyright
information via - you guessed it - fair use. The nature of the chart is factual
work quoting the technical specification of the numbers of lines of code. Do you
believe David McCandless sought a copy of the software and counted the lines
of code by himself? No, he gathered the data from the actual source (Microsoft)
or via a third party that had that information.

He admits this himself in the book description (from Information is Beau-
tiful):

“Facts, statistics, issues, theories, relationships, numbers, words - there is
just too much information in the world. We need a brand new way to take it all
in. ’Information is Beautiful’ transforms the ideas surrounding and swamping
us into graphs and maps that anyone can follow at a single glance.”

He takes data from other sources, and computes numbers and presents them
in more than one color. That’s it. Under the second consideration, my work is
fair use.

Third consideration:

“Amount and substantiality of the portion used in relation to the copy-
righted work as a whole: Under this factor, courts look at both the quantity
and quality of the copyrighted material that was used. If the use includes
a large portion of the copyrighted work, fair use is less likely to be found;
if the use employs only a small amount of copyrighted material, fair use is
more likely. That said, some courts have found use of an entire work to be
fair under certain circumstances. And in other contexts, using even a small
amount of a copyrighted work was determined not to be fair because the
selection was an important part—or the “heart”—of the work.”5

5. Here is the footnote to the webpage, presented: “In addition to the above, other factors
may also be considered by a court in weighing a fair use question, depending upon the cir-
cumstances. Courts evaluate fair use claims on a case-by-case basis, and the outcome of any

%20https://www.amazon.com/Information-Beautiful-New-David-McCandless/dp/0007492898
%20https://www.amazon.com/Information-Beautiful-New-David-McCandless/dp/0007492898

Legal Aspects of Code 131

Under the third consideration (based on the Amazon book URL webpage
since I have never read nor bought his book6 and never will after this), which I
must use third party information of this critique of his book, that David’s work
is 255 pages. In my criticism of David’s work, I am using less than one-half of
one page of 255. In percentage terms, that’s 0.2% of the total work.

In actual fact, one of the commenters points (on Amazon) out that David
McCandless is in fact stealing from his own work from 2009. His 2012 book
is a resteal of The Visual Miscellaneum: A Colorful Guide to the World’s Most
Consequential Trivia The Visual Miscellaneum: A Colorful Guide to the World’s
Most Consequential Trivia. Egads, he’s stolen from himself. Someone, call a
lawyer!

Fourth consideration:

“Effect of the use upon the potential market for or value of the copy-
righted work: Here, courts review whether, and to what extent, the unli-
censed use harms the existing or future market for the copyright owner’s
original work. In assessing this factor, courts consider whether the use is
hurting the current market for the original work (for example, by displac-
ing sales of the original) and/or whether the use could cause substantial
harm if it were to become widespread.”

My criticism of David McCandless’s rejection has not said a derogatory word
about his work. My work is about software reuse, not pictograms (David is in
fact copying the idea of pictograms - see definition below - made by others).
I am not in the data visualization business, and this work isn’t a direct nor
indirect competitor of his books. In fact, David is copying the pre-made style of
infographic (see definition below) which he neither invented nor copyrighted.
Probably because infographics are in the public domain. A complaint by origi-
nal authors of infographics (see definition below) books might be better made
against David McCandless for his 2012 book.

pictogram A picture that represents a word or an idea by illustration.

infographic A visual representation of information.

given case depends on a fact-specific inquiry. This means that there is no formula to ensure that
a predetermined percentage or amount of a work—or specific number of words, lines, pages,
copies—may be used without permission.”

Please note that the Copyright Office is unable to provide specific legal advice to individual
members of the public about questions of fair use. See 37 C.F.R. 201.2(a)(3). Copyright US
Government 2022.

6. Information is Beautiful

https://www.goodreads.com/book/show/7249817-information-is-beautiful
https://www.amazon.com/The-Visual-Miscellaneum-A-Colorful-Guide-to-the-World-s-Most-Consequential-Trivia/dp/0061748366/
https://www.amazon.com/The-Visual-Miscellaneum-A-Colorful-Guide-to-the-World-s-Most-Consequential-Trivia/dp/0061748366/
https://www.amazon.com/Information-Beautiful-New-David-McCandless/dp/0007492898

132 Legal Aspects of Code

David McCandless’s infograph (partial - included through fair use for analysis as
described in Chapter 9)

Legal Aspects of Code 133

Here’s my analysis of David’s rejection, in his matter of fact and completely
non-considered way, is that the only person to harm his long term prospects for
sales is David McCandless and his team. There’s a saying, “no news is bad news”.
In the modern deluge of data that we are all inundated with, it’s always good
press to get press for free. More reference means more awareness. I had no idea
his work existed until one DuckDuckGo web search. Positive behaviour makes
people more cooperative and aware of your work when you ACT magnanimous.
To not behave in that manner is a long time loser for yourself. In fact, I am
affording David’s work a few pages in my work with all the free press that
presents. He is most welcome.

You can apply the same four considerations of fair use to any potential software
reuse. Of course, once you analyze them, pass them by your lawyer for approval.

With my fair use teardown complete, let me end by stating that we are all
working for the future prosperity, and while people may reject cooperating with
you, it’s not the end of story if you have a valid justification to use something,
as I did here.

And to show you that there are both commercial and cooperative peo-
ple out there, here’s my permission acceptance from Jacob Beningo from
https://www.beningo.com/ (Figure 9.3) for the use of his printf time response
in Chapter 12 in a figure. He’s quite happy to have some free press. And he
wants to be treated with respect, but that’s only fair, and what is afforded to
every work placed here to illustrate. I include both authors by name and books
by reference in this book. I apply copyright notices as directed. I want to lead
and demonstrate cooperation for the future prosperity.

My response to Jacob merely asked him what format and copyright year he
wanted. Most people place a copyright direction with their work, explaining
how to refer to it. I will use whatever format I am told, or I make one up and
send it by email to get confirmation.

By the same spirit, if and when anyone wants to ask for my permission I will
always grant it. Why? Because I don’t want to be the target of valid negative
criticism, as above!

Prevailing Software Licences

As I was wading through some new NASA code, I realized they have updated
the licences for some of the software I use. The new core Flight Executive (cFS)
uses the Apache (née A Patch EE) 2.0 Licence,

Apache 2.0 Licence is here. There is no way to write a static book about
where the organizations exist on the internet, and rapidly change the available
choices. Thankfully, this is a multiyear work that will attempt to accommodate.

https://www.beningo.com/
http://www.apache.org/licenses/LICENSE-2.0

134 Legal Aspects of Code

Approved Permission to use copyright by Jacob Beningo.

Licence Organization Hyperlink
The Apache Software Foundation www.apache.org Apache 2.0

Licence LICENSE-1.1

LICENSE-1.0
MIT Licence MIT Licence

GNU Free Software Foundation GPL- Gnu Public Licence 1.0
BSD Licence BSD Original Licence

Eclipse Public License - v 1.0 Eclipse Public License - v 1.0

Table 9.1: According to BlackDuck Software, the commonest public licence distri-
bution back in 2016.

As you consider software reuse, it’s a good idea for managers to become
familiar with the flavours of licence out there, and they are all now volumes
on their own so it’s impractical to add them all verbatim. Nonetheless, I can
point you at the key few you will hear of again and again. So reading some of
these on your own will alert you to the important rights granted and how they
might impact your code. The Apache 2.0 Licence is an irrevocable any use right
that basically allows you to do what you wish, the MIT Licence and the GNU
Free software Lesser GPL is in the same spirit. The others are more restrictive
so you should be aware.

Here are the prevailing licences you will come across:

https://www.apache.org/
https://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-1.1
https://www.apache.org/licenses/LICENSE-1.0
https://mit-license.org/
https://mit-license.org/
https://www.gnu.org/licenses/old-licenses/gpl-1.0.en.html
ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
https://www.eclipse.org/legal/epl-v10.html
https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses

Legal Aspects of Code 135

According to BlackDuck Software, the commonest public licence distribution back
in 2016.

Rank License %
1 MIT License 26%
2 GNU General Public License (GPL) 2.0 21%
3 Apache License 2.0 16%
4 GNU General Public License (GPL) 3.0 9%
5 BSD License 2.0 (3-clause, New or Revised) License 6%
6 GNU Lesser General Public License (LGPL) 2.1 4%
7 Artistic License (Perl) 4%
8 GNU Lesser General Public License (LGPL) 3.0 2%
9 ISC License 2%

10 Microsoft Public License 2%
11 Eclipse Public License (EPL) 2%
12 Code Project Open License 1.02 1%
13 Mozilla Public License (MPL) 1.1 < 1%
14 Simplified BSD License (BSD) < 1%
15 Common Development and Distribution License (CDDL) < 1%
16 GNU Affero General Public License v3 or later < 1%
17 Microsoft Reciprocal License < 1%
18 Sun GPL With Classpath Exception v2.0 < 1%
19 DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE < 1%
20 CDDL-1.1 < 1%

Table 9.2: According to BlackDuck Software, the estimated public licence distribu-
tion is back in 2016. BlackDuck Software Source Licences

https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses
https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses
https://web.archive.org/web/20160719043600/https://www.blackducksoftware.com/top-open-source-licenses

136 Legal Aspects of Code

A Software Licence in Full:

Here is the MIT Licence, which I feel is a good starting point to broach the ideas
that form a licence. I know most of my work is slanted towards Free Software
Foundation, but I exploit what makes the most sense. Which is the heart of all
knowledge reuse.

MIT Licence:

The MIT License (MIT)
Copyright © 2022 <copyright holders>
Permission is hereby granted, free of charge, to any person ob-

taining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Soft-
ware without restriction, including without limitation
the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Important Points in any Licence

First, the definitions of term and condition:

condition7 n. a term or requirement stated in a contract, which must be met
for the other party to have the duty to fulfill his/her obligations.

Legal Aspects of Code 137

term8 n. 1) in contracts or leases, a period of time, such as five years,
in which a contract or lease is in force. 2) in contracts, a specified
condition or proviso. 3) a period for which a court sits or a legisla-
ture is in session. 4) a word or phrase for something, as "tenancy"
is one term for "occupancy."

A term is an objective measure applied to a work (my definition) and written
down in a contract, in this case a copyright licence. Of course, I could expand
the definition of “measure” to create a full syllogism of all the ideas that are
similar if not identical to term and condition, ...reductio ad absurdum. I offer
that a term is “a measure” and a condition is “a measure that can be measured
by others”. So, a contractee lays out concepts inside a legal document that apply
measures to conditions that can then be judged by third parties to determine if
the actions taken upon a work or with a work or by a work meet the original
spirit and letter (intent) of the contractee’s wishes. Clear as mud?

Here are the important conditions and terms - outlined blow by blow - to
consider as a manager charting out if there is value in exploiting a specific
software source code with a defined copyright licence.

Copy

copy9 A copy is a true transcript of an original writing.

Can you copy it? Can you change the form to an identical version. This condition
needs to be in the document for your mutual interest in sending products out
the door with copies of the software running, or server farms operating in the
background.

Modify

modify10 vb (mainly tr) , -fies, -fying or -fied 1. to change the structure, char-
acter, intent, etc, of 2. to make less extreme or uncompromising: to
modify a demand. 3. (Grammar) grammar (of a word or group of
words) to bear the relation of modifier to (another word or group
of words) 4. (Linguistics) linguistics to change (a vowel) by umlaut
5. (intr) to be or become modified.

Modification is required by software developers along many dimensions: mak-
ing things smaller, faster, larger, bug-free, and so on. Code that you can copy but
not modify in most cases isn’t desirable. There are two areas where this might
not be a problem: data compression (like the ziff compressor known formally as

138 Legal Aspects of Code

the Newman-Ziff Algorithm11) and data encryption (like the SHA-256 data en-
cryption algorithm12). That applies to things like video compression and audio
compression also. These aren’t the kind of things you want to fiddle with unless
you want to introduce errors or make things not work as well as the originals.

Merge

merge13 (m3:dZ) vb 1. to meet and join or cause to meet and join 2. to blend
or cause to blend; fuse.

The ability to combine one work with another applies in hardware, firmware,
and software. One must be able to bring them into each other’s proximity. This
won’t be a problem if you intend to use one codework on one machine and then
network communicate with it over, say the internet, to another machine using
different code. One example I use in this book is

Integrated Project Delivery and Multi-Party Agreements

If software companies have been around for many decades and reuse still hasn’t
been institutionalized, then there must a new structure to handle the novel
needs of business to make all of this practicable. One way is to expand the
horizons of the business arrangement to meet the additional needs of reuse
explicitly. The way I can recommend comes by way of the North Sea oil and
gas companies and how to bring in many companies in a deal that handle
all the risks and complexities of the work: Integrated Project Delivery (IPD).
Here’s how the American Industry of Architects describes in AIA’s 2007 White
Paper: Integrated Project Delivery: A Guide(pg.2) described Integrated Project
Delivery teams:

Integrated Project Delivery (IPD) is a project delivery approach that in-
tegrates people, systems, business structures and practices into a process
that collaboratively harnesses the talents and insights of all participants
to optimize project results, increase value to the owner, reduce waste, and
maximize efficiency through all phases of design, fabrication, and construc-
tion. IPD principles can be applied to a variety of contractual arrangements
and IPD teams can include members well beyond the basic triad of owner,
architect, and contractor. In all cases, integrated projects are uniquely dis-
tinguished by highly effective collaboration among the owner, the prime

11. https://pypercolate.readthedocs.io/en/stable/newman-ziff.html
12. https://www.simplilearn.com/tutorials/cyber-security-tutorial/sha-256-algorithm

https://pypercolate.readthedocs.io/en/stable/newman-ziff.html
https://www.simplilearn.com/tutorials/cyber-security-tutorial/sha-256-algorithm

Legal Aspects of Code 139

The IPD Cost Value Proposition for integrating software reuse into regular design-
maintenance operations: This is the value to untrap as soon as possible.

designer, and the prime constructor, commencing at early design and con-
tinuing through to project handover.

That’s a lot of corporate psycho-speak for a simpler explanation: bring in
different kinds of teams to the project, invite them to help formulate your design
plan, and allow these extra hands a fixed cost and potential for added profit to
help you maximize your code. It’s that simple.

IPD in software reuse means bring in two different kinds of teams: salvage
software crews that can search and find parts you need ahead of your design
team, then educate your team to use them faster than designing themselves.
On top of salvage crews, find another or same team to focus on reuse of your
software as you make it to be ready to deliver the back end again for differ-
ent customers. That’s potentially three sets of eyes looking at your software
requirements in three time directions: from the past to the present (salvage
team), from the present to the future (your design team), and the future to the
horizon (software reuse for other customers). That’s a newfound way to make
it all happen.

Hire one team, hire two code mercenaries. That’s IPD in my vision.
Here’s a table from Integrated Project Delivery: A Guide describing the project

commonalities:

140 Legal Aspects of Code

Traditional Project
Delivery

Commonalities Integrated Project
Delivery

Fragmented, assembled
on “just-as- needed” or
“minimum-necessary”

basis, strongly
hierarchical, controlled.

team An integrated team
entity composed key
project stakeholders,

assembled early in the
process, open,
collaborative

Linear, distinct,
segregated; knowledge

gathered “just-as-
needed”; information

hoarded; silos of
knowledge and

expertise

process Concurrent and
multi-level; early
contributions of
knowledge and

expertise; information
openly shared;

stakeholder trust and
respect

Individually managed,
transferred to the

greatest extent possible

risk Collectively managed,
appropriately shared

Individually pursued;
minimum effort for
maximum return;
(usually) first- cost

based

compensation/
reward

Team success tied to
project success;

value-based

Paper-based, 2
dimensional; analog

communications/
technology

Digitally based, virtual;
Building Information
Modeling (3, 4 and 5

dimensional)
Encourage unilateral
effort; allocate and

transfer risk; no sharing

agreements Encourage, foster,
promote and support

multi-lateral open
sharing and

collaboration; risk
sharing

Table 9.3: Project Commonalities: Traditional versus IPD

Legal Aspects of Code 141

In Figure 9.5, the goal of integrated product development is clear. You layer
new set of eyes looking at code earlier for many purposes, and gain value faster
for wider distribution. Bringing in other specialists earlier avoids the pitfalls of
later design changes, and can finish faster by bringing development forward to
the left.

Salvage and Fair Use

Adding the capabilities of software reuse companies to your project plans
gives your organization a tremendous leap forward into capabilities. With the
introduction of a wider software team like an IPD above, you can see a reason-
able way to extract as much value earlier on that IPD aims to address.

The sea of software abandoned is vast. According to Pixalate, there are ~1.5
million abandoned apps on Google Play and Apple App Store:

Research Finds Over 1.5 Million "Abandoned" Mobile Apps
Pixalate claims they crawled the App Store and Play Store to analyze all

apps available for download based on their last update to determine their
degree of "abandonment". Abandoned apps were defined by Pixalate as
those apps that had not received an update in over two years, with "super-
abandoned apps" having not received an update in at least five years.

Based on the previous definitions, Pixalate found over 650k iOS apps
and about 870k Android apps to qualify as abandoned apps. Of those, just
about 180k iOS apps and 130k Android apps qualify as super-abandoned.
Those numbers, amounting to 1.5 million abandoned apps overall, may
appear high. But even more striking is the fact that a number of them still
receive a significant amount of downloads. Indeed, approximately 16% of
apps with 1-10 million downloads and 6% of apps with over 100 million
downloads are abandoned apps.

Another interesting figure that can be found in Pixalate report is apps
that have received updates in the last 6 months, which could be considered
a measure of actively supported apps, amounting to 1.3 million. Pixalate
report also shows super-abandoned apps are comparatively more abundant
in the App Store than in the Play Store, although this figure is somewhat
harder to interpret.

Not surprisingly, games appear to be a top category for abandoned apps
in Pixalate report, with over 50k iOS and Android games having not re-
ceived an update in the last two years. The other two most-abandoned
categories are reference and education. It is interesting to observe that

https://www.infoq.com/news/2022/05/abandoned-apps-report/

142 Legal Aspects of Code

apps belonging to the finance, health, and shopping categories are those
that tend to receive updates on a more regular basis.

A sermon on fair use was laid out earlier in the chapter and an in-depth inves-
tigation into fair use in Chapter 9, so I won’t reframe the ideas of fair use more
than to say it’s in your best interest to employ professionals that understand
how fair use works to any salvage operations to avoid yourself any long term
jeopardy for use. Knowing there are many abandoned sources, the best advice
is deprioritize using anything from a belligerent source. It can be avoided by
many means, too many to list here.

In general, salvage gives you more ways to deliver faster and cheaper than
just the traditional design waterfall and the spiral design model combined. You
can bring people to work on the downrange goals for a fraction of the price
of your team, perhaps making your performance bonus objectives for a frac-
tion of the cost and risk. The reason is salvage. Teams that scavenge can bring
components to your satisfaction faster than the normal design steps.

Salvage teams can dovetail and/or piggy back into your design cycle (piggy-
back and dovetail are defined in 4) when they’ve passed alpha or beta testing.

At the other end of spectrum, reuse teams can comb your combined code to
make into library interfaces to the code, like making your own game engine out
of the pieces redesigned from the original code, to be sold separately for other
kinds of customers.

Consider if your plan to follow the critical path towards delivery milestones
could be improved by hiring a reuse company to scavenge some of your needs
in a parallel track. If they extract and get working pieces before your team gets
to design, you can simple adopt and adapt. Bringing teams in to salvage and
scrounge the internet for you may hit further milestones faster than directed
effort can produce.

With new team members forming an IPD partnership, with complementary
goals and extra sets of eyes looking at your work, the potential to untrap the
most value of your investment is the way forward.

Chapter 10

Re-Use Library Abstraction
(RULA)

Since Everything is a Reflection of Our Minds,
Then Everything Can Be Changed By Our Minds

—Siddhartha Gautama, The Buddha

The gitlab library Re-Use Library Abstraction (RULA) can be found here:
https://opensource.ieee.org/daveerickson/reuse-library-abstraction

This project houses the (to be confirmed) IEEE Standards Association Pro-
posed PAR (Project Authorization Request) entitled: Re-Use Library Abstraction
(RULA) as a means to accelerate reuse software library adoption by decreasing
library learning uptake time. The goal of this work is to implement a Basic
Prototype Exemplar that holds all the factors recommended in the book: (TBP -
to be promulgated) The first goal is to showcase the easier to use, easier to un-
derstand, and easier to improve aspects that will make it win over users through
time-tested improvements to the way things are done to this point. This is the
work in progress by example and by experimentation. Stop back at that URL
from time to time as I add to it and clean things up.

Here are the major improvements that this RULA library brings to you:
1. Identification of standards that are applicable to the code segment under

inspection, whether or not testing was accepted as meeting the standard, or if
the code needs testing and verification of standard acceptance.

2. All concepts to code mappings are referenced by a multitude of concepts,
math indexing like "Mathematics Subject Classification" from zbMath so that
people can find what they are looking for faster.

143

144 Re-Use Library Abstraction (RULA)

3. Any military, computer science CMMI ratings, ISO/IEC, IEEE, ASME, and
other international standards relevance for the code segment under review.

All standards are clearly marked as verified and not verified, and whether
additional testing is needed to make it applicable.

Here is what you are doing when you make code, you are doing all three at
the same time:

1. A software code base made easier by concurrent version systems like CVS,
git, and SourceForge;

2. A body of knowledge that is embodied in the code; and
3. A community of adherents (a group of people that follow a software knowl-

edge base).

The Library in the Abstract (RULA)

This book is a extension of the ideas presented inside my novel library abstract,
called RULA - the Re Use Library Abstraction. It’s a prototype for the better way
to leave code, not write code but plan, organize and configure to set all that it
contains within a state of understanding that makes it very easy for others to
improve upon the work. The goals are twofold: one to enlighten programmers
into a better reality that they adopt because it’s silly not to, but also to write
an IEEE Standards Association Standard for the purpose of encapsulating all
the rights and not-wrongs (in the double negation sense) into a more correct
formalism (a word meant as positive here but taken as an invective later on to
describe what is). The overall goal is to use this as a strawman to understand
what works best and lead by example getting it standardized by an international
standards body in good standing (for the audience, I was a member of the IEEE
upon graduation from engineering college, but when the IEEE gave Bill Gates an
honourary title for a $350 million donation, I refused to lower my standards).

Part I

Microscopic View:
The Toolbox

Chapter 11

Pirate Treasure Map

You Are What You Have Been,
And What You Will Be Is What You Do Now

—Siddhartha Gautama, The Buddha

This section presents some ways to acquire code for your ultimate software
reuse triumph. There are lots of sources, but knowing where to look quickly is
hard unless you’ve failed at it many times. Learn and save your time from my
failings. Like every other chapter in this tome, this is an opening and incomplete
effort that will build towards perfection without attaining it over time. Check
back later to the online software RULA for updates.

University computers

The profs that mentor, nurture, and educate the college undergrads also pro-
vide servers for their work, like a shingle on some office front, that deposit soft-
ware as well as knowledge like conference papers, journals, and monographs
like books as editors and career research areas, there’s lots of booty to plunder.
Yaarrgh.

SourceForge

“With the tools we provide, developers on SourceForge create powerful soft-
ware in over 502,000 open source projects; we host over 2.1 million registered
users. Our popular directory connects nearly 30 million visitors and serves more
than 2.6 million software downloads a day.”

“SourceForge is an Open Source community resource dedicated to helping
open source projects be as successful as possible. We thrive on community

147

https://sourceforge.net/

148 Pirate Treasure Map

collaboration to help us create a premier resource for open source software
development and distribution.”

“SourceForge is a complete business software and services comparison plat-
form where buyers find, compare, review, and buy business software and IT ser-
vices. Selling software? You’re in the right place. We’ll help you reach millions
of intent-driven software and IT buyers and influencers every day, all day.”

https://sourceforge.net

Github

Where the world builds software
Millions of developers and companies build, ship, and maintain their software

on GitHub—the largest and most advanced development platform in the world.
https://github.com

Fedora SourceGraph

Recently. Fedora announced that SourceGraph (Figure 11.1) has made the en-
tire repository of RPM (RedHat Package Manager) packages within the domain
src.fedoraproject.org which, at the time of writing, had over 34,000 reposi-
tories.

They even describe the command that can help finding code:
The following query1 will scan all the repositories for software that is compatible

with the “Open Source Definition” (OSD).

repo:^src.fedoraproject.org/ lang:"RPM Spec" License:
^.*apache|bsd|gpl|lgpl|mit|mpl|cddl|epl.*$

https://fedoramagazine.org/using-sourcegraph-to-search-34000-fedora-
repositories/

The Commonality

The Commonality is a quirky (with a very clear role), interesting JavaScript
community called The Commonality on github. Of course, if you are anywhere
near the sci-fi afficionado many nerds claim to be, then you will be aware that

1. https://fedoramagazine.org/using-sourcegraph-to-search-34000-fedora-repositories/

https://github.com/
http://src.fedoraproject.org
https://fedoramagazine.org/using-sourcegraph-to-search-34000-fedora-repositories/
https://fedoramagazine.org/using-sourcegraph-to-search-34000-fedora-repositories/
https://github.com/commonality/common-vocabulary/blob/master/CODE_OF_CONDUCT.md
https://fedoramagazine.org/using-sourcegraph-to-search-34000-fedora-repositories/

Pirate Treasure Map 149

SourceGraph teams up with Fedora to search all Fedora repositories by licence.

“the commonality” was the Taelon’s hive mind link on Gene Roddenbery’s lesser
known Earth: Final Conflict TV series. They have private members (mind out of
the gutter, dude) and a code of conduct (Figure 11.2). They provide prototypes
for others to use, but in order to commit you must meet the standards of the
others. It seems like a very successful, thriving community of coders.

The Commonality Code of Conduct Page

advancedsourcecode.com

advancedsourcecode Luigi Rosa’s advancedsourcecode.com is an interesting
one-inventor author site with a lot of advanced algorithms in both matlab and
source code.

http://www.advancedsourcecode.com/source.asp

150 Pirate Treasure Map

egroupware

egroupware is all you need if your software needs are very thin, like using a
browser for some financial transactions, and the code is available with software
as a service support options for those that would meet small teams without the
need for heavy duty coders.

~

There are many more that can fill many volumes of a book but become obso-
lete and irrelevant if not upkept and pruned regularly. If I put in print a long
list, I will hear from some that they were better and weren’t included. This
book presents but doesn’t cover many topics. This section, in order to maintain
currency and relevance, will be a vibrant augmented chapter over the future
versions of this book. This section may be the reason to come back for updates.

https://www.egroupware.org/en

Chapter 12

Reuse Tools

The Root Of Suffering
Is Attachments

—Siddhartha Gautama, The Buddha

Useful Tools you should learn about if you want to break into the game of
software reuse are presented one per function and one example here in this
chapter. I chose the free opensource ones but if you want someone to take your
money for a tool that’s only barely above the free one, a sucker is born any
minute. That said, an enterprising person could take the advice of this book,
improve the code of any one of these tools for a market and make a living
on that.

Tools Identification

Looking outward sometimes needs to start by looking inward. For each ac-
tivity in the existing or potential reuse process inside your organization, you
can start at reuse by assessing your own tools. Get your team to describe how
your existing tools might support reuse- perhaps because they process source
code/documentation in a novel and perhaps proprietary way. Assess each po-
tential tool’s importance to reuse - do they provide your organization with a
unique advantage? Assess the feasibility of existing tools - will retooling or re-
configuring these tools make a significant improvement in software reuse feasi-
bility. Would automated tools drastically accelerate your reuse activity? Do you
possess tools to assess the maturity development level of bespoke software?

Meld

meld

151

152 Reuse Tools

Meld is an open source tool that, as a GUI, allows you to compare and contrast
files, including three-way comparison, and even more useful for reuse it can
compare file directories and allows you to manipulate files and directories. It’s a
tool for those with no real preferred editor tools bent. It just works and it’s free.

Here’s how Meld the project and program describes itself:

Meld is a visual diff and merge tool targeted at developers. Meld helps
you compare files, directories, and version controlled projects. It provides
two- and three-way comparison of both files and directories, and has sup-
port for many popular version control systems.

Meld helps you review code changes and understand patches. It might
even help you to figure out what is going on in that merge you keep avoid-
ing.

Meld has three modes of operation:

• File comparison

• Directory comparison

• Version control

Edit files in-place, and your comparison updates on-the-fly Perform two-
and three-way diffs and merges Easily navigate between differences and
conflicts Visualize global and local differences with insertions, changes and
conflicts marked Use the built-in regex text filtering to ignore uninteresting
differences Syntax highlighting

Directory comparison
Compare two or three directories file-by-file, showing new, missing, and

altered files Directly open file comparisons of any conflicting or differing
files Filter out files or directories to avoid seeing spurious differences Sim-
ple file management is also available

Version control
Meld supports many version control systems, including Git, Mercurial,

Bazaar and SVN Launch file comparisons to check what changes were
made, before you commit View file versioning statuses Simple version
control actions are also available (i.e., commit/update/add/remove/delete
files)

Get Started:

Here’s how to meld differences between two files:

Reuse Tools 153

Meld: It works visually on both files and directories like diff and comp work on the
command line shell.

Getting started comparing files

1 lets you compare two or three text files side-by-side. You can start a new file
comparison by selecting the File t New... menu item.

Once you’ve selected your files, Meld will show them side-by-side. Differences
between the files will be highlighted to make individual changes easier to see.
Editing the files will cause the comparison to update on-the-fly. For details on
navigating between individual changes, and on how to use change-based edit-
ing, see Dealing with changes. Meld’s file comparisons

There are several different parts to a file comparison. The most important
parts are the editors where your files appear. In addition to these editors, the
areas around and between your files give you a visual overview and actions to
help you handle changes between the files.

On the left and right-hand sides of the window, there are two small vertical
bars showing various coloured blocks. These bars are designed to give you an
overview of all of the differences between your two files. Each coloured block
represents a section that is inserted, deleted, changed or in conflict between
your files, depending on the block’s colour used.

In between each pair of files is a segment that shows how the changed sec-
tions between your files correspond to each other. You can click on the arrows
in a segment to replace sections in one file with sections from the other. You
can also delete, copy or merge changes. For details on what you can do with
individual change segments, see Changing changes. Saving your changes

Once you’ve finished editing your files, you need to save each file you’ve
changed.

You can tell whether your files have been saved since they last changed by the
save icon that appears next to the file name above each file. Also, the notebook
label will show an asterisk (*) after any file that hasn’t been saved.

1. http://meldmerge.org/help/file-mode.html

http://meldmerge.org/help/file-mode.html

154 Reuse Tools

You can save the current file by selecting the File t Save menu item, or
using the Ctrl+S keyboard shortcut.

Dealing with changes

Meld deals with differences between files as a list of change blocks or more
simply changes. Each change is a group of lines which correspond between
files. Since these changes are what you’re usually interested in, Meld gives you
specific tools to navigate between these changes and to edit them. You can find
these tools in the Changes menu. Navigating between changes

You can navigate between changes with the Changest Previous change and
Changest Next change menu items. You can also use your mouse’s scroll wheel
to move between changes, by scrolling on the central change bar.

Changing changes

In addition to directly editing text files, Meld gives you tools to move, copy or
delete individual differences between files. The bar between two files not only
shows you what parts of the two files correspond, but also lets you selectively
merge or delete differing changes by clicking the arrow or cross icons next to
the start of each change.

The default action is replace. This action replaces the contents of the corre-
sponding change with the current change.

Hold down the Shift key to change the current action to delete. This action
deletes the current change.

Hold down the Ctrl key to change the current action to insert. This action in-
serts the current change above or below (as selected) the corresponding change.

GNU comp, diff & patch

comp
diff

diff3
patch

These tools are all advanced enough to need a full manual each. GNU gives
you 4 tools in one manual. Here is a synopsis for them taken from GNU diffutils
manual.

https://www.gnu.org/software/diffutils/manual/diffutils.htm
https://www.gnu.org/software/diffutils/manual/diffutils.htm

Reuse Tools 155

1 What Comparison Means

There are several ways to think about the differences between two files. One
way to think of the differences is as a series of lines that were deleted from, in-
serted in, or changed in one file to produce the other file. diff compares two files
line by line, finds groups of lines that differ, and reports each group of differing
lines. It can report the differing lines in several formats, which have different
purposes. GNU diff can show whether files are different without detailing the
differences. It also provides ways to suppress certain kinds of differences that
are not important to you. Most commonly, such differences are changes in the
amount of white space between words or lines. diff also provides ways to sup-
press differences in alphabetic case or in lines that match a regular expression
that you provide. These options can accumulate; for example, you can ignore
changes in both white space and alphabetic case. Another way to think of the
differences between two files is as a sequence of pairs of bytes that can be
either identical or different. cmp reports the differences between two files byte
by byte, instead of line by line. As a result, it is often more useful than diff for
comparing binary files. For text files, cmp is useful mainly when you want to
know only whether two files are identical, or whether one file is a prefix of the
other. To illustrate the effect that considering changes byte by byte can have
compared with considering them line by line, think of what happens if a single
newline character is added to the beginning of a file. If that file is then compared
with an otherwise identical file that lacks the newline at the beginning, diff will
report that a blank line has been added to the file, while cmp will report that
almost every byte of the two files differs. diff3 normally compares three input
files line by line, finds groups of lines that differ, and reports each group of
differing lines. Its output is designed to make it easy to inspect two different
sets of changes to the same file. These commands compare input files without
necessarily reading them. For example, if diff is asked simply to report whether
two files differ, and it discovers that the files have different sizes, it need not
read them to do its job.

File Hunks

When comparing two files, diff finds sequences of lines common to both files,
interspersed with groups of differing lines called hunks. Comparing two iden-
tical files yields one sequence of common lines and no hunks, because no lines
differ. Comparing two entirely different files yields no common lines and one
large hunk that contains all lines of both files. In general, there are many ways
to match up lines between two given files. diff tries to minimize the total hunk

156 Reuse Tools

size by finding large sequences of common lines interspersed with small hunks
of differing lines. For example, suppose the file F contains the three lines ‘a’, ‘b’,
‘c’, and the file G contains the same three lines in reverse order ‘c’, ‘b’, ‘a’.

If diff finds the line ‘c’ as common, then the command ‘diff F G’ produces
this output:

But if diff notices the common line ‘b’ instead, it produces this output:

It is also possible to find ‘a’ as the common line. diff does not always find
an optimal matching between the files; it takes shortcuts to run faster. But its
output is usually close to the shortest possible. You can adjust this tradeoff
with the --minimal (-d) option (see Chapter 6 [diff Performance Trade-offs],
page 33).

Suppressing Differences in Blank and Tab Spacing

The --ignore-tab-expansion (-E) option ignores the distinction between tabs and
spaces on input. A tab is considered to be equivalent to the number of spaces to
the next tab stop . The --ignore-trailing-space (-Z) option ignores white space
at line end. The --ignore-space-change (-b) option is stronger than -E and -Z
combined. It ignores white space at line end, and considers all other sequences
of one or more white space characters within a line to be equivalent. With
this option, diff considers the following two lines to be equivalent, where ‘$’
denotes the line end:

The --ignore-all-space (-w) option is stronger still. It ignores differences even
if one line has white space where the other line has none. White space char-
acters include tab, vertical tab, form feed, carriage return, and space; some
locales may define additional characters to be white space. With this option,
diff considers the following two lines to be equivalent, where ‘$’ denotes the
line end and ‘^M’ denotes a carriage return:

https://www.gnu.org/software/diffutils/manual/diffutils.html#diff-Performance

Reuse Tools 157

For many other programs newline is also a white space character, but diff is
a line- oriented program and a newline character always ends a line. Hence
the -w or --ignore- all-space option does not ignore newline-related changes; it
ignores only other white space changes.

comp

Invoking cmp

The cmp command compares two files, and if they differ, tells the first byte and
line number where they differ or reports that one file is a prefix of the other.
Bytes and lines are numbered starting with 1. The arguments of cmp are as
follows:

The file name - is always the standard input. cmp also uses the standard
input if one file name is omitted. The from-skip and to-skip operands specify
how many bytes to ignore at the start of each file; they are equivalent to the --
ignore-initial=from-skip:to-skip option. By default, cmp outputs nothing if the
two files have the same contents. If the two files have bytes that differ, cmp
reports the location of the first difference to standard output:

If one file is a prefix of the other, cmp reports the shorter file’s name to stan-
dard error, followed by a blank and extra information about the shorter file:

The message formats can differ outside the POSIX locale. POSIX allows but
does not require the EOF diagnostic’s file name to be followed by a blank and
additional information. An exit status of 0 means no differences were found, 1
means some differences were found, and 2 means trouble.

diff

Invoking diff

The format for running the diff command is:

In the simplest case, two file names from-file and to-file are given, and diff
compares the contents of from-file and to-file. A file name of - stands for the
standard input. If one file is a directory and the other is not, diff compares the
file in the directory whose name is that of the non-directory. The non-directory

158 Reuse Tools

file must not be -. If two file names are given and both are directories, diff com-
pares corresponding files in both directories, in alphabetical order; this com-
parison is not recursive unless the --recursive (-r) option is given. diff never
compares the actual contents of a directory as if it were a file. The file that is
fully specified may not be standard input, because standard input is nameless
and the notion of “file with the same name” does not apply. If the --from-file=file
option is given, the number of file names is arbitrary, and file is compared to
each named file. Similarly, if the --to-file=file option is given, each named file is
compared to file. diff options begin with ‘-’, so normally file names may not be-
gin with ‘-’. However, -- as an argument by itself treats the remaining arguments
as file names even if they begin with ‘-’. An exit status of 0 means no differences
were found, 1 means some differences were found, and 2 means trouble.

patch

Invoking patch

Normally patch is invoked like this:

The full format for invoking patch is:

You can also specify where to read the patch from with the -i patchfile or --
input=patchfile option. If you do not specify patchfile, or if patchfile is -, patch
reads the patch (that is, the diff output) from the standard input. If you do
not specify an input file on the command line, patch tries to intuit from the
leading text (any text in the patch that comes before the diff output) which file
to edit. See Section 10.6 [Multiple Patches], page 49. By default, patch replaces
the original input file with the patched version, possibly after renaming the
original file into a backup file (see Section 10.9 [Backup Names], page 50, for
a description of how patch names backup files). You can also specify where to
put the output with the -o file or --output=file option; however, do not use this
option if file is one of the input files.

The console analogs of the GUI meld - which probably calls diff and patch
from inside the GUI - are GNU diff and GNU patch. If you prefer console / shell
operation, or require to do automatic changes like from your own concurrent
version server (CVS).

Gnu Autotools

autoreconf

https://www.gnu.org/software/diffutils/manual/diffutils.html#index-multiple-patches
https://www.gnu.org/software/diffutils/manual/diffutils.html#Backup-Names

Reuse Tools 159

automake
autoconf

aclocal
libtool

configure
make

You will hear stories of how hard GNU Autotools are to use, and that isn’t
altogether untrue. In fact, most complaints about GNU Autotools are true.

I will write this introduction with a very different slant and context than
the other tool sections because I am an expert in these. That is because, apart
from learning the syntax and the general mode of operation, learning to use
GNU Autotools was the hardest conversion for me from my days as a Win-
dows/VisualC++ programmer to a Unix/Autotools. There are two important
facts that you need to take on board if you wish to be successful in reasonable
timeframes: the files you are creating have various memory cached interme-
diate files that hold onto clagg and faulty configurations; if you don’t purge
them between runs, and often times restarting a new console with a fresh set
of environment variables, will clear your problems. Here is another important
advice: running sudo updatedb to update the files database tables after in-
stalling software will be needed for successful configuration; that will tackle
most of the problems finding recent software you’ve just installed to satisfy
missing requirements.

sudo updatedb

GNU Autotools allow you to configure all files you need to run compilation,
or any other kind of recipe of making, with a custom and diverse kind of ways
to leave most of the file checking, system information discovery, and compiler
flags to the layer upon layer of scripts running and files made. I’ve used GNU
Autotools to compile for embedded MCU boards, for multiprocessor CPUs, for
a local network of agents, for the old Intercontinental Ballistic Missile (ICBM)
Real-Time Operating System (RTOS) RTEMS (Real Time Executive for Missile
Systems) and for computer architectures from 8-bit to 128 bit data buses. It can
handle any variation you need for some custom application, and it hides nothing
in any system it’s applied to. I don’t run doxygen, I use my pre-made make dox
recipe so I don’t have to remember the program flags to generate a generic
Doxyfile (it’s doxygen -g). You can make recipes to include a dynamic set of
sources, you can combine scripting like BASH (Bourne Again SHell) scripts to
execute programs and enter the returns back into your configurations.

make dox

160 Reuse Tools

doxygen -g

If I could describe the system in a simplistic overview, is it has a core script
language in m4 that runs most of the configuration, it uses script-run files under
all the programs that sponge up found configuration data, and that each pro-
gram runs over the output of the last program to make it’s own configurations.
There are a myriad of software checks pre-made that if you spend the time
looking for can solve you learning m4 and making your own scripts. Look in
open source GNU Autotools project for a folder called m4 - it holds premade
m4 scripts. Any open source project with an Makefile.am, a configure.in (old
name) or a configure.ac, a Makefile.in or a autogen.sh, build.sh and so on file
may have what you need.

Here’s how GNU Autotools described in the itself :

If you are new to Automake, maybe you know that it is part of a set
of tools called The Autotools. Maybe you’ve already delved into a pack-
age full of files named configure, configure.ac, Makefile.in, Makefile.am,
aclocal.m4, . . . , some of them claiming to be generated by Autoconf or Au-
tomake. But the exact purpose of these files and their relations is probably
fuzzy. The goal of this chapter is to introduce you to this machinery, to
show you how it works and how powerful it is. If you’ve never installed or
seen such a package, do not worry: this chapter will walk you through it.

If you need some teaching material, more illustrations, or a less
automake-centered continuation, some slides for this introduction are
available in Alexandre Duret-Lutz’s Autotools Tutorial. This chapter is the
written version of the first part of his tutorial.

https://www.gnu.org/software/automake/manual/html_node/Autotools-
Introduction.html

The book, GNU Autoconf, Automake, and Libtool by Gary Vaughn, Ben El-
liston, Tom Tromey, and Ian Lance Taylor that does a good job, if you are
thorough on setting up a proper autotools configuration system. I have used
autotools on many projects, since 2003, and I assure you it will work just fine
if you understand what they are made for and what When all else fails, and
it will fail repeatedly, the testing regime will become the mainline to improve
your awareness, your understanding of the components, and your ability to ex-
periment with the changing how it works, and the testing regime will become
the mainline of your advancements. You will save the most:

• Most code understandings;

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

Reuse Tools 161

• Most lost effort saved; and

• Most lost compile times.

Concurrent Version Systems

cvs

There are many concurrent version systems. There’s CVS, subversion (svn),
and of course gitlab with their new program gh. We will discuss just cvs here to
make you aware of the kinds of command. CVS manuals can be found at GNU
CVS . Here is their Introduction:

CVS is a version control system. Using it, you can record the history
of your source files.

For example, bugs sometimes creep in when software is modified, and
you might not detect the bug until a long time after you make the modifi-
cation. With CVS, you can easily retrieve old versions to see exactly which
change caused the bug. This can sometimes be a big help.

You could of course save every version of every file you have ever cre-
ated. This would however waste an enormous amount of disk space. CVS
stores all the versions of a file in a single file in a clever way that only stores
the differences between versions.

CVS also helps you if you are part of a group of people working on the
same project. It is all too easy to overwrite each others’ changes unless you
are extremely careful. Some editors, like GNU Emacs, try to make sure that
two people never modify the same file at the same time. Unfortunately, if
someone is using another editor, that safeguard will not work. CVS solves
this problem by insulating the different developers from each other. Every
developer works in his own directory, and CVS merges the work when each
developer is done.

CVS started out as a bunch of shell scripts written by Dick Grune,
posted to the newsgroup comp.sources.unix in the volume 6 release of July,
1986. While no actual code from these shell scripts is present in the current
version of CVS much of the CVS conflict resolution algorithms come from
them.

In April, 1989, Brian Berliner designed and coded CVS. Jeff Polk later
helped Brian with the design of the CVS module and vendor branch sup-
port.

https://www.gnu.org/software/trans-coord/manual/cvs/html_node/What-is-CVS_003f.html#What-is-CVS_003f
https://www.gnu.org/software/trans-coord/manual/cvs/html_node/What-is-CVS_003f.html#What-is-CVS_003f

162 Reuse Tools

You can get CVS in a variety of ways, including free download from
the Internet. For more information on downloading CVS and other CVS
topics, see:

http://cvs.nongnu.org/
There is a mailing list, known as info-cvs@nongnu.org, devoted to

CVS. To subscribe or unsubscribe write to info-cvs-request@nongnu.org.
If you prefer a Usenet group, there is a one-way mirror (posts to the
email list are usually sent to the news group, but not vice versa) of info-
cvs@nongnu.org at news:gnu.cvs.help. The right Usenet group for posts is
news:comp.software.config-mgmt which is for CVS discussions (along with
other configuration management systems). In the future, it might be pos-
sible to create a comp.software.config-mgmt.cvs, but probably only if there
is sufficient CVS traffic on news:comp.software.config-mgmt.

You can also subscribe to the bug-cvs@nongnu.org mailing list,
described in more detail in BUGS. To subscribe send mail to bug-cvs-
request@nongnu.org. There is a two-way Usenet mirror (posts to the
Usenet group are usually sent to the email list and vice versa) of bug-
cvs@nongnu.org named news:gnu.cvs.bug.

Astyle

astyle

I found Astyle2 (Artistic Style 2.06) in the BRL-CAD source distribution and
I immediately fell in love with it. It is a very well-written C++ code freshener
and beautifier by Jim Pattee jimp03@email.com in 2016. You will note from
elsewhere I have a real hard time with OOP like C++ but this one obeys the
Unix Philosophy. It just understands a set of format requirements and plods
through your code effortlessly and wisely then outputs both a newly format-
ted file in the identical name and an old copy suffixed with .orig so there’s no
pre nor post confusion. I added Jim’s software to my RULA exemplar LoggerD
project later on in the book.

Artistic Style is a source code indenter, formatter, and beautifier for the C,
C++, C++/CLI, Objective-C, C# and Java programming languages.

When indenting source code, we as programmers have a tendency to use
both spaces and tab characters to create the wanted indentation. Moreover,
some editors by default insert spaces instead of tabs when pressing the tab
key. Other editors (Emacs for example) have the ability to "pretty up" lines by

2. http://astyle.sourceforge.net/

http://cvs.nongnu.org/
mailto:
mailto:
http://news:comp.software.config-mgmt
mailto:comp.software.config-mgmt.cvs
http://news:comp.software.config-mgmt
mailto:bug-cvs-request@nongnu.org
mailto:bug-cvs-request@nongnu.org
http://usenet:bug-cvs@nongnu.org
http://usenet:bug-cvs@nongnu.org
http://news:gnu.cvs.bug
mailto:jimp03@email.com
http://astyle.sourceforge.net/

Reuse Tools 163

automatically setting up the white space before the code on the line, possibly
inserting spaces in code that up to now used only tabs for indentation.

The NUMBER of spaces for each tab character in the source code can change
between editors (unless the user sets up the number to his liking...). One of the
standard problems programmers face when moving from one editor to another
is that code containing both spaces and tabs, which was perfectly indented,
suddenly becomes a mess to look at. Even if you as a programmer take care
to ONLY use spaces or tabs, looking at other people’s source code can still be
problematic.

To address this problem, Artistic Style was created – a filter written in C++
that automatically re-indents and re-formats C / C++ / Objective-C / C++/CLI
/ C# / Java source files. It can be used from a command line, or it can be
incorporated as a library in another program.

Doxygen

doxygen

Doxygen3 makes automatic documentation of any software code base, effort-
lessly out of the box.

According to Doxygen:

Doxygen is the de facto standard tool for generating documentation from
annotated C++ sources, but it also supports other popular programming lan-
guages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft,
and UNO/OpenOffice flavors), Fortran, VHDL and to some extent D.

Doxygen can help you in three ways:
It can generate an on-line documentation browser (in HTML) and/or an

off-line reference manual (in $\mbox{\LaTeX}$) from a set of documented
source files. There is also support for generating output in RTF (MS-Word),
PostScript, hyperlinked PDF, compressed HTML, and Unix man pages. The
documentation is extracted directly from the sources, which makes it much
easier to keep the documentation consistent with the source code. You can
configure doxygen to extract the code structure from undocumented source
files. This is very useful to quickly find your way in large source distribu-
tions. Doxygen can also visualize the relations between the various elements
by means of include dependency graphs, inheritance diagrams, and collab-
oration diagrams, which are all generated automatically. You can also use

3. https://www.doxygen.nl/index.html

https://www.doxygen.nl/index.html

164 Reuse Tools

doxygen for creating normal documentation (as I did for the doxygen user
manual and web-site).

Doxygen is developed under Mac OS X and Linux, but is set-up to be highly
portable. As a result, it runs on most other Unix flavors as well. Furthermore,
executables for Windows are available.4

CGIF

ISO/IEC 247707:2007 Conceptual Graph Interchange Format (CGIF) is the way
to embody layers of complexity without adding to the stratifications of the code
itself. The following features are essential to the design of this ISO International
Standard:

• Languages in the family have declarative semantics. It is possible to un-
derstand the meaning of expressions in these languages without appeal to an
interpreter for manipulating those expressions.

• Languages in the family are logically comprehensive — at its most gen-
eral, they provide for the expression of arbitrary first-order logical sentences. •
Interchange of information among heterogeneous computer systems.

The following are within the scope of this International Standard:
• representation of information in ontologies and knowledge bases;
• specification of expressions that are the input or output of inference en-

gines;
• formal interpretations of the symbols in the language.
The basic idea is to encapsulate the knowledge in your code in a useable

form that others can use to determine if your code meets their needs. This
is the backend to the

Check Your Knowledge!

Of course, as a way to gauge the quality of what you might find, you will
look at the quality not of the code directly, but all the accompanying documen-
tation, the organization, and the testing suite, more especially. You are better
off determining how much knowledge lies within before you read a every line
of code. You are going to scan for importaYou can find many things within that
are valuable in their own right:

• Algorithms;

4. https://www.doxygen.nl/index.html

Reuse Tools 165

• Models;

• Object Names;

• Threading or Forking;

• Math Error Codes; and

• Working examples:

– Interrupts Polling/ Event driven code;

– Message Marshaling and marshaling protocols compression and de-
compression techniques (hashing ...);

– Custom hardware machine code, and machine language optimiza-
tions;

– Debuggers Formats;

– Visualization snippets like fragment shaders, vertex shaders; and

– Reverse engineering embedded in code, and so on...

The skill set needed to leverage foreign code, unknown ideas inside the devel-
oper’s heads, will rest within the honest assessment of the individual, the ideas
within this tome are fit for the function of proscribing what you will find. This
book counsels the wise to find the things that can be done and how to do them
in a logical methodical way. It repeats concepts for the familiarized as things to
heighten the awareness the vital things from a personal perspective.

What are the knowledge fundamentals:

• Understanding;

• Aesthetics;

• Optimizations (Size / Speed);

• Documentation Manuals, API, Readme;

• Organization; and

• Background Knowledge.

If people haven’t made it clear, then how likely are you to find what you seek
and what to keep in mind while searching? Herein are the major causes of your
future misunderstandings.

In addition, key complaints you will discover when you read badly written
code:

166 Reuse Tools

Definitions

Of all the things that will trip you up is the way in which what seems clear is
not. The definition of words is the first of the many misunderstandings. Many
teachers present the same topics in many ways. Many schools oversimplify no-
tation and nomenclature. You will find this is at the heart of many assumptions
about how things are laid out, and what they mean. Worse, if they were NEVER
taught properly how to describe things, then you are in for a long drawn out
deciphering. When terms are wrong, when variables names aren’t what they
should be, they make you make mistakes from an assumption you would other-
wise avoid. This is one of the great struggles of epistemology, how to transform
one unclear thing into a clear thing with the faulty means available, the lacking
context, the missing flow, and so on. The error lies without (not included), the
misunderstanding lies within.

Formalisms

The definition of formalism is the strict adherence to a given form of conduct,
practice (remember your adherents are those that follow your conducts and
practices). By this term, I mean the way the code is written. The quirky or off-
beat way they define things, like how they declare classes and functions across
headers and class files, the way they hide static variables, hidden defines that
pop up to change what is written, their unique and nonstandard ways to de-
clare configuration changes, the way they layout directories, the odd hidden
files that impact everything but can’t be seen. The illogical the build manner,
and especially the integrated building into a GUI without any other options, the
forced inclusion of rare, unheard of, and nonstandard libraries that don’t give
you any way to use the code configured without them.

Sloppiness - I must make this as the harshest and most obvious criticism of
any code, sight unseen. Allow me to make the first and foremost apologies
for the work of others. People write code rushed, they make shortcuts. They
over promise, and under deliver. They have sick kids, and sick dogs, dental
appointments and more meetings than they can suffer. The shortcuts lead into
the folly of half-hearted and poor showings. You will find that the one thing you
will bring into a disarrayed mess is the beginnings of order within the chaotic.
If there is one recommendation that will help you in your hour of need, it is the
realization and acceptance that you must order things as you progress. You will
save yourself the trials by hacheting into the fragments and make a new start
as you go. The faster you transmogrify what you find into what you need the
sooner you will come to the state where it is satisfactory to you purpose.

Reuse Tools 167

Arcane Correctness

The most befuddling thing you will find are where in those unique occasions
someone has a unique and arcane way of code. There are some people that
learned the most correct yet unusual ways to code, special rules in the deep
dark bowels of every programming language. They have what will look like the
most incorrect way of handling things but it is just not common, yet perfectly
correct. To find out, you will have to open your old manuals, your textbooks and
find that it is in fact valid code. It may take some old programming magazine,
some long in the tooth professor, and so on.

If you keep just the headers of this section handy, once you are finished this
fantastical book, then you will be nearer to quantifying your difficulties into a
strict category for deciding what kind of problem you’ve run into. Remember,
they understood it when they coded it. You are left to understand what.

The Compiler is always right - Trust Your Instruments

If you went to a reputable college of any stripe, you would have had one or more
humility speeches about always assuming the error is yours. If that’s not the
right kind of plea for you, then consider these wise words. As my grandfather,
the WWII pilot decorated by King George VI with a Distinguished Flying Cross
- for bringing back an airplane with one functional wing - used to say, “always
trust your instruments.” He lived by that for the entire WWII conflict, surviving
three tours of duty over Europe. He said sometimes pilots would doubt their
instruments at their peril: they would doubt their instruments, somewhere over
ocean when separated from the group and they wouldn’t come back.

When you are reusing code, it’s never a wise attitude to doubt the automated
programs that compile or interpret the source code and your fixes. These pro-
grams are made and operate successfully on any code base. If the errors are
spat out about something wrong, it is the reused code that’s the cause 99 times
out of 100.

Documentation can speed you up...

The first way you limit the leveraging work is to read what documentation
there is. The documentation, or lack there of, gives you insight in most cases
to the quality of the code. There are some big exceptions, Ken Silverman’s code
is extremely dense in efficient code that was intended for his mind alone. I
contacted him, to get some sense of his voxel code, and he was busy working
with a company and gave me permission to do whatever I wanted with his code,
but also he was far too busy working on his next great thing and unfortunately

168 Reuse Tools

for me he was unavailable for comments. You will find many lone geniuses that
are gratified to find people using the work they leave but are too fixated on
their next big problem to bother you. Sadly, his code was hard to read and his
test examples only worked on a Windows platform. I spent many hours just
converting it to Unix worthy linking code. I also set it aside because it didn’t fit
my graphical needs but I will get back to it at some point.

Documentation is important, and rushed coders often neglect the non-
obviousisms that they already know. Case in point: sed. GNU’s sed (stream edi-
tor) is a nice little unix program to process files so you never have to write your
own code if you can run sed for free. However, the documentation is opaque to
people that aren’t “in the know”. Example,

sed

-i[SUFFIX] --in-place[=SUFFIX]
This option specifies that files are to be edited in-place. GNU sed does this

by creating a temporary file
and sending output to this file rather than to the standard output.
This option implies -s.
When the end of the file is reached, the temporary file is renamed to the

output files original name.
The extension, if supplied, is used to modify the name of the old file before

renaming the temporary file,
thereby making a backup copy This rule is followed: if the extension doesn’t

contain a *, then it is
appended to the end of the current filename as a suffix; if the extension

does contain one or more * characters,
then each asterisk is replaced with the current filename. This allows you to

add a prefix to the backup file,
instead of (or in addition to) a suffix, or even to place backup copies of the

original files into another
directory (provided the directory already exists).
If no extension is supplied, the original file is overwritten without making

a backup.
Because -i takes an optional argument, it should not be followed by other

short options:
sed -Ei ’...’ FILE
Same as -E -i with no backup suffix - FILE will be edited in-place without

creating a backup.
sed -iE ’...’ FILE

Reuse Tools 169

GNU sed manual, version 4.8, 1 January 2020, page 3

This is equivalent to --in-place=E, creating FILEE as backup of FILE

This is the verbatim wording of the explanation of the -i flag given on the
command line to the sed program that has been around so long that it is now
in version 4.8. It is precisely the reason why you can’t find a straight answer to
a simple question like “how do I save the file to a different output file with a
different suffix?” like happens over 1000 times a day, 365 days a year. Stack-
Exchange is littered with thousands of questions that are essentially the SAME
THING OVER AND OVER because the manual isn’t clear. Do you notice the
subtle change in the wording, one that is bound to cause confusion to people
that just want to run a command once and get on with life? I was working
on the software library RULA for the launch of this book and I wanted to set
up some bash shellscripts to filter words like my bluntifying experiment but
automatically. And I was forced to download the manual for myself because
the ready answers show that most people don’t know what this paragraph says
(Figure 12.2).

Here’s what it actually says: if you use the -i command (flag) and include a
literal string (including punctuation!) right against the -i flag then when sed
is done substituting for all the commands (because as it says that -i command
IMPLIES -s command - you must do both) you gave it to filter your file for, it will
automagically take that filtered buffer once complete and SAVE THE ORIGINAL

170 Reuse Tools

FILE NAME TO ANOTHER FILE WITH EXACTLY ’SUFFIX’ CHARACTERS AP-
PENDED TO THE END OF IT MAKING ’input.fileSUFFIX’ that new file’s name.
THAT INCLUDES ONLY THE PUNCTUATION YOU SUPPLY, so -i.strip means the
new filename (if the file was called filename.in) will become filename.in.strip’.
The ability to change the name of a file is BAKED INTO sed. But by declaring it
a SUFFIX and then talking for 3 paragraphs about an EXTENSION they confuse
the point of what they are trying to say. No reasonable person can be blamed
for not understanding exactly how to use this -i flag because the documentation
authors change definitions of words (we declare EXTENSION is the same as
SUFFIX) mid paragraph and they don’t supply verbose examples to make the
function clear.

When you are writing documentation, if you only say it once in one way,
it’s clear enough to you, but you’ve lost many people that don’t see the implicit
things you are assuming to be true (while reading this then assume EXTENSION
and SUFFIX are the same concept!). More documentation is always better. More
examples, more graphs, more cross-referencing, more definitions.

The only reason I pieced this together is I READ CHAPTER 6, which describes
how sed functions BEFORE I read chapter 1. And then I ran a couple of sed
examples in a BASH script and compared the output to see the revelation. I
realized that in the process of making the final output, that sed makes a buffer
that is essentially another file ready to go and save on it’s own, it just needs
to know where to put it. That would have been nice to explain on page 1,
paragraph one.

So, if your reader is a sociology professor with no formal programming train-
ing nor education, wanting to collect and gather various words from his papers
into a common file, and he isn’t a programmer in the know about suffix and ex-
tension in computer-speak, it’s not that he’s stupid that he can’t figure it out, it’s
you the documenter wasn’t smart enough to make it clear, make it consistent,
make it verbose.

Testing, Testing, Testing!

Like Pete Goodliffe draws attention to in his wise book, Becoming a Better
Programmer[7], Chapter 25, that code testing is a lot like driver’s tests for
vehicles:

Driving is an interesting analogue of programming. Learning to drive
has many parallels with learning our craft (software programmer), and
there are lessons we can learn from a comparison of the two...to enter

Reuse Tools 171

gainful employment you do have to demonstrate a reasonable level of skill:
having passed a reputable training course, or showing tangible prior expe-
rience...Indeed, advancing skills can be orthogonal to the typical developer
promotion path...But that doesn’t mean necessarily mean that you’re any
better a programmer than when you started.

So if documentation is sparse then if you want to invest significant time you
need to backfill the understanding effort by testing regimes. I know people hate
the GNU autoconf, automake, and make compilation tools but with make check
as a recipe (that’s what Richard Stallman calls his makefiles) included in many
open source code libraries you will find it easy to make an external check system
that can pass and fail areas of the code at any granularity you like.

The Use of a Debugger

gdb

For many, a debugger is the way they learn about code. Debugging with
GDB[13] by Richard Stallman, Roland Pesch, Stan Shebs et. al. is a definitive
reference for the GNU Debugger.

I have, personally, found that in most cases you can learn as much, when
you isolate to a single running process and dumping output in file form or to
the command line with printfs. The reason I use this is because I like the lived
experience of reading through the data to understand what is contained at every
level. I find that make it easier to fix things at the bottom of the architecture.
whether one uses fprintf to a file or just to the command line if the original
programmers didn’t have a DEBUG configuration defined it tells you a lot about
how thoroughly they tested as they went. But to each his own.

Of course there’s a performance hit for using printf inside code, it’s blocking
and per process as configured, that makes your process slow and it takes a hit
when multiple threads access the printf function with blocking. Here’s Jacob’s
from Beningo.com embedded printf (example in Figure 12.3) time response in
an embedded microcontroller:

Using printf comes with a few problems that are often overlooked by devel-
opers. The first, a developer must bring in a standard C library that will un-
doubtedly increase ROM and RAM usage. Second, every time a printf stamen
is used, the system becomes blocked until all characters have been transmitted
which can result in significant real-time performance degradation. Take for
example, a simple string to output such as “Hello World!” being printed out a

172 Reuse Tools

Printing “Hello World!” From: https://www.beningo.com. © 2016 Jacob Beningo,
All Rights Reserved. Used with permission.

UART at 9600 (still a very common occurrence). I performed a simple timing
measurement on an STM32 and as shown in Figure 1, it took 12.5 millisec-
onds for the string to be formatted and printed to the terminal.Adding any
string formatting makes the situation even worse! Printing the system state
to the terminal using printf(“The system state is %d”, State) results in a 21
millisecond application delay as the string is formatted and transmitted. One
might argue that running at 9600 baud is ridiculous but even increasing to
115200 would still result in 1.05 and 1.75 milliseconds respectively to trans-
mit these two messages. A lot of processor bandwidth and potential real-time
performance hits for minimally useful information.5

A better way, for larger CPU based systems that can multi-thread, and
medium sized MCU microcontroller units with limited multi-processing or
multi-threading, is to use a logger thread.

The logger thread, rather than compartmentalize all for all processes, run
another thread/process that has the collective job of writing out to file and/or
the standard out (screen for a console). Then each process initiates a shared
memory insert of a message to the stream, and continues with processing. This
logger thread works in the background and gives you a single point of reporting.
The messages consist of three parts - a warning, alert, or error code, a numerical
code describing the kind of error, and string description of the error. Along with

5. used with permission from https://www.beningo.com/getting-the-most-performance-from-
printf/, Copyright 2016 Jacob Beningo

https://www.beningo.com/getting-the-most-performance-from-printf/
https://www.beningo.com/getting-the-most-performance-from-printf/
https://www.beningo.com/getting-the-most-performance-from-printf/

Reuse Tools 173

a logger timestamp, this forms a simple log file that can be read in real time
with another process and tail function, or after the process ends.

The design of the test regime confirms how the software works when nothing
else will do. There’s a decision on how much to evaluate and the levels that
you want to conduct testing (bottom level classes to top level engine classes).
Ideally, you will dissect the code at the same level you want to test. But that’s not
always the case. I’ve used found that while that’s idyllic, when you insert into
the macro level and change how they work you will unwittingly make garbage
data at a lower level. The goal of testing is understanding, nothing explains the
data more than giving specific data into a code snippet and reading the outputs.

The first kind of tests you want are the ones that make it clear what data
is set, especially the math settings and return gets. You need to figure out the
simple things: is the data normalized? Are the angles in radians or degrees, or
quaternions? Vectors are normalized or absolute? Are the positions in Cartesian
coordinates, voxel distances, cylindrical or spherical coordinate reference frame
data? Which way is up? What directions do the signs represent? Are positives
absolute or relative? The second set of tests you will do cover all the ways you
need to understand how pointers are sent. When you get different formalisms
on how they describe code, some people have learned to make obfuscated types
out of pointers and that will cause you to incorrectly assign pointers. You will
cause lots of segmentation fault crashes if you are going quickly to convert code.
The secondary problem with pointer misassignments is the improper size of dy-
namic memory allocations for the written objects. Crashes means misalignment
of memory sizes from expected versus actual. You can use the equivalent of
sizeof() functions available to see the proper sizes for member that should be
exchanged to make the correct code. Void pointers are a way to get around one
of the You need to understand what parts you need to construct and which parts
are automatically created. Then, what are the ordering of what things need to
be created and initialized before you can use them.

Once all the pieces are finished, you can then measure the performance met-
rics for use, including storage footprint size in memory and speed of operation.
For these I recommend just using the compiler’s own optimizations are first
they tend to do a reasonable first effort at unrolling loops for faster operations
and in the opposite direction reducing memory code occupies for the processor
target you intend.

If you have tried a top down software leveraging strategy then you may arrive
at success without a lot of time. But then the real problems will arrive later if
and when you decide to take pieces out and reduce many similar data structs
into a more efficient less redundant version. This kind of work is smiled upon in

174 Reuse Tools

the Unix philosophy of coding, where it demands that you keep a single point
of failure for all the important elements. If you have kludged together your
code and the leveraged code without rewriting it, you will have some levels of
data conversion from one side to the other; this kind of thing is the hallmark of
where careless errors plague good code. While I urge you to keep messages the
same, the internals will work better with a more efficient internal system.

Remember, the more data types you hold, the more testing you need to keep,
and the more chances careless errors creep in. Single point of truth and single
point of failure are valuable lessons.

The real problems happen when you try the same using in another mode, with
a set of conditions that are secondary and not well documented, and traverse
the parts of code you wallpapered over to get the parts you wanted working.
There is no substitute for thorough understanding of the pieces exploded out in
great detail. When you can’t figure out where the data profession goes - where
the chain of intermediate elements begin and end - you will be forced to break
it all apart from the bottom up and get the data.

Full testing is exhaustive, and it often can’t be full even at the time of pro-
duction. I will go back to the story of protobuf-c as the example of noncomplete
code testing. For many years, with intervals of a month or two, code that was
presumed complete and working spits out error conditions, mainly from various
alternative uses of the data types in ways that no one has used before. There’s
a flurry of patch and testing messages and emails between the developers and
then the code is uprevved. This has gone on for as long as I’ve used the code in
2014. It’s the reality that every code base goes through, even after beta testing.
In a relative scale the code base isn’t all that big, perhaps 20,000 LOC and still
until those unusual conditions are met the errors remain beneath the surface.
Novel bugs aren’t novel, they exist in the code base from the end of code writing,
and they surface when you cross their use in a novel way.

Chapter 13

General Methods of Improving
Code

Let None Find Fault With Others;
Let None See The Omissions and Commissions of Others.

But Let One See One’s Own Acts, Done and Undone.
—Siddhartha Gautama, The Buddha

When you go through a new source code download, it’s kind of like you are
looking into someone’s dilapidated shed trying to find the hedge shears. You
duck under a poorly hung light, push away the lamp cord, and then get down
on your hands and knees, on all four, to gaze under a dark table and thence
into an even darker corner. You know you will get lost, you know it will become
frustrating, and you will start making changes, like shifting around stuff you will
regret when you try to get back up again. It’s exasperating, confusing, and time
consuming (as I will mention a few times, you are saving 40%). It’s very easy to
complain about all the problems. But we don’t know all the problems from the
outset, the lack of knowledge, the needed bug fixes that lead to suspicion for the
whole and doubt. Like the words I’m writing now. This book as it appears before
me isn’t ready for the spotlight. It’s tragedy, the smaller the software team, the
more a few people were forced to pick up the slack for others. Without any
time for research, to look for part solutions that were working, you will find
the problems they never got to. This book was a disordered mess until I read
through it many times, edited, and critiqued as I went. Every time I did, I made
a point to question my underlying assumption that this book does hold valuable
insight, experience, and ideas that WILL help you improve your code harvesting
and improved software performance.

175

176 General Methods of Improving Code

Here’s another insight, young people with the least amount of design expe-
rience, not perhaps design knowledge, are the ones that make the bad choices
you wouldn’t make with some seasoning and experience. Young developers leap
above the cliffs, older people saunter up the goat path. On the other end of the
spectrum, there are the experts. Those that have made their bones and can make
good designs. But older ones like me are lazy, we get distracted being dads and
moms, have real life problems like kids on drugs that intersect with the needs
of the work. So if you can guess as to the average age of the developers then
perhaps you can make a guesstimate of what you will find inside. Somewhere
in the middle, are poseurs like university profs. They can talk your ear off about
how well their project will work, but come the work they are off onto interest-
ing stuff while they leave undergrads, teaching assistants and the odd post grad
student to do the work. The big promises are lost once the funds for students are
delivered, and results that are barely working becomes the standard of work.
To be fair, if you are working for free as a student and you can finish early to
get a job, there’s no real motivation to provide the rest for free.

Either way, one must accept that the code you get for free is just as worthy
of caution as the old Latin saying, CAVEAT EMPTOR. Let the buyer beware. So
again, I estimate that when you take on board code you are saving yourself, at
most, 40% effort. Of course, your results may vary.

Remember, sometimes people design code, then write code, and then they fix
it. The documentation may be written at any time during that process, and most
times never gets updated at the end. There will be obvious and nonobvious dis-
connects between them. There is no guarantee the process itself is serial. Often,
the final working version may diverge dramatically from the documentation.
What’s the one way to bridge this misunderstanding gap? Testing, as we de-
scribed earlier, the vital way you make your software show by it’s performance
and by it’s own examples how and why to use it.

What are you doing when you renovate working software made by others?
Essentially you find a bunch of wet pasta noodles hanging from a collander
above a kitchen sink. These noodles are bundled together in a mess, with many
of them sticking through the colander holes in such a way that you can’t in-
tuitively see where one noodle begins and under the bundle where it ends.
As you spin around and point your finger, guiding it along many pasta noodle
surfaces, you get confused and make wrong assumptions about which pasta
noodle is which. People will tell you there’s more to computer source code than
memory and functions, but in reality it’s just a differently labelled - a set of
kinds and types which hold no real special purpose - memory addresses and
functions. Many profs will fill your head with the niceties of software designs,

General Methods of Improving Code 177

that principles and techniques make your code better. At the end of the day
they all boil down to a residue of memory as data and memory as instructions.
Names, offsets, pointers and the like. At the abstract level, one is left with data;
data of kinds without any meaning other than the locations allow (i.e. the data
registers of an ethernet interface shows the address of the sender, the size of a
data packet, and so on). So any reworking of the data types in software code
is what your purpose is. If you change a function into a defined macro, you are
saving the mangled names of the function inside the object directories of the
compiled code, and copying the same macro over an over as data and data-
instructions (machine code operators). This is the reality of code. Despite all
the high minded meanings and ideals that some profs will fill your head with,
they are merely figments of imagination and boil down to an underwhelming
reside. The bells as whistles they proclaim are important aren’t really all the
special and significant, just read the innards of a C++ compiler to understand
how little is changed from C. Yes it handles garbage collections and type safe
operations, but you can do that all with ANSI C. Even the Grady and Booch
design patterns boil down to lacking functionality inside C++ compilers that
exist in other programming languages. The problem isn’t just that few profs
can’t be honest about how little important extras exist within real code, most of
these so-called teachers have never READ a compiler to understand it.

On the other hand, accepting the spartan reality of what you will find at the
bottom of all the obfuscation and indirections, is that you can make a method-
ical conversion of code strategy, a leveraging code method as laid out below,
to ease the transition for yourself and your team. Cut through all the classes,
methods, machine learning (which merely learns to adapt some data based on
other data in a time varying way), declarations and types and within the code
you will see some valuable core things that can be kept and an abstract way to
handle that that ignores the temporary meanings. What this book does is accept
that it’s all just kinds of memory inside the source code, code that in most cases
gets compiled or interpreted code for interpreters, that can be repurposed. The
kind of repurposings described herein are described by what kind of wholesale
changes you make to the code itself. Remember, this book provides proscriptive
guidance, and not descriptive help by way of a few examples because descrip-
tive advice allows you to fill in the applicable details when and where you see
that problem. If I provided descriptive advice (build a library no more than
500MB size), and those ways don’t help what you will achieve, I run the risk of
you doubting there’s a better way and waste your time somehow. By leaving the
implementation up to your mind, I will never be completely wrong even if I’m
not 100% helpful. That’s the right side of correct and vague as I would rather

178 General Methods of Improving Code

be than spectacularly insightful yet wrong. You will find many sentences end
with the ambiguous “and so on”. This is on purpose. Instead of knowing at the
outset what other members may be part of YOUR set members, I add vagaries
to ideas so when your own ideas trigger a eureka moment, it’s your brilliance,
fair and square. Hopefully, you will remember your brilliance the next time I
release a book...

Here are logical, methodical ways to handle working code where you keep
the overall strategy as a starting point, or perhaps a guide, so as you look into
the various files you will have something to hold onto. Often I start with a
doxygen to document the code, find little of value, and then start working away
at some key files.

Design Patterns

The best way to go forward in computer science is to start from the well-
designed computing patterns that exist as starting points for your work. For
example, many people have made "lists" and the RULA library curates a couple.
Design patterns like Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides "Design Patterns" have been scoffed at and mocked for being derivative
but there’s no need making a new generator factory. Another source is Grady
Booch’s Object-Oriented Analysis and Design with Applications. There are many
pre-made forms to adopt. That saves lots of work.

Adopting pre-made design patterns to your own code is by itself is a consid-
erable adoption of reuse

There are tons of pre-made, pre-thought patterns: cantrips, generators, bub-
ble sorts, and on and on. Seek them out first.

The first technique you need to master after understanding a design pattern,
is making it fit into your purpose. You need to be able to see the code as a
starting point, and what needs to be added to make your inputs and outputs.
My advice if you are starting out is just begin with other people’s patterns,
make some mods and watch it work. Then as you gain experience you will
imagine your known patterns overlaid on top of other’s code. Know what parts
are lacking and need to be inserted.

One of the most helpful things is to just run code, with lots of debug info
on, and you will learn where these patterns really work and where they don’t.
When you get done, and run it in the field, you will see where an octree makes
more sense than a hashed database entry, and so on.

General Methods of Improving Code 179

All or Nothing Software Leveraging Methods

The following methods work better if you apply them to all the code you see,
in that they don’t require you to know dependencies to include and/or avoid
when leveraging code. The follow-on hybrid code leverage methods will require
more reading and understanding to pull off victoriously.

Bottom up

One struct and function at a time. One method, one class, and one file. One by
one, take out and integrated into your existing code base.

Top down

You take over the code from the top, from the working example, like the GUI.
You attempt to just look at the highest level classes / data structs and make an
assessment of what you might get it to do other than the direct way it’s intended
to work in the provided application. If you want nothing more than to use the
inputs and returned outputs with no specialization or customization then this
is the way it works faster than bottom down

Hybrid Software Leveraging Methods

These kinds of methods attack the unknown and unseen knowledge within
the code without a deliberate full-scale transformation in mind. These can be
methodical translations like documentary, or reinterpretations like Reidentify.

The aim of this section is to put before your mind the ideas that are separate
and distinct from the source code itself, but by placing these ideas in closer
proximity to the reuse ideas, you can see your way clear to making it all bet-
ter. Remember, this isn’t a software problem without being an epistemological
problem also. Knowledge and software are inextricable, and you can maximize
one by applying both.

Extraction

Full Partial Single Harvest Algorithm extraction - If you wish nothing to do with
the code, you look for the main mathematical functions, you simply printout
out the core of that software code, and you read the algorithm from the lines.
It’s far harder to read it if the programmers used a different formalism than you
are used to. If the code depends on other libraries like standard math libraries
you will probably need to run a test program to understand the code.

180 General Methods of Improving Code

ReProcess -
Change alter IO Same Functions different data Same Data, Different functions
Extract the algorithms
Lobotomizing -
The most extreme form of software reuse you can do is what I call lobotomiz-

ing. Imagine a fully connected and properly designed software library works
like a head and body controlled by nerves. In a lobotomy you remove as much
of the brain and nervous system as it takes for the patient. In this case, you rip
out the higher data and function types that form the brain and nerves in data
and functions. You crack the skull, latch onto the brain with forceps and pull it
all out of the body - nerves and all. You are left with the hollowed corpse of a
software library. This is drastic as the surgery goes, but it is also a safe way to
reduce the area of bugs and errors. If you have an existing proven code base
like a database system then you both isolate which side the errors are mostly
on, and what adjustments you will need to fit the new code into the old nerve
locations. This is tedious and it’s painstaking. It’s easy to get lost reattaching
function over function. Sometimes it’s better to divide and conquer by just tak-
ing a small extraction one at a time. I know the paradigm presented isn’t a
precise one, it’s barely adequate, but it evokes some powerful imagery that will
stay with you when making your redesign decisions.

Documentary

Document everything. Explain it all. Make the data flows clear for people to
read and use. Make special pre-fix and post-fix characters for variable typedefs,
and so on. Use WordsSmashedTogether for longer and clearer function names.
Use time-worn function/method names and concepts like Get/Set (returning
a variable and setting the internal variable. This is the way to make what is
unclear clear.

Reidentify

The point of an identity is that it makes some sense to you. You don’t know
about nouns you’ve never experienced, nor read, nor heard of. There must be
a familiarity to the things you create within the limits of your knowledge and
experience.

If you think better in physics terms than computer programming terminologs
(terms of computer programming, not the study of terminology), then adapt
the names of things from Richard Feynman’s quaint Quantum Electro Dynamics
ideas[5] instead (instead of deconstructors, call them annihilators!).

General Methods of Improving Code 181

Take things that you don’t get, and rename them to something within your
knowledge wheelhouse. If you don’t like the function and anti-functions (an
anti-function reverses the function process - an integral is also known in some
cases as the anti-derivative) then rename them and make the necessary functor
changes so they make and change the state of things inside your code more to
the liking inside your head. Remember, no matter how good your code is, it can
always be more clear and more logical, more linear, and more presentable.

Like design patterns, you would be better off adopting the common ones for
common code functions / functors like Get/Set because that will make it easier
for others to adapt to your work because it makes similar concepts similar with
intuition and no extra processing needed. Standards are standard for a reason.
Of course, if you are the first to make a new standard then it behooves your
community to spend extra effort making it in a welcoming form for others to
get excited about using.

If names and concepts aren’t cutting it, you should try other methods to clear
the code, draw figures, diagrams, make ontologies of things and so on to get
the message across in many ways.

Standardizing

Standardizing is the general actions that remove flawed, quaint, unique, and
parts in favour of more specific standards that can be tested to an international
standard, like better tested replacements like the GSL - Gnu Scientific Library for
a better version. One of the best examples is math, many people cook their own
matrix math algorithms, and they can be replaced with better, faster math like
in the case of LAPACK/ ATLAS which are customized, optimized linear algebra
FORTRAN routines that compute faster, there for better able to make other code
faster. Special code snippets for workarounds in libraries that existed is also
another kind of this effort. Another example is some old propriety code from
insides a Sun Microsystems Unix version or a library from Silicon Graphics. The
most common would be extracting old, poorly documented for a concise, and
safer, versions. Most of this work will be more tidying and improving versus
dramatically changing the way the code works.

There are standards going out in every direction for software, from require-
ments like the POSIX.4 [6] for time-critical code, compiling from a standard
compiler like GCC [8, 14]. It could be implementing code to work within em-
bedded systems like ISO/IEC 18037:2004[9]. It could be standardizing your
GUI on the Qt multi-platform C++ code.

It’s a common find to see ways to improve things that gets put on the list of
things you plan to get to before you retire.

182 General Methods of Improving Code

Commonifying

Another way to fuse code from many sources to work inside their own solitudes.
In this method, one takes the interfaces as they were written in, downgrade
them to the basic data types, or to convert from one to another via a common
messaging system like TAO (The ACE Orb), a middleware, and so on. Run each
as separate process and make them read and write from each other, then you
need to prepare for race conditions, arbitration, and bottlenecks in messages.
This is like removing duplications that will appear, but may or may not replace
everything.

You might have a cmake, a GNU autotools, and BASH portable shellscript[12]
install systems into portable shell scripting alone. And so on.

Sam Newman uses the acronym DRY: don’t repeat yourself. He meant don’t
repeat your system behaviour and state information, but it’s equally useful when
you think of three separate math functions to handle the same equations from
different source codes. Many old codes have their own matrix multiplications.
I haul them out and apply ATLAS because it can be compiled faster on any
machine. This is also recommended by the The Art of Unix Programming: SPOF
- Single Point of Failure and SPOT - Single Point of Truth. You make one part
hold one truth and you make another point transform the truth anywhere else.
Have no doubt where the errors lie.

Here’s another way to make code from other

Scion

A scion is like the plant grafting technique. You take out a chunk of code and
place it within your existing code base. You cut it out of the API and replace it
within. A lot of things can be moved over, but what involved knowing exactly
where that part begins, processes, and ends.

A scion requires you to understand the internals in as much as you keep
the code together and send it and receive from it the members and methods it
expects. You don’t change it at all. If it relies on external libraries, you include
them. You don’t adapt the code, you don’t change your code, you just make
your interface handle the internals of the scion. The scion may contain levels
you haven’t read, don’t understand or don’t have time to. It’s like all those sci-fi
movies where they magically take the warp engines from one ship and insert
them where a broken one existed.

The hallmark of the scion is that you will have to chop through many files,
headers, source code etc., and that the beginning and end of the code will
involve cutting through many files, perhaps an entire library, to isolate them.

General Methods of Improving Code 183

Minimal Interface Mechanism (MIM)

By this method you hide code within code program within a process or thread
and you send to it and receive from it low level data types like floats, ints,
char strings, and doubles. You touch nothing within the code, you interact and
interface indirectly through a couple of translation functions like TranslateIn
- to translate into the data types internal to the code and Translate out - to
convert data to simple types and return them by some method - shared data,
mutexes, etc. - to and from the independent code. The kind of interfacing is
very simple and only needs to read a few class file declarations to determine
what will be passed through. Now, this may seem like a perfectly valid way to
operate, but it doesn’t guarantee that the data formatted into common types is
the right endedness, the correct width for the CPU address architecture. It also
doesn’t guarantee you will find the east spots to cleft the code and get exactly
what you want. As you peel back layers, you may delay and invariably run
into massive changes to make a "simple" interface work. It might mean serious
reorganization, and so on.

The mechanism for sending and receiving minimal interface data is up to
you, daisy chain processes, event driven interrupts, Chinese fire drill (buckets
passed onto the next process starting from input to the current process to output
returned elsewhere).

Of course, this kind of leveraging strategy makes no guarantees it will be
fast enough or resilient enough, and may result in manual overhauls of other
software to make them work together. The more code you don’t convert leaves
an unknown risk down the road to deal with.

Chapter 14

Logger Reuse Code Exemplar

Peace Comes From Within.
Do Not Seek It Without.

—Siddhartha Gautama, The Buddha

Enough talk, here’s some action. This is a very trivial example of code reuse.
It sits apart from the rest of the code inside my library code for the purpose of
using this as a basic example of how to reuse other’s code. It has three folders
inside "originals" folder to copy and keep all the files you can go back and pull
more code out This is basically Michael Kerrisk’s two exemplar source folders
melded into one more complex working daemon. This reuse example is easy
for two reasons: one, both code bases originate from the same programmer so
the thought model is identical and it’s well documented. It’s obvious that Mike
teaches Linux because he focuses on the inner workings by varying topic set
out as isolated examples.

One warning I need to explain at the forefront of this knowledge is that this
is very intensive with the GNU Autotools configuration system. While this book
isn’t about GNU autotools you can in your mind separate from the strategic
reuse decisions I make in this chapter a delineated reuse strategy if you just
ignore the configuration stuff. There is a line of reasoning and I make it plain.
You don’t need to be a GNU Autotools expert to see the path, but if you want
to use this toolbox I am an expert at applying these tools, after nearly 20 years
using them. So how and why I use commands is legit, even if you don’t get them
all to work at the first attempt. GNU Autotools are frustrating, take a break,
retrace some steps and you will eventually get there. I will include some extra
comments about GNU Autotools in the file FAQ. Now, back to the main thread...

This logger will work on Unix and Linux systems with the right kernel range.
I used Fedora 28 on both machines I compiled it on. I am using an older kernel

185

186 Logger Reuse Code Exemplar

as I tend to do work on my machines, I don’t spend time washing the tires and
tuning it up.

What this logger does is run in the background on your system as a daemon.
Once it is running, you can send syslog messages onto the logger. You need
to decide when to run it and I haven’t set it up to run from startup but as a
user run daemon that you decide to run it. This can be changed if you know
how to run programs within the system startup (like etc/crond cron daemon)
daemons. It will run without a console / tty terminal and it’s other input and
output are set to the null device.

The idea here is you are using the system the way it was meant to log mes-
sages, and you can include system messages by reading and writing to system
logs just by changing files, it allows you to put the logs together if you are using
the whole computer like a vehicle’s computer. Many people start off and build
their own logging facility, divorced from the operating system. Now, if you have
a specific justification for doing that, like you are operating cryptography or
military systems and you don’t want the enemy to guess the right system set
up, then, that makes sense. It’s a rational argument to keep your logging code
separate. But for the rest, it creates EXACTLY the wrong kind of system develop-
ment onus: you are now stuck maintaining something that really doesn’t need
to be included. The whole idea of the Linux/Unix kernel operating system is it
abstracts away as much of the internal application programmer interface (API)
so it can change and you don’t have to worry (most times- kernels do change
over epochs) about the internals. I have reviewed and fixed code working in the
1990’s that crashes out of the tarball on recent linux kernels.

You get the most you need from written code you don’t even need to rewrite,
only learn, only reuse. That’s the win-win you are looking for!

In real life, in a code base made by others, you will most likely find these three
source concepts (daemons, forks, and file locks) somewhat written loosely to-
gether, or in 4 different files spread between one or more file folders. That made
it easy to plan and execute three reuse operations: full extract from daemons/
into destination folder, full extract from filelock/ into destination folder, and
partial extraction of header file lib/tlpi_header.h into destination folder.

I would write out what the operations you plan to use somewhere in the
destination folder, I have written my explanation into the main.c file and the
more importantly into the Makefile.am I added autoconf, libtool, and automake
as I do because I prefer autotools to the clanky junk they offer. Now, autotools
does have a nasty habit of caching things that you can’t get rid of before you
compile it properly, but the way around that is to do a make dist clean which
destroys all configuration cached files. And then do these steps: autoreconf -fvi

Logger Reuse Code Exemplar 187

(removes and replaces all files needed for a fresh configuration), ./configure(
find all configurations needs specified and outputs Makefile full of variables
and recipes to make), make all(to complete all recipes to “make” whatever the
recipes call for).

autoreconf -fvi (removes and replaces all files needed for a fresh configuration)
./configure

make all

That gets rid of most problems.
The reuse steps went as follows: from a file browser I created a folder called:

Logger. Inside that folder I created a folder called originally originals. This isn’t
how I do it myself in RULA, because there’s a bunch of extra stuff that’ll look like
junk to anyone not familiar with a basic library setup first. It’s just a lot of junk if
you aren’t familiar. This project is aimed at the crawl phase of learning to walk.

After the folders were created, I copied over all .c and .h header file from
my version of Michael Kerrisk’s tlpi-XXX.tar.gz[10] (the directory from my
linux home drive was : ~/src/tlpi-160429-dist/tlpi-dist/filelock/ the tilde ~
means home directory) folders called filelock and daemons (~/src/tlpi-160429-
dist/tlpi-dist/daemons/) into originals. I copied over one Makefile from file-
lock/ for reference and I copied over the needed header file for all his common
code in a folder called lib/tlpi_header.h. But I didn’t copy any of the other files
from lib/* because I AM GOING TO USE THE GCC COMPILER TO TELL ME
WHAT I AM MISSING BY CAUSING ERRORS. Some people work all day to
avoid errors, in reuse the compiler is your best friend in explaining what you
didn’t understand by reading the code. I don’t want to keep too much klag
from Michael’s include folder, because I want this to stand alone as a logger
without extra code. That’s my design choice. So I will bring over the minimum
and then handle "missing" warnings and errors ("can’t find header XXX.h") to
tell me what I need extra. Then, and if, I will SELECTIVELY ADD BITS to the
Logger/tlpi_header.h (not the original but the copy) from lib/* into the header
file. That chops off all needed dependencies.

It was at this point I read Mike’s Makefile.inc to realize his work needs all
of lib/libtlpi.a - his library libtlpi.a (The Linux Programming Interface = tlpi)
which is a static object because the library target is a "libXXX.a". So I copied that
library folder lib/* as it’s own library for compilation. I would then, if I couldn’t
extract - or if it would be too time consuming to transfer stuff out - just compile
it all and add it to the target.

autoscan .

188 Logger Reuse Code Exemplar

At this point, I ran an autotools tool called autoscan 1("autoscan .") inside the
originals folder with all the .c and .h headers. It does like it sounds, it reads
all your source code files and creates a started configure.ac (autoconf file) that
it defaults outputs to "autoscan.log". I then copied the autoscan.log file above
into the Logger folder for use with configuration. And then, because I had to
bring over the larger file lib/ I ran autoscan inside lib/ and compared the two
inside the higher folder Logger. At this point, I realized Mike has symbolic links
to code everywhere else inside his lib/ folder. So I ran autoscan in the properly
configured original folder tlpi-dist/ to find the right stuff and then copied it
over to the Logger folder.

With the two autoscan files, I was able to get a pretty comprehensive autocon-
figure script file creation. From these two, I had the beginning of the complete
configuration.

I decided to include libtool that handles library construction. I then made
the simple decision to copy over the actual (originally symbolic linked) files
from the separate library directories into the originals and then into the Logger
folder for the reused library.

This is one of those hard versus easy path choices, the easy way is to keep
everything the way it is until you have a reason not to. The library functions
just fine as it is.

I then created a Makefile.am for automake configuration, a Makefile.in which
is the intermediate makefile needed to create a final Makefile. Autotools de-
mands you have some cruft files called AUTHORS, and so on it will tell you
then you just call touch "filename" to create an empty file with the right name.
I made a copy of the configure.ac in the top directory.

I created a library target recipe and I decided to copy over all the libtlpi.a
files into originals and copied into Logger file folder.

In the top level file folder I created Makefile.am, Makefile.in, and Makefile
by touching them. I copied the original autoscan.log back into the originals
folder. I altered the configure.ac to check specifically for the syslog functions
and commented on it in the configure.ac file.

There’s an additional configuration step that isn’t needed for this case but I
included as I often do in case I expand what is here. You create a file called
config.in and in the process of configuration inside configure.ac you add the
following recipe: AC_CONFIG_HEADERS([config.h]) at the top of the file. It
may or may not be automatically included depending on the version of your
autotools. For recent linux like Fedora 28, it is automagically included.

1. https://www.gnu.org/software/autoconf/manual/autoconf-2.67/html_node/autoscan-
Invocation.html

https://www.gnu.org/software/autoconf/manual/autoconf-2.67/html_node/autoscan-Invocation.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.67/html_node/autoscan-Invocation.html

Logger Reuse Code Exemplar 189

I copied over some template library target recipes from other project Make-
files into the newly created Makefile.am. The other two files Makefile.in, and
Makefile are automatically rewritten from the .am file.

Then I used a tool called meld - it allow you to examine 2 files in data or
even 2 directories (or three items) to compare and contrast them. I looked at
the Kerrisk lib folder versus the one higher directory originals. There were many
more .c and .h files inside the library. Since I know the library works if you just
compile all the pieces together (which is a big deal if you want it just to work
from the start), I made the decision to copy over all missing files inside the
originals/ folder from the available files inside the lib/ folder. Then I made the
decision to copy all .c and .h files over into the top level directory Logger/ and
build the library there. Then I would make a library of all the files save the one
function called main.c.

Since we want a daemon logger at the end, and a library supporting that
main file. Why? Because the convention (remember formalisms as a pain of
misunderstanding?) is the de facto default C main.c source file for an executable
program. If you want people to understand it’s easier to use the de rigeur con-
ventions unless there’s a compelling reason not to.

So all original source files are within the originals/ as is. Now I copied over
all the .c and .h files into the top level folder Logger as is. No changes are made
to the originals. Inside the originals directory:

cp *.h *.c ..

Now I need to find the main and isolate it in main.c and finish setting up con-
figure.ac with the right modifications, and decide how to set up the automake
Makefile.am file as to the targets a library and a main.c executable daemon
program.

I loaded files from the Logger into my preferred text editor geany (I used to
love Source Commander until they broke it and left it). Then I use the search
files function to find any mains main.c inside all the source files. Remember, I
haven’t read the files yet. The majority of work so far is just treating the file
objects as working if they all go together without any specific knowledge. Using
the command:

find "main("

(because all main functions must have this specific text I find (geany uses
grep so the command line command was):

grep -nHIF -- "main(" *

190 Logger Reuse Code Exemplar

daemon_SIGHUP.c:126:
main(int argc, char *argv[]) error_functions.h:28: terminate

main() or some other non-void function. */
i_fcntl_locking.c:96:main(int argc, char *argv[]) grep: originals:

Is a directory test_become_daemon.c:21:main(int argc, char *argv[])
t_flock.c:23:main(int argc, char *argv[]) t_syslog.c:33:main(int argc,
char *argv[])

And this is valuable for two reasons: one, at the end we want all the func-
tionality to start from one main() function, and two, we want some of the func-
tionality from these separate test examples included in the same main.c file.

We want these things in the final version:

1. We want a daemon process started as expected (a forked child that runs
and exits after forking a second child with no terminal I/O) as Michael
Kerrisk explains in his Chapter 37[10]: Daemons[10].

2. We want an interrupt driver for the kernel SIGHUP (SIGNAL HANG UP)
signal to reload configuration files.

3. We want a locking file as described in Chapter 55 (Listing 55-1)[10] to
make sure there’s only one daemon controlling access to log files.

4. We want a properly configured configuration file with explanations popu-
lated into the Logger project.

5. We want the log file to be readily apparent in the literature including the
README file.

6. We want basic instructions included in the README file to explain all this.

7. We want an INSTALL file to explain in numerical sequence what com-
mands to call to make this project work.

Now I went through the process of just adding the non main.c files to a library
and getting it running. Now, and this is where many people have problems and
give up, the one major downside to Linux programming is the sheer scale of
software packages, including in this case what Fedora calls “XXXXX-devel” de-
velopment .rpm (Red Hat Package Manager) packages. If you haven’t installed
GCC C compiler, GCC C++ compiler, GNU Autotools autoconf, automake, au-
toreconf, libtool, and helpful software tools like Geany (text editor), and Meld
then you will run into all the problems.

All these problems require you to know what the NAME of the package is
called so you can download and install the right ones. This is a reality of using

Logger Reuse Code Exemplar 191

this system and I can ASSURE YOU it was FAR FAR WORSE in the earlier days of
Linux programming. You have in Yum, RPM, and in the Ubuntu apt-get tools of
sophistication that will find all the dependencies if you have the repositories set
up right. But there is no shortage of teething pains getting a system working.
I have learned over the years to get the programming software stable on a
distribution and then cease all upgrades so I know it’s solid.

What I can do, is provide you with a DVD release with all the entire software
rpm’s needed to get you a properly configured FIRST distribution with all the
tools. It costs $5 USD, it’s not my code, it’s still Fedora and under their license
rules but it will save you time and frustration for $5. I’ve spent entire weeks
getting a safe working software version including working OpenGL extensions.
The DETAILS are listed in the test file SAFE_PROGRAMMING_DISTRIBUTION
inside the RULA and the Logger project folder.

I set to work, after a nap, fulfilling the configuration of the autotools by copy-
ing over some configure commands from another autoconf/automake/libtool
project folder to make the GNU Autotools configuration complete. The file con-
figure.ac has all the inclusions commented. This was mainly cut and paste them
overly wide comments for you. Over time, you will comment the obvious less
and less.

Then I ran:
autoreconf -fvi

to force autotools to create a new project here -f forcing to include files, -v
being verbose so I could see the messages, and -i including instead of symbolic
linking to other files. It did things like setup automake and libtool as you can
see in the verbose messages:

autoreconf -fvi

[dave@localhost Logger]$ autoreconf -fvi autoreconf: Entering directory ‘.’
autoreconf: configure.ac: not using Gettext autoreconf: running:
aclocal --force aclocal: warning: couldn’t open directory ’m4’: No such file or directory
autoreconf:
configure.ac: tracing
autoreconf: running: libtoolize --copy --force
libtoolize: putting auxiliary files in ’.’.
libtoolize: copying file ’./ltmain.sh’
libtoolize: putting macros in AC_CONFIG_MACRO_DIRS, ’m4’.
libtoolize: copying file ’m4/libtool.m4’
libtoolize: copying file ’m4/ltoptions.m4’
libtoolize: copying file ’m4/ltsugar.m4’
libtoolize: copying file ’m4/ltversion.m4’
libtoolize: copying file ’m4/lt~obsolete.m4’
libtoolize: Consider adding ’-I m4’ to ACLOCAL_AMFLAGS in Makefile.am.
autoreconf: running: /usr/bin/autoconf --force
autoreconf: running: /usr/bin/autoheader --force
autoreconf: running:
automake --add-missing --copy --force-missing

192 Logger Reuse Code Exemplar

configure.ac:22: installing ’./compile’
configure.ac:15: installing ’./config.guess’
configure.ac:15: installing ’./config.sub’
configure.ac:19: installing ’./install-sh’
configure.ac:19: installing ’./missing’
Makefile.am: error: required file ’./NEWS’ not found
Makefile.am: error: required file ’./AUTHORS’ not found
Makefile.am: error: required file ’./ChangeLog’ not found
Makefile.am: installing ’./COPYING’ using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control system
Makefile.am: for your code, to avoid questions about which license your project uses
autoreconf: automake failed with exit status: 1

It failed. Exit status:1 means failed to make proper configure shell script to
make a project. This tells us what needs to be fixed in the error: commands
above.

The program autoreconf does an "autoreconfiguration" from before the work-
ing files are made. Those working files like configure.guess, configure, and com-
pile among others do the work for your tools with custom configuration for
everything inside this folder. The whole story of GNU autotools2 takes a large
book so just accept this from now.

This reminded me what the extra files I need to add are. So I ran this com-
mand:

touch NEWS AUTHORS ChangeLog COPYING

This made autoreconf happy and it successfully created everything:
autoreconf -fvi

libtoolize
configure.ac

configure
automake

make
ld

AC_OUTPUT

[dave@localhost Logger]$ autoreconf -fvi
autoreconf: Entering directory ‘.’
autoreconf:
configure.ac: not using Gettext autoreconf: running: aclocal --force autoreconf:
configure.ac: tracing autoreconf:
running: libtoolize --copy --force libtoolize: putting auxiliary files in ’.’.
libtoolize: copying file ’./ltmain.sh’
libtoolize: putting macros in AC_CONFIG_MACRO_DIRS, ’m4’.
libtoolize: copying file ’m4/libtool.m4’
libtoolize: copying file ’m4/ltoptions.m4’
libtoolize: copying file ’m4/ltsugar.m4’
libtoolize: copying file ’m4/ltversion.m4’
libtoolize: copying file ’m4/lt~obsolete.m4’

2. A really good unofficial blog on GNU Autotools confusings is here: https://autotools.info/

https://autotools.info/

Logger Reuse Code Exemplar 193

libtoolize: Consider adding ’-I m4’ to ACLOCAL_AMFLAGS in Makefile.am.
autoreconf: running: /usr/bin/autoconf --force
autoreconf: running: /usr/bin/autoheader --force
autoreconf: running: automake --add-missing --copy --force-missing
configure.ac:22: installing ’./compile’
configure.ac:19: installing ’./missing’ autoreconf: Leaving directory ‘.

This output tells you the Autotools ARE CONFIGURED FOR USE. If there are
any errors that appear it is YOUR CONFIGURE.AC and AUTOMAKE FILE that is
the cause. Not the background tools. You see libtoolize messages with no errors
so libtool is set up. You see autoconf messages meaning ./configure is ready to
configure. This DOESN’T MEAN your configure.ac is correct, it means the errors
you see with command ./configure (ALWAYS RUN WITH ./ before so you are
using THIS configure, not the first configure it finds in any path!) are due to
your commands. You see an autoheader message and that means your config.h
header is ready to be configured. It also created a missing folder called m4/
because that’s where it stores local macros used by the m4 language to make
the configurations underneath the ./configure command.

In order to get this project to work, we need to make a library inside Make-
file.am in commands automake understands, and then make sure configure.ac
looks for any dependencies that configure will need to make sure autoconf and
automake will work as needed.

Since we are going to do everything in this folder, there is no subdirectory
command in configure.ac to go looking in originals. There is also just one
AC_OUTPUT target called Makefile inside the last command (IT MUST ALWAYS
BE LAST!) AC_OUTPUT([]). AC_OUTPUT does the work of making Makefile
from Makefile.in which holds the intermediate macro values from operating
the Makefile.am commands.

Now, before I did any code manipulation, I read the COPYING file autoin-
cluded by autoreconf. Then I read the original COPYING file from Michael Ker-
risk’s software distribution. They were the SAME GPL - GNU Public License V3
versions. So there is no conflict with adding, modifying and distributing.

What I did next is add a COPYRIGHT DISCLAIMER comment into EVERY
SOURCE FILE in Logger.

COPYRIGHT DISCLAIMER

It reads:

/*! \file **\
* \copyright { Copyright (C) Michael Kerrisk, 2016. } * * *
* This software below is modified from source tlpi-160429-dist.tar.gz *
* This software is governed by the same terms as laid out below. *
***/

194 Logger Reuse Code Exemplar

A disclaimer is a term and condition that notifies others - the people reading
the code - that you are not usurping - you are not in contravention - of the
copyright of the files in this project. You are claiming fair use, as designated
either by the terms and conditions set out or under the accepted considerations
of fair use (we cover this later in 9). This disclaimer claims you are not claiming
the code. They are still Michael’s code files, you are merely modifying them for
your use and letting everyone know. But also note you AREN’T adding these
copyright disclaimers to YOUR Autotools files. He never had Autotools, you are
adding it. It’s not his to worry about.

\copyright
doxygen

Now, there are changes in the disclaimer: one, I add a doxygen \file name
command to the top row for documentation, two, I add a \copyright so doxygen
gets the copyright AS MICHAEL wrote it (No interpretation, verbatim), a line
pointing to the underlying terms, and the exact source tarball I took it from. You
do this once, copy it into all files at the top above the original copyright notice.
You haven’t changed his terms, but you make it clear that anything under may
not be as written. I will change one of the main() functions into the main.c files
but the code is identical so I set it to the same terms. You do this once for all
code and you add his copyright terms and conditions and you’re in compliance
because that’s what those terms state.

It took about 10 minutes to copy that header onto the type of file. You haven’t
stolen anything, you haven’t taken on any added accountability. I copied over
Michael’s COPYING files as he mentions into this file folder. Legal part satisfied.
That was 56 files:

alt_functions.c alt_functions.h become_daemon.c become_daemon.h bi-
nary_sems.c binary_sems.h create_pid_file.c create_pid_file.h curr_time.c
curr_time.h daemon_SIGHUP.c error_functions.c error_functions.h
event_flags.c event_flags.h file_perms.c file_perms.h get_num.c get_num.h
i_fcntl_locking.c inet_sockets.c inet_sockets.h itimerspec_from_str.c
itimerspec_from_str.h print_rlimit.c print_rlimit.h print_rusage.c
print_rusage.h print_wait_status.c print_wait_status.h pty_fork.c
pty_fork.h pty_master_open.c pty_master_open.h rdwrn.c rdwrn.h
read_line_buf.c read_line_buf.h read_line.c read_line.h region_locking.c
region_locking.h semun.h signal.c signal_functions.c signal_functions.h
test_become_daemon.c t_flock.c tlpi_hdr.h t_syslog.c tty_functions.c
tty_functions.h ugid_functions.c ugid_functions.h unix_sockets.c
unix_sockets.h

Logger Reuse Code Exemplar 195

Michael Kerrisk’s gracious blessing...

So when people complain that legal stuff is a burden, you can show them
as long as the code terms and conditions are very flexible like (lesser) GPL
Licences it takes little time at all.

In fact, I sent an email to Michael requesting his permission to use his code
just to be sure. Given the topic of my book I wanted to make certain for obvious
reasons. And like the code boss he is, in Figure 14.1, this was his response:

Makefile.am

Back to code.
Here is the made up Makefile.am in the Logger/ folder describing to autotools

to make an executable program called LoggerD and a supporting libtool library
(which can make static .a and dynamic .so shared object libraries) to make
Michael’s code into libtlpi.la which is a special libtool library. You need only
provide different flags to make a static or shared object library.

Comment

DRE 2022 The executable program LoggerD - Yo Yo Yo

bin_PROGRAMS

bin_PROGRAMS = LoggerD
DRE 2022 this command tells libtool to build a library called lib_LTLIBRARIES = libtlpi.la
library’s source files - added one per line but no headers and no main() files:
libtlpi_la_SOURCES = alt_functions.c\
become_daemon.c \
binary_sems.c \
create_pid_file.c \
curr_time.c \
error_functions.c \
event_flags.c \

196 Logger Reuse Code Exemplar

file_perms.c \
get_num.c \
inet_sockets.c \
itimerspec_from_str.c \
print_rlimit.c \
print_rusage.c \
print_wait_status.c \
pty_fork.c \
pty_master_open.c \
rdwrn.c \
read_line_buf.c \
read_line.c \
region_locking.c \
signal.c \
signal_functions.c \
tty_functions.c \
ugid_functions.c \
unix_sockets.c
ENDS WITH CARRIAGE RETURN LAST LINE
DRE 2022 - Libraries LIBADD (Libraries ADD) while programs LDADD which means linker daemon

(ld) ADD
libtlpi_la_LIBADD = -lc
I added libc just because but it’s already added

I excluded the four files for tests that included a main() function, as they can
all be make check test files of various functionality they were made for. I will
then include them into Makefile.am as check test programs.

Here are the new make check tests out of the four existing files added to the
Makefile.am in the LoggerD new folder:

_SOURCES =
_CFLAGS =

_LDFLAGS =
_LDADD =

DRE 2022: test programs for the library straight from Michael Kerrisk’s examples:
check_PROGRAMS = test-daemon test-syslog test-flock test-fcntl-locking
DRE 2022: Become a Daemon check target
test_daemon_SOURCES = test_become_daemon.c
test_daemon_CFLAGS =
test_daemon_LDFLAGS = ${LOGGER_LFLAGS}
DRE 2022 the added The Linux Programming Interface library in .la format.
test_daemon_LDADD = -lm -lc libtlpi.la ${LOGGER_LIBS}
DRE 2022: Become a Daemon check target - I changed .c filename to a longer more clear name
test_syslog_SOURCES = test_syslog.c test_syslog_CFLAGS = test_syslog_LDFLAGS = ${LOG-

GER_LFLAGS}
DRE 2022 the added The Linux Programming Interface library in .la format.
test_syslog_LDADD = -lm -lc libtlpi.la ${LOGGER_LIBS}
DRE 2022: Become a Daemon check target
test_flock_SOURCES = test_flock.c test_flock_CFLAGS =
test_flock_LDFLAGS = ${LOGGER_LFLAGS}
DRE 2022 the added The Linux Programming Interface library in .la format.
test_flock_LDADD = -lm -lc libtlpi.la ${LOGGER_LIBS}
DRE 2022: Become a Daemon check target
test_fcntl_locking_SOURCES = test_fcntl_locking.c
test_fcntl_locking_CFLAGS =
test_fcntl_locking_LDFLAGS = ${LOGGER_LFLAGS}
DRE 2022 the added The Linux Programming Interface library in .la format.
test_fcntl_locking_LDADD = -lm -lc libtlpi.la ${LOGGER_LIBS}

Logger Reuse Code Exemplar 197

This allows us to use the verbatim testing of Michael’s own test main() files
as is.

Once the library is made, now we have 4 ways to test the functionality inside
the library. Note, there are more function files than these code snippets needed.
But we won’t fix the rest unless it’s needed.

There is an important factor, we haven’t even read the code yet. I will attempt
to make the library work as expected first. Now, as I start compiling and debug-
ging, I realize the only way the code won’t work is if there is nonconfigured
items that source is looking for. Because the code is identical.

So I opened the originals/Makefile.inc to find his generic include CVARS that
his compiles expect from that I see a bunch of libraries that I should blanket
include to all compiled targets:

Here’s the original:

LINUX_LIBRT = -lrt
LINUX_LIBDL = -ldl
LINUX_LIBACL = -lacl
LINUX_LIBCRYPT = -lcrypt
LINUX_LIBCAP = -lcap

Here’s␣my␣updated␣configuration␣inside␣Makefile.am:

_LIBS =

#DRE 2022: Added for Linux libraries
LOGGER_LIBS = -lrt -ldl -lacl -lcrypt -lcap

I added this FLAG ${LOGGER_LIBS} that is reinserted by configure when it
runs configuration into all the targets inside Makefile.am.

Now with these needed libraries, I included them into the configure.ac as
additional checks for stuff.

For the librt.so I located the file inside the /usr/lib64 folder, so I added the
LDFLAGS flag -L/usr/lib64 to the Makefile:

#DRE 2022 LOGGER_LFLAGS = -L/usr/lib64

I then used nm to name the objects inside the librt.so object to find one to
look for: I found clock_settime as a function and added it to the configuration:

198 Logger Reuse Code Exemplar

nm /usr/lib64/librt.so
AC_CHECK_LIB

AC_CHECK_LIB([rt], [clock_settime])

I did the same for the rest:

AC_CHECK_LIB([rt], [clock_settime])
AC_CHECK_LIB([dl], [dlmopen])
AC_CHECK_LIB([acl], [acl_init])
AC_CHECK_LIB([crypt], [crypt_r])
AC_CHECK_LIB([cap], [cap_size])

By using a selected member of the libraries the autoconfigure will succeed at
finding and testing them.

I won’t worry about the include headers because all Linux glibc include head-
ers are added by default into the default /usr/include folder. But those could
be added.

I started to autoreconf and it worked with some slight changes.
I ran ./configure and it failed because I hadn’t changed the command:

AC_CONFIG_SRCDIR

AC_CONFIG_SRCDIR([syslim/t_sysconf.c])

to include a source code from the current folder.

AC_CONFIG_SRCDIR([print_rlimit.c])

Then I reconfigured and ./configure worked on the SECOND TRY.
If you get errors on any configure, it MEANS YOU ARE MISSING DEVEL FILES

AND/OR LIBRARIES for glibc because that’s what GNU gcc uses. You may need
to install more libraries and things like libacl-devel development libraries and
include headers.

This will happen, I can’t stop and go through the myriad of possibilities, you
can email or insert a ticket in the gitlab and I may help you out.

What this means is your configuration for this library and executable program
is finished for now.

I ran the first make of the library:
make libtlpi.la

and this was the output:

Logger Reuse Code Exemplar 199

... functions.Tpo -c error_functions.c -fPIC -DPIC -o .libs/error_functions.o error_functions.c:26:10: fatal
error: ename.c.inc:

No such file or directory #include "ename.c.inc"
/* Defines ename and MAX_ENAME */ ^~~~~~~~~~~~~ compilation terminated. make: ***

[Makefile:751: error_functions.lo] Error 1

I forgot an additional file, ename.c.inc; i then included in the Logger/ folder.
I got all the files to compile with no CFLAGs set, I don’t use that first time and

only insert it if code has a comparability problem. Since the code is from one
coder and one project, that won’t be an issue here.

All the files then compiled, I did see some warnings as they flew past (this
machine has 8 CPU’s - I recompile ATLAS with "make -j 8" and it looks like
artillery fire) but I won’t do anything until there’s a seg fault crash. But if you
see warnings go by it might be a problem you will need to debug later.

On the third compile try, it compiled the library.

[dave@localhost␣Logger]$␣make␣libtlpi.la

libtool: link: gcc -shared -fPIC -DPIC .libs/alt_functions.o .libs/become_daemon.o .libs/binary_sems.o
.libs/create_pid_file.o .libs/curr_time.o .libs/error_functions.o .libs/event_flags.o .libs/file_perms.o
.libs/get_num.o .libs/inet_sockets.o .libs/itimerspec_from_str.o .libs/print_rlimit.o .libs/print_rusage.o
.libs/print_wait_status.o .libs/pty_fork.o .libs/pty_master_open.o .libs/rdwrn.o .libs/read_line_buf.o
.libs/read_line.o .libs/region_locking.o .libs/signal.o .libs/signal_functions.o .libs/tty_functions.o
.libs/ugid_functions.o .libs/unix_sockets.o -L/usr/lib64 -lcap -lcrypt -lacl -ldl -lrt -lc -g -O2 -Wl,-soname
-Wl,libtlpi.so.0 -o .libs/libtlpi.so.0.0.0 libtool: link: (cd ".libs" && rm -f "libtlpi.so.0" && ln -s "libtlpi.so.0.0.0"
"libtlpi.so.0")

libtool: link: (cd ".libs" && rm -f "libtlpi.so" && ln -s "libtlpi.so.0.0.0" "libtlpi.so") libtool:
link: ar cru .libs/libtlpi.a alt_functions.o become_daemon.o binary_sems.o create_pid_file.o curr_time.o
error_functions.o event_flags.o file_perms.o get_num.o inet_sockets.o itimerspec_from_str.o print_rlimit.o
print_rusage.o print_wait_status.o pty_fork.o pty_master_open.o rdwrn.o read_line_buf.o read_line.o re-
gion_locking.o signal.o signal_functions.o tty_functions.o ugid_functions.o unix_sockets.o libtool: link: ranlib
.libs/libtlpi.a libtool: link: (cd ".libs" && rm -f "libtlpi.la" && ln -s "../libtlpi.la" "libtlpi.la")

Success. So I tried the first test first in the make checks: make test-daemon

[dave@localhost Logger]$ make test-daemon
gcc -DHAVE_CONFIG_H -I. -g -O2 -MT test_daemon-test_become_daemon.o -MD -MP -

MF .deps/test_daemon-test_become_daemon.Tpo -c -o test_daemon-test_become_daemon.o ‘test -f
’test_become_daemon.c’ || echo ’./’‘test_become_daemon.c mv -f .deps/test_daemon-test_become_daemon.Tpo
.deps/test_daemon-test_become_daemon.Po /bin/sh ./libtool --tag=CC --mode=link gcc -g -O2 -L/usr/lib64 -o
test-daemon test_daemon-test_become_daemon.o -lm -lc libtlpi.la -lrt -ldl -lacl -lcrypt -lcap -lcap -lcrypt -lacl -ldl
-lrt -lc -lc -lc -lc libtool: link: gcc -g -O2 -o .libs/test-daemon test_daemon-test_become_daemon.o -L/usr/lib64
-lm ./.libs/libtlpi.so -lcap -lcrypt -lacl -ldl -lrt -lc -Wl,-rpath -Wl,/usr/local/lib

It compiled.

I added a subdirectory to the project in astyle, which I found in the BRL-
CAD code as an addon tool and installed within. After I added the C++ com-
piler check called AC_PROG_CXX to the configure.ac file, it configured astyle/
correctly and compiled on the first try. With no other additions, this project
compiles with GNU g++ C++ compiler (see below). Astyle formats and code
to a file proforma format as given in a configuration file.

200 Logger Reuse Code Exemplar

AC_PROG_CXX

DRE 2022 - added CPP C++ compiler
AC_PROG_CXX

In sum, here are the off-the-top performance metrics of this reuse project
(using the program cloc):

cloc

In about 10 man hours, going much slower than I normally do because I was
stopping to write into the book, step by step, and with ample breaks and naps,
writing extra documentation, I reused 25619 LOC lines of code of source code
(all C, C++ and m4 source code) and 64869 in all languages. The work wasn’t
strenuous, and I went slowly to plan what I was doing. I must bring forward
the factor that because this code was intended for a Linux machine and all
the samples were working this was a very easy reuse. I needed to add two
libraries and include headers, the ability to understand which include headers
is an added skill that comes with practice, to get it all to work. And I used these
commands/tools: GNU autotools (autoconf, automake, aclocal, libtool), meld,
cloc, nm, locate, which, yum install, gcc, g++, GNU ld, GNU make, grep, and
Geany. I won’t add the time making a LoggerD daemon final product, I am just
going to get it working and you can read it in the repository. But in fact, that
won’t be much more, I am going to just copy bits of the main functions into
a working one. That’s it. I didn’t know it would work this easy but using my
experience and the proscriptive tips from above in this book it was easy.

If you use the very low cost per LOC value of $18USD/LOC, then you have
an estimated value of ~$461,142.00USD. Investing 10 hours work to exploit
existing code converted to over $400,000 value reused / leveraged for new
projects. If you divide that over many projects for a logging function used by
many software projects, which was the goal, and you have added that value to
ALL of them. Even if you restrict the code leverage down to just C and C++,

Logger Reuse Code Exemplar 201

then the reused LOC is 16394, and the reused value is $295,092USD. Neither
is not too shabby. Imagine the value at $50USD/LOC. Over a $1 million USD
for 10 hours work.

Some might say, well hang on, you didn’t include that extra LoggerD func-
tion, and that’s true. But I am a perfectionist when it comes to code and I will
naturally expend more time and effort than most people rewriting code that is
ready for expansion and not just working. Most of that won’t be captured as
extra value because I will try a few varieties to see what I like better. In this
way, my pedantic nature would skew the results more than most people would
agree with. In other words, if I rewrite 300 lines of code 5 times, most people
wouldn’t count that as 1500 LOC, so my numbers would start to look off. I tried
to make as objective an exemplar project for the purpose of proving my words. I
believe adding that extra would muddy the waters and not in a productive way.
Going into the Logger Reuse Code Exemplar I had no idea how it would turn
out nor how long it would take. I was only confident based on years of failing
that I had the right skill set to overcome any problem. And I knew Michael’s
code was straightforward and sound. And you will notice above all I looked at
very little code to understand how to fix it. So it is very likely that the better
you are at the reuse strategy skill, the faster you can extract value.

In fact, I posit that by not getting bogged down inside the code is the very
way you save time and increase value. And this honest example proves it.

If there is any doubt in your mind you can extract value from code, it takes
little more than what’s here. You will struggle in your conversions. But bringing
a methodical approach, writing out your approach, your code reuse strategy,
and making all steps clear you will leverage software.

Chapter 15

Reuse Legal Actions

Let The Past Not Make You Bitter,
But Better.

—Siddhartha Gautama, The Buddha

Legal Aspects of Code: The Good, The Bad, and The Nonavailable

While contract law and software patents are known within many Western
legal systems, the most relevant problem you face may have to do with aban-
doned software.

I weigh in on the issue from a couple of ways, and I parallel the code with
other precedented articles of property to put what that problem may actually
mean.

The most important factor to any contract attached to the code you review
is what the contract actually says. You need to become familiar with the terms
and conditions, or get someone to describe what they should mean to you.

But here is the problem writ large: you write one line of code, label it and
sign it as your property and declare the legal terms and conditions, you have
created something of property under copyright, under trade secrets, perhaps
under trademark, and in some nations under software patents. You staple a
disclaimer to it and an indemnification about any liability that the code may get
used, and you have a legal product that must be respected by anyone wanting
to use it.

Here’s an analog of this software issue: you hold a class at the local college
and you want the students to have a copy of just a half chapter of a really good
but expensive book. You don’t want already stretched students eating amen
for dinner to pay for a complete book. Under the rules of fair use, you can

203

204 Reuse Legal Actions

photocopy a "few" pages of a copyrighted book and distribute them so long as
it is not for commercial purposes. As long as you acknowledge the originator
you can photocopy it. This has been established. So there is a gray area on the
rights and fair use.

Consider the case of a piece of artwork. If a painting is a set of painted
blotches on top of a simple cloth canvas on a crude wooden frame, then what
is the intellectual property? Well, if someone photographs that painting, it’s a
breach of the original property even though the cost of an digital image is near
zero. It’s a simile, and even a facsimile. Clearly, the value is inside the way
the paint blotches are arranged on the canvas. But the value inside a software
source code file can’t be the protected words of the language syntax, can’t be
your name and can’t be obvious words that are in the public domain. So even
if you "copied" a section of code the actual value, especially if the software
was abandoned, can’t be infinite. And even if the code was written and terms
clear, how can it have any value to the owner if abandoned in an old university
webpage or a dormant software repository? Isn’t garbage worthless?

Here’s another problem with where the valuable parts of code are. Even if you
never copy a line of code from one open source code file into another, you will
be (probably) extracting as much of the value out of it as you might have just
reading and understanding it. Every programmer writes names of variables and
assigns them a nomenclature identity. Every one makes a main function to start
things off. You aren’t learning any thing new about initializing variables from
any one’s code that you would have already known from your education. When
you read code, and I have read over 5000 different projects, you understand
the interal data flow and the math algorithms being used. For me, I look at
the source directory, scan the file names, understand the folder layout and I
have gained a cursory but high-level view of what the code does. I don’t even
need to read some files to see how the software is organized. That’s about it.
If there is something particulary insightful or a formalism to present the code
is nonstandard, in most cases the proper older syntax for the same code you
learned in a later version, there is something you don’t expect, so it’s novel.
But that’s it. Most math is in the public domain, many websites explain how
to do math. Unusual things like how many iterations do they use to calibrate
a Kalman filter, or what kind of data sets do they store to relearn a machine
learning function running in real time with new data, these are the kinds of
things you see in code that you won’t necessarily be aware of. Another big one
is the proper data formatting for the operation of functions inside other code
like the proper way to feed matrices to ATLAS (Automatically Tuned Linear
Algebra Software), or a more common one is how do you send a vertex array

Reuse Legal Actions 205

and normals array to an OpenGL graphics function to get nice output and not
garbage. What are the proper variables in the manner a function expects. That’s
what people struggle with when getting other code to work and that is valuable
to others that haven’t figured out how to do that yet. But other than that, it’s
all proforma. Mainly methodical boilerplate code. The cost of typing for a lot of
it will be far less than people imagine.

Now, the main parts of the value will also be derived from the testing, com-
piling onto a custom CPU or MCU, quality assurance, research, development,
meetings, marketing and other efforts like deployed operation, that come with
non-recurrent costs like feeding and housing a design team on a customer’s
on-site factory, and so on.

The next exemplar is a treasure chest of gold at the bottom of an ocean. To be
clear, the gold coins may be emblazoned with the late King Ferdinand’s bust as
the property of Spain. But centuries after his death and in the unclaimed neutral
waters, part of a sea, with no descendants actively attempting to recover the
treasure (descendants that may not even know the treasure was lost) those lost
coins are subject to the law of the sea known as The Law of Finds. In the case
of a shipwreck that the owner has given up all hope of salvage, the discoverer
is entitled to 100% of the value found within. The discoverer has been deemed
to have full rights to any salvage. Clearly, the treasure of a software effort, lost
in the flotsam and jetsam of the public internet archives, is like a parallel to a
disowned software as a pile of junk on the ocean floor.

Turn back to software with legal terms and conditions. What happens when
you take (download) software and attempt to get it working while still attempt-
ing to obey the terms and conditions as laid out, when you post improved code
back to the internet and no response is given? What if you get no reply back
from the original email, perhaps it returns an error message as undeliverable,
what if you have no way of making contact with any of the original authors (I
use authors because I generalize copyright to be the most relevant law that is
close to this cirmcumstance)? Are you duty bound to stop all forward progress?
If you asked a judge or lawyer my guess is that they would advise you not to
continue.

I argue the opposite. In fact, from personal experience dealing with a large
array of developers (the good, the bad, and the nonavailable) that while the
terms say one thing, the actions of the owners indicate the opposite. In this
book, I sent out no less than 18 requests by email for permission to use various
works, even if I probably didn’t “need to”. Within three months, I got most
replies back, three missing in action, most affirmative and one negative but I
got most responses in a reasonable timeliness, nonetheless. I argue that even

206 Reuse Legal Actions

if the software is within the legal terms and conditions of restricted copyright
but the owner has abandoned the work with no response within 3 months, then
that is more like a hub cap lost on a highway than it is a copyright property.
It’s public salvage or a treasure of the law of the finds. I have worked with
more code than most people, and far more than any lawyer or judge will in
their lifetimes. I know very few software projects live long enough to make a
significant value, and thereby value lost for harm. And it would be very hard
to predict and forecast what value might have been lost when the original code
was in the public and abandoned for years.

When dealing with stuff, we normally don’t write our name, address, and
email on our underwear, with obvious exception of Sheldon Cooper. If a hub
cap falls off your car and you don’t see when and where it was lost, it’s not
like the person that picks it up and sells it for scrap doesn’t know this is STILL
OWNED by the owner. Like the Law of the Sea, and salvage laws, there must
be an acceptance that lost software with missing owners should be treated like
a hub cap without a name. You make one attempt to get through, and barring
strenuous objections in a reasonable time, you should consider it like found
salvage. Treat it like you would anything lost, of value or not.

All that being said, what I want the lawyers and judges foaming at the mouth
at my scurrilous indictment of the value of legal contracts (well deserved in my
case) to understand is the wider and more important societal implications here
must favour a pro-salvage mindset for the long-off benefits on society rather
than the short term and myopic interests of a lost owner. All software writers in
the West were educated how through a public paid for public education system
by taxpayers. The topics in code are neither unique to one person nor unique to
any proprietary interest. I can reproduce similar code with enough false starts
and practice runs without reading the original, and in my case I will probably
exploit other’s code instead of unique bits made in a panic to make my version
work better, faster, less energy-dependent than the original programmer. There
can be many copies of code that are similar and function almost identically with
original software developed in isolation, that is a function of how computers
compile software, NOT THE DEVELOPER. Compilers can optimize for size or
speed so the code gets recreated by compilers now, there’s a chance a compiler
version makes an identical copy to an existing copyright by accident. Names
are not important because compilers MANGLE names to make them hard to
find in textual structure within machine assembly language to avoid software
insecurity. For example, if someone can trap the software and run it, you as
a user or customer don’t want the hackers or thieves to find a function called
"ENCRYPT_SOFTWARE_MESSAGE" in the object tables so they can target their

Reuse Legal Actions 207

attacks at messages. So, in this case, technically, there is a very limited span
of uniqueness attributed solely to any one writer and thereto his/her/it’s pur-
ported value.

For most cases, if you read the terms, you make one unsuccessful attempt
to contact owners which you record, and then you can act in the best ways of
humanity that pays for software. Record the attempt.

In most cases of my reading someone’s code and reviewing it for my purposes,
I use doxygen on the code base, I adjust the configuration file and adapt the
make files to include a "make dox" build command that autogenerates the doc-
umentation back. Once I am done this, I attempt to send back my fixes as files
on offer to the owner’s for their consideration. And then most times I don’t even
use the code, or I use the "ideas" I learned from reading it without facsimile. Or
whatever. And I have gotten maybe one reply out of hundreds of sent emails.

I keep copies of the original tarballs / zipped file folders. I keep the doxygen
part handy in case they ask for it. I tarball a newer version if I add or improve
some code. And I’ve never heard back asking for the improved code. A lot of
developers DON’T want your fixed code, because it would force them to go
backwards and figure out how to make the changes retroactive to the work
they are adding. It causes them MORE WORK. This is an important legal point
when considering what “harm” may have been done: in most cases there isn’t
a desire for code modifications that vary from the lead programmers desire.
Even if you give them the diff and patch files (another GNU tools command
set: diff charts out file changes and patch applies the difference into an original
file turning it into an updated file) they would have to apply the patches and
test them out. This is a very strong reason why most people fork (create a new
repository with the same code at some point) to make their own version.

If you don’t plan to commercialize, if you are using the software for your own
purposes or for education, and so on the you don’t have much to worry about.
You aren’t making a valuable thing someone will claim is worth a royalty.

At this point in your commercialization, you can guarantee that the limit of
the code snippets and can prepare a substitution plan if needed. If you ever get
served with a cease and desist letter, you have a plan to reverse anything that’s
demanded. If you get a cease and desist letter you also have a recent contact
with which to communicate. Perhaps that’s enough to make those parties feel
included in your thoughts. If you have as I advocate herein to improve code, you
should welcome this attempt as a long lost relative found overseas. Remember
that code review to measure what the impact on risk exposure was, you can now
promptly and politely describe precisely how little the impact is, no matter how
small, of the code’s improvement, you include your recorded contact attempt,

208 Reuse Legal Actions

and a plan to remove any code in your longer term code project management.
Of course if they are that concerned about removing the code that would contact
you and demand it, they must also be in a position to pay for the privilege of
removing and replacing their code faster than scheduled. You can present them
with an invoice to cover the costs. And, if you have estimated the cost of the
controversial code, you can contrast that limited value with the overall invest-
ment in the non-recurrent engineering of the software code base in it’s entirety.
With your extensive software code review, you can show snippets of the original
code and the updated, improved code snippets that show greater value - from
better documentation to bug fixes - and that puts anyone complaining about
unfair treatment that you are the one that’s hard to dissuade anyone, including
a reasonable judge, that your behaviour is above board and honourable.

Rather than worry about a disgruntled lone creator software entanglement,
keeping in mind the longer goals, commit to the longer view by reviewing what
needs to be replaced if a problem occurs, have a way to offroad that code, and
even offramp all your software development. Think on it this way, why wouldn’t
you get ready or just get ready to sell your software assets to a potential in-
vestor/ company. You would prepare to excise and replace anything you needed
in order to satisfy the due diligence of a company merger and acquisition team
expects you to do. It is just another consideration you must manage with all
the other problematic considerations: licence issues, bugs, internationalization,
data privacy laws, and so on. These are all valid reasons why one should stop
progress and prepare to review what any exposure is.

Appearing to be upfront and cooperative, which as I recommend one should
do for many reasons, dispells the myth that you stole something of value. This
is the presumed hope of anyone wanting to catch a company offside; this is the
whole business plan of a patent troll. Watch someone build something of value,
count up the toll, and then strike with a lawsuit to demand payment.

A consistent, well documented, and clear software rationale, well docu-
mented software source code, an updated library of the improved / augmented
code, released at regular intervals into the public domain. This becomes a jus-
tification in and of itself. In fact, the ability to do this for the greater software
good is no different than dealing with many other issues like security, estimat-
ing code value, and so on.

Remember, I am the veteran of reviewing and attempting to reuse over 5000
software projects, I have invested many hours understanding and then reflect-
ing on the problems of software code, so the view in this book isn’t a hypothet-
ical from a neophyte graduate.

If I was asked to counsel a judge about when a source file has changed from

Reuse Legal Actions 209

the original copyright / legal terms and conditions may no longer apply, it’s
when the code and comments inside a single file exceed 51% of the original in
content and form. Of course, the simplest way to avoid file copyright infringe-
ment is to place all new code in a separate file, but there are valid technical
reasons why people would want to keep the code in a file scope, and fair use
doesn’t automatically prevent the ways you can use a work. That is the grey
area a judge would be privy to consider. The reason I call it 51% is that while
the ideas inside may have been understood enough to copy the code without
the code and outside, is that the original content, whatever it was, at some
point diminishes to the point it’s like a public function that people explain to
each other online; it ceases to be an original idea. Software code, by the rules
of syntax and grammar, is mainly pro forma language. The names of things
inside the code, object names and function names primarily, are the majority
of independent ideas painted on the canvas of code. At some point, you have
painted over the canvas with a majority of new ideas that you can’t recognize
the original. And that’s when some common sense and fair use should prevail if
we want society to get the most benefit of salvage in code as in ship salvage.

Now, in all likelihood you will encounter no one desiring to make a federal
case about a grey area of fair use. Is there really anything to a complaint that
something of value that was improperly used? The biggest justification for your
work is to demonstrate just how much better you made the code; making con-
crete improvements gives this a massive quantum leap in the re-use of software
for generations to come.

Of course, the one kind of software source code or libraries, that must be
used with caution is the commercial software, commercial software has a de-
veloper team and software adherents inside and outside the company. This is
the one kind of software you should probably just use separate and apart from
anything else. Now, that being said, there are many cooperative uses of com-
mecial software that appear when that company abandons a specific code base.
I can think of my use of protobuf-c in the wild. Google once began and ran
the software called protocol buffers that was developed by Google first in C.
Once they decided to end support for the code, and they announced and left it
within the archives for a few years. Then, they stopped offering the C version.
It disappeared from the Google archives. Instead, they allowed only the Java,
and C++ and other versions. I have worked with the protobuf-c open source
forked and placed on the git repository website for many years. I use protocol
buffers as my marshalling and demarshalling software libraries in my robotics
work; I got fed up with the code bloat of C++ and MIRO in particular. Daily,
I keep a listening watch on that code base and get the bugs and error into my

210 Reuse Legal Actions

email feed. Not once has any work been stopped or waylaid by Google. As far
as I can tell they never went after the git operators either. In this small case,
Google haven’t been evil. So there are many kinds of end of life cycle source
you can lay claim to when the time is right and the need is real. Lots of large
software houses purchase companies and realign the work between two sides
of the merger - and inevitable layoffs. There will be code you can obtain free
in this way. Who knows, you may find people willing to fix their old code out
of allegiance to their work?

So while the legal terms may be daunting, all you need to do is simple: find
a dirty penny in the grass and shine it up. You attempt to contact them about
that shiny penny and be willing to share it back with lost owners. The worst
thing you can do if you have appropriated code that may be salvage is ACT like
you are stealing something.

The one unifying act that you can do to preserve a positive perspective, is to
leave a software library of the unclassified areas of your work, into the public
domain. Given the idea of value as a justification for software re-use, as long
as you align with the long term goals of software advancement, is to offer that
better code in limited libraries to other parties so that they can stand on your
shoulders, to perpetuate the acceleration of software reuse.

If and when you get ready to commercialize, you should do a code review
to determine all the code that originated within these separate properties. You
identify the code as new or derived from existing code bases so you are prepared
for any dispute by the original coders’ complain.

In all, take this recommendation with a grain of salt. I will harken back a
few years when Samsung and Apple were engaged in open legal warfare over
violations of patents on both sides. There they were, Apple and Samsung, both
violating property and escalating their ultamtums and threats with each pass-
ing lawsuit launched at each other. The sums in question were sizeable, and
the word got out on Wall Street. Both companies were facing liabilities and
tarnish to their reputations and brands. And then, as violently as it begun, there
was silence. Each side, realizing the downward spiral it all made in toll, as
other competitors looked on, was enough to make them see green. It always
seems a good idea to charge out into the legal battle, until the cooler heads in
accounting start warning of the impending carnage. It’s hard to show a profit
per unit with all those lawsuit holdbacks from profits. It’s harder to make your
stock options.

Take all of this with a grain of salt, and if you are uncertain consult a lawyer
with intellectual property expertise and experience to be certain.

Chapter 16

Re-Use Library Abstraction
(RULA)

The gitlab library RULA can be found here:
RULA

This project houses the (to be confirmed) IEEE Standards Association Pro-
posed PAR (Project Authorization Request) entitled: Re-Use Library Abstraction
(RULA) as a means to accelerate reuse library adoption by decreasing library
learning uptake time. The goal of this work is to implement a Basic Prototype
Exemplar that holds all the factors recommended in the book: (TBP - to be pro-
mulgated) The goal is to showcase the easier to use, easier to understand, and
easier to improve aspects that will make it win over users through time-tested
improvements to the way things are done to this point.

This section decries the micro level details of the software and associated
files within the RULA system. That’s why this library is different: it has the fore-
ground process you are intimately familiar with on storing code for compilation,
but it also has a background process that does work on files in the background
when they are inserted to give an overall status to those that access it.

211

https://opensource.ieee.org/daveerickson/reuse-library-abstraction

Chapter 17

Conclusion - What’s at stake?

Let’s circle back (a very cliched and currently expected phrase - linked mostly
to virtue signaling and consequent failure) to the heart of the issue. What was
the goal of this book?

This view of philosophy appears to result, partly from a wrong concep-
tion of the ends of life, partly from a wrong conception of the kind of goods
which philosophy strives to achieve. Physical science, through the medium
of inventions, is useful to innumerable people who are wholly ignorant of
it; thus the study of physical science is to be recommended, not only, or
primarily, because of the effect on the student, but rather because of the
effect on mankind in general. Thus utility does not belong to philosophy.
If the study of philosophy has any value at all for others than students of
philosophy, it must be only indirectly, through its effects upon the lives of
those who study it. It is in these effects, therefore, if anywhere, that the
value of philosophy must be primarily sought.

Professor Bertrand Russell1

Software reuse is like philosophy. It doesn’t seem to make any sense or have
any purpose for most but if it isn’t in the background improving software for
their technology - most people’s interface with science - then the impact is felt
in less safe products and more costly units. The impact is there whether you
realize it or not.

The information in this book makes for a better start to your work; an attempt
to give you more sleep, more observers transformed into adherents to your
shared efforts, more ease of use through better defined knowledge explained in

1. https://www.gutenberg.org/ebooks/5827

213

https://www.gutenberg.org/ebooks/5827

214 Conclusion - What’s at stake?

more than the first blush surface meanings to reduce confusion, a better search
function for others to find what they need, or confirm you don’t have what
they seek (but fill them with an impressed and positive experience), some wise
guidelines about the other dimensions that will impact your survival at the code
level over the longer term, and your ability to not start from zero.

Starting from zero is the start state we work to avoid for everyone starting off
in software in the future. We want to cure humanity of this perilous wastage of
time. The stakes are implanting a major, thoughtful, new way to evolve software
code by leveraging my failed experiences, my revelations on how to avoid these
pitfalls in the future, and for everyone in mankind to benefit from your work
by making it relevant into the future.

This book, like any receptacle of knowledge, is a best attempt at arming you
with the current, direct, and timely information that can assist you.

I will make myself available for questions, comments, queries at Veterans-
DefenceInvestment@gmail.com. Please send me a line if that’s the only push
needed to send you over the tipping point.

The rest is up to you.
Let me leave you with the very prescient words that Professor Douglas

Schmidt about the struggle towards common software and reuse:

"I have repeatedly witnessed organizations that initiate systematic reuse ef-
forts with the best of intentions, only to lose faith when various impediments
arise or schedules slip. Inevitably, they then fall back onto familiar processes,
i.e., developing their software from scratch. I’ve observed that reuse-in-the-
large is best achieved when development and management leaders are unwa-
vering and evangelistic. Moreover, this faith must be propagated up to, and
echoed by, the highest levels of the organization.

Ultimately, organizations that attempt systematic reuse without providing
an incubation environment will lose their faithful. Many of these faithful will
be the most experienced developers or those most capable of coming up to
speed quickly. In markets driven by “Internet cycle times,” the loss of valuable
developers can devastate an organization’s long-term competitive viability.

Keeping the faith requires keeping abreast of external R&D developments
and global technology trends. In my travels throughout the software industry,
I am continually amazed by the rate at which reuse and COTS middleware
is being adopted in many businesses and application domains. I suspect that
the pundits who dismiss reuse as a myth simply haven’t spent enough time
“in the trenches” lately to recognize the speed at which the software industry
is moving away from programming applications from scratch to integrating

http://mailto:VeteransDefenceInvestment@gmail.com
http://mailto:VeteransDefenceInvestment@gmail.com

Conclusion - What’s at stake? 215

applications out of reusable frameworks and components."

Professor Douglas Schmidt, in 1999.2

2. Keep the Faith: https://www.dre.vanderbilt.edu/∼schmidt/reuse-lessons.html

https://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

Appendix A

Acknowledgments

Thanks to my family, far flung but still connected by blood and love. You stay
in my thoughts long enough to remember what makes my life special, and well
worth it.

To Darcy, my bright young hard working daughter.
To Rayleigh, my worldly and wise daughter.

217

Appendix B

All-Encompassing Index

In order to contain knowledge in the preceding work in one kind of index, and
to cross reference things on many levels, this All-Encompassing Index aims to
make finding that idea on the tip of your cognition faster and easier. The aim is
better association and thereby better recognition. It is hoped that by your ability
to reference ideas faster this way, you will agree that the association of ideas
like keywords directly linked to code will make better software a result.

For example, say you were trying to remember the fair use considerations
presented in this book, and you recall that the one you think you want (which
was known to you by keywords you understand) is nearing to the part with
Mickey Mouse in it than the part about pictograms. This is all perfectly normal
attempted association of one known (you remember) idea with another idea
that you are certain is close by. Then you look in the all-encompassing index to
find the one Mickey Mouse reference (because I only included it once in the text
of this book) and it brings you to within striking distance of where you want. I
tried to link most key concepts in this book with external, non-software concepts
or ideas, and in this way expand the memories available to your success. Just
like I repeated the same idea verbosely here to make it plain in many ways.

That mental mechanism you are exploiting is the key rationale behind
concept-idea-keyword association for finding information readily in the soft-
ware library as well.

219

Nomenclature

infographic A visual representation of information..

LOC Lines of Code

pictogram A picture that represents a word or an idea by illustration.

221

Index

_CFLAGS, 196
_LDADD, 196
_LDFLAGS, 196
_LIBS, 197
_SOURCES, 196
~$461,142.00USD, 200
1-objects, 26, 100
2 billion lines of code, 116
2-objects, 26, 100
24/7/365, 42
24/7/365 operation, 94
3 1/4 inch floppy disk, 74
3 C model, 89
4 + 1 architecture, 66
5000 open source software projects,

108
680XX, 29
8086X, 29
80x86, 29

2009, 112

A Canticle for Liebowitz, 93
A confession about myself, 27
A Patch EE, 133
A Reuse Strategy beyond Fads, 99
abstract category theory, 26
abstractions, 100
AC_CHECK_LIB, 198
AC_CONFIG_HEADERS, 188
AC_CONFIG_SRCDIR, 198

AC_PROG_CXX, 199, 200
academic-, 10
aclocal, 159, 200
actions, 100
Ada, 47
Adapt, 96
advancedsourcecode.com, 149
Aggregation of concepts, 90
Alexandre Duret-Lutz, 160
algebrae, 26
All data and all functions, 102
All or Nothing Software Leveraging

Methods, 179
All Viewpoint, 64
All-Encompassing Index, 219
Amazon, 131
Amount and substantiality of the

portion used in relation to
the copyrighted work as a
whole, 130

ANSI C, 177
anti-complimentary, 106
Apache, 133
Apache licence, 74
API, 39, 186
Apple, 210
Apple iStore, 25
application specific integrated cir-

cuits, 41
apt-get, 191

223

224 INDEX

archetypes, 100
ARM, 28
Army Tactical Command and Con-

trol System, 55
ARPANet, 10
arrived-ats, 100
arrivings, 100
ASIC, 41, 42
ASME, 144
Astyle, 162
astyle, 162, 199
ATCCS, 55
ATLAS, 181, 182, 204
Auburn University, 77
augmentation, 16
AUTHORS, 188
autoconf, 159, 190, 200
automake, 159, 190, 192, 200
automata, 26
Automatically Tuned Linear Algebra

Software, 204
autoreconf, 158, 190, 192
autoreconf -fvi, 191
autoscan, 187
Autotools, 160
AV, 64

backward compatibility, 94
BASH, 159, 182
BASIC, 111
Basili’s Full Reuse Process Model, 88
Basili’s Iterative Enhancement

Model, 88
Basili’s Quick Fix Model, 88
bazaar-developed, 114
Bellman’s original theory, 103
Ben Elliston, 160
Beningo.com, 171
BFAs, 55
bibliography, 10

BiBTeX, 10
Bill Gates, 144
bin_PROGRAMS, 195
Bitcoin, 7
black swan events, 16
bleeding edge of high technology,

68
blue sky, 75
Bluntified, 85
bluntifyed analysis, 86
bluntifying, 82
Bogart’s, 106
boilerplate code, 205
Bottom up, 179
Bourne Again SHell, 159
Brand name, 16
Brian Gough, 28
BRL-CAD, 162, 199
BSD, 45
Buddha, 1, 5, 21, 33, 77, 99, 115,

143, 147, 151, 175, 185
Builds insight, 108

C, 111, 200, 209
C++, 199, 200, 209
calculi, 26
callback functions, 40
Cannibalize, 95
Capability Viewpoint, 65
Captain Donald F. Burns III, 33
CARDS, 77, 122
Carnegie Mellon University, 69
carte blanche, 75
Cartesian coordinates, 173
case law-, 10
catalog lines of code, 61
Cease and Desist letter, 128
cellular automata theory, 26
Central Archive for Reusable De-

fense Software, 77, 122

INDEX 225

Centralized Catalog of Assets, 75
CEO, 28
cFS, 133
CGIF, 99, 164
chrestomathy, 78, 79
Chromium, 112
CISC, 28
cloc, 200
cmake, 182
CMMI, 144
CMU, 69, 70
co-products, 100
code boss, 195
Code inheritance, 90
code mercenaries, 139
code strategy, 177
cog, 9
Comment, 195
Common Logic Interchange Format,

121
Commonifying, 182
comp, 154, 157
Comparables, 8
COMPLEXITY, 25
Complexity, 26
complexity, 25
complexity based estimation soft-

ware, 26
complimentary, 106
Composition, 100
Computer Processing Unit, 28
concept, 89
concept-idea-keyword associations,

107
Concept/Context/Content, 89
concepts, 100
Conceptual Graph Interchange For-

mat, 164

conceptual graph interface format,
99

concurrent version server, 92
Concurrent Version Systems, 161
configure, 159, 187, 192
configure.ac, 192, 199
connection theories, 26
content, 89
context, 89
Copy, 137
copyright, 128
\copyright, 194
COPYRIGHT DISCLAIMER, 193
core Flight Executive, 133
COVID, 117
cp, 189
CPU, 29, 115, 205
curriculum vitae, 92
CV, 65
CVS, 92, 161
cvs, 161
cylindrical or spherical coordinate

reference frame, 173

daemon, 200
DARPA, 118
DARPA Grand Challenge, 69, 71
DARPANet, 10
Data and Information Viewpoint, 65
data compression, 137
data flow diagrams, 26
Data Link, 38
David McCandless, 127, 131
DEBUG, 171
Debugger, 171
Debugging with GDB, 171
Define Guidelines for Reuse, 15
Dennis Hoppe, 114
Department of Defence, 33
Department of Defense, 23

226 INDEX

descriptive help, 177
design paradigms, 41
Design Patterns, 178
Design Requirements, 65
Design Specifications, 65
destinations, 100
Developers, 114
development, 205
Development languages, 16
Development methods, 16
Development personnel, 16
Development tools, 16
Dewey Decimal System, 104
diff, 154, 157, 207
diff3, 154
Disney, 128
DIV, 65
Dmitri Mendeleev, 8
Documentary, 180
Documentation, 168
documentation-, 10
DOD, 23
DoD, 64, 122
DoDAF, 64, 66, 122
Domain application, 16
domains, 100
don’t repeat yourself, 182
DooM, 118
DOS, 91
Douglas Schmidt, 214, 215
dovetail, 44
Doxyfile, 159
Doxygen, 163
doxygen, 163, 178, 194
doxygen -g, 160
DRY, 182
DuckDuckGo, 133
DVD, 191

Earth: Final Conflict, 149

Effect of the use upon the potential
market for or value of the
copyrighted work, 131

effective user interface, 94
egroupware, 150
Emacs, 162
embedded microcontroller, 171
encyclopedia, 114
environmental, social, and gover-

nance, 41
epistemology, 18, 84
Eric Schmidt, 116
Eric Scott Raymond, 115
Erich Gamma, 178
Erickson composite, 100
Erickson Composition, 101
Erickson Composition for Concept-

Idea Products, 100
Erickson’s Rule, 122
Eschew the One True Way, 22, 31
ESG, 41
eureka moment, 178
Evolution, 71
examples, 100
exemplar, 205
existential graphs, 107
Existing Methods Analysis, 14
explaination, 99
explication, 99

F35 modernization, 25
facsimile, 204
fair use, 128
Fedora, 149, 185, 190
Fedora SourceGraph, 148
Feynmann, 80
find, 189
finite state machines, 26
Finnish student, 115
firmware, 21

INDEX 227

First consideration of fair use, 129
five situations of code reuse, 102
FORTRAN, 181
forward, 77
Four Considerations of Fair Use, 128
four considerations of fair use, 133
Fourth consideration of fair use, 131
FRAND, 74
Free Software Foundation Gnu Pub-

lic Licence, 74
Freescale, 29
full reuse model, 88
functions, 100
functor mappings, 26
functors, 100

g++, 199, 200
garbage truck, 5
Gary Vaughn, 160
Gazebo, 118
GCC, 28, 181
gcc, 200
GCC C compiler, 190
GCC C++ compiler, 190
gdb, 171
Geany, 190, 200
geany, 189
Gene Roddenbery, 149
General Dynamics, 29
General Methods of Improving

Code, 175
gh, 161
Ghibellines, 27
GitHub, 148
Github, 148
github, 148
gitlab, 143, 161
gitlab library RULA, 211
GNU, 154, 207

GNU Autoconf, Automake, and
Libtool, 160

GNU Autotools, 159, 190, 191
GNU autotools, 182, 185, 192, 200
Gnu Autotools, 158
GNU CVS, 161
GNU Emacs, 161
GNU ld„ 200
GNU make, 200
GNU Public License V3, 193
Gnu Scientific Library, 181
Google, 10, 74, 115, 116, 209
Google Scholar, 10
GPL, 74
GPL Licences, 195
GPSInitializeData, 101
GPU, 28
Grady and Booch, 177
Grady Booch, 89, 178
grammar, 108
graph cardinality, 79
graph theory, 26
Graphical Representations of Algo-

rithms, Structures, and Pro-
cesses, 77

Graphics Processing Unit, 28
graphviz, 26
GRASP, 77
grep, 189, 200
group think, 82
GSL, 181
Guelphs, 27
GUI, 40, 72, 116
Guidelines, 65

H1ghlander, 69
Hammurabi’s code, 21
hardware, 21
Harvest, 95
Hidden Markov Models, 26

228 INDEX

HMM, 26
Humvee, 69

Ian Lance Taylor, 160
IBM, 94
IBM Z mainframe, 94
ICBM, 64, 159
id software, 118
ideas, 100
Identify Critical Issues, 15
idiomatic styles, 112
IEEE, 144
IEEE SA Open software, 117
IEEE Standards, 143
IEEE Standards Association, 144,

211
Important Points in any Licence,

136
incoherent structuring of modules,

48
infograph, 132
infographic, 131
information aggregator, 10
INSTALL, 190
insufficient documentation, 48
Integrated Project Delivery, 138
Integrated Project Delivery and

Multi-Party Agreements,
138

Integrated Project Delivery: A
Guide, 138

Intel, 29
Intercontinental Ballistic Missile,

159
intercontinental ballistic missiles,

64
internet, 10
IPD, 14, 138, 139, 141
ISO/IEC, 144
ISO/IEC 18037:2004, 181

ISO/IEC 247707:2007, 107, 121,
164

isomorphic, 27
isomorphism, 27
it MAY be so, 110
it MUST be so, 110
iterative enhancement model, 88

Jacob Beningo, 133
James Doohan, 8
Java, 209
JavaScript, 148
Jim Pattee, 162
John Sowa, 11, 99
John Vlissides, 178

Kalman filter, 27
Ken Silverman, 167
kernel, 38
key complaints, 165
keywords, 101, 107
knowledge, 214
Knowledge Reuse by Dialog: 1993

to 2022, 33

Lack of Available Reuse Informa-
tion, 52

lack of standards, 47
LAPACK, 181
LaTeX, 107
Law of the Sea, 206
law of the sea, 205
Layers by association, 122
Layers by categorization, 122
Layers by development., 122
Layers by organization, 122
Layers on alpha/numeric ordering,

122
Layers on personal preferences, 122
Layers on reverse temporal ordering,

122

INDEX 229

Layers on temporal ordering, 122
ld, 192
learning uptake time, 211
Legal Aspects of Code, 127, 128
Lesser GPL, 74
leveraging code, 177
lex, 116
libraries, 65
libtool, 159, 190, 200
libtoolize, 192
lines of code, 112
Linus, 116
Linus Torvalds, 92, 93, 115
Linux, 92–94, 115, 116
linux, 115
linux kernel, 115
LOC, 91, 112, 200
locate, 200
Logger, 189, 191
logger thread, 172
LoggerD, 162, 200
Luigi Rosa, 149

m4, 160, 200
make, 159, 192, 198
make all, 187
make dox, 159, 207
Make it a Rando, 96
Make it a security target, 97
Make it a stand-in, or standby, 97
Makefile, 188
Makefile.am, 188, 195
Makefile.in, 188
makeindex, 107
man hours, 200
man7.org, 117
Mankind, 1
mathematical necessary, 110
mathematical sufficiency, 110
mathematician, 11

Mathematics Subject Classification,
104

matlab, 149
MCU, 172, 205
mechanical device plate books, 9
Meld, 152, 153, 190
meld, 151, 158, 200
meld differences between two files,

152
metamodel, 64
Michael Kerrisk, 117, 185, 187, 190,

193, 195
Mickey Mouse, 128
microcontroller, 172
Microsoft, 115, 116
Microsoft C, 111
middle ware, 45
middleware, 97, 182
Milan C. Babak, 94
military speak, 37
MIM, 183
Minimal Interface Mechanism, 183
MIRO, 24, 27, 209
MIT Licence, 136
MIT license, 74
Modify, 137
modus operandi, 44
morphisms, 26
Motorola, 29
MPC, 29
multi-thread, 172
multiple inheritance, 90

n-objects, 26
NASA, 45, 68, 82, 133
NASA Study of Systems Engineer-

ing, 66
Nature of the copyrighted work,

129
Network, 38

230 INDEX

neural networks, 26
Newman-Ziff Algorithm, 138
Newton’s Laws of Motion, 5
NIMBY, 82
nm, 198, 200
No functions and no data, 102
No functions and some data, 102
nodes, 26
Not In My Backyard, 82
nouns, 100

Object Oriented Programming, 7,
37

Object-Oriented Analysis and
Design with Applications,
178

objects, 100
octal trees, 68
Office of Navy Research, 77
OOP, 7, 37, 162
open source, 114
Open System Interconnect, 38
OpenGL, 191, 205
operation domain, 37
Operational Viewpoint, 65
operators, 100
Organization efficiency, 16
Organizational Considerations, 121
Orville and Wilbur Wright, 5
OSI, 38
OV, 65
own symbology and notation, 48

painful development process, 48
PAR, 143, 211
patch, 154, 158, 207
patent-, 10
patterns, 100
per-file licensing, 113
Periodic Table of Elements, 8

permission to use, 127
perpetual evolutionary spiral pro-

cess, 42
PESP, 42
Pete Goodliffe, 170
Physical, 38
pictogram, 131
pictogram, 131
pictograms, 131
piggyback, 44
Pirate Treasure Map, 147
places, 100
Plato, 123
Player, 118
plug and play, 72
point of sale, 94
POS, 94
potential software reuse, 133
Presentation, 38
Principia Mathematica, 5
products, 100
profound knowledge, 8
Program Manager, 55
Project Authorization Request, 143,

211
project commonalities, 139
project development process, 42
Project Lessons Learned, 65
Project Viewpoint, 65
Proprietary rights, 52
proscriptive guidance, 177
proscriptive solution, 94
protobuf-c, 74, 209
protocol buffers, 209
Protocols API, 65
public education, 206
pullbacks, 100
Purpose and character of the use,

129

INDEX 231

PV, 65
Pythagoras, 123

QA, 41
QED, 80
Qt, 181
Quality Assurance, 41
quality assurance, 205
Quantum Electro Dynamics, 180
quantum electrodynamics, 80
quick fix model, 88
Quick Fix Model by Basili, 88

Ralph Johnson, 178
ranges, 100
Re Use Library Abstraction, 144
Re-Use Library Abstraction, 143,

211
README, 190
Real Time Executive for Missile Sys-

tems, 159
Real-Time Operating System, 159
reasonable grounds to use their

work, 128
receptacle, 214
Red Hat Package Manager, 190
Red Hat/IBM, 115
RedHat Package Manager, 148
Reidentify, 180
Rejection, 127
relay-ladder logic, 5
remote procedure calls, 40
rent-seeking, 27
Repair, 95
Repositories, 65
research, 205
resume, 92
Reuse Framework, 13
REUSE INHIBITORS, 46
reuse models, 88

Reuse Readiness Levels, 68
Reuse Tools, 151
revolution, 71
reward certainty determination,

102
Richard Feynman, 180
Richard Helm, 178
Richard Stallman, 29, 171
RISC, 28
Roland Pesch, 171
Rosetta Code, 78
Rota’s, 106
Royal Military College, 115
RPM, 148, 191
RRL, 68
RTEMS, 45, 159
RTOS, 159
RULA, 99, 107, 143, 144, 162, 169,

187, 191, 211
rules, 108

SAAS, 91
Samsung, 210
Schaum Publishing House, 9
Schaum’s Mathematical Handbook,

9
Science, Technology, Engineering,

and Math, 3
Scion, 182
search engine, 10
Second consideration of fair use,

129
second hand, 16
sed, 168
sed (stream editor), 168
See Others in Your code, 108
Services Viewpoint, 65
Session, 38
set-apart program, 96
SHA-256, 138

232 INDEX

Sheldon Cooper, 206
shoddy program design, 48
side-fact, 79
SIGHUP, 190
Silicon Graphics, 181
simile, 204
Single Point of Failure, 182
Single Point of Truth, 182
Sir Isaac Newton, 5
sizeof(), 173
Skills, 92
Socrates, 123
Soft Bank, 28
Software as a Service, 91
Software As Essentials, 107
software goliath, 114
Software Reuse: SWOT, 20
software stratification, 122
Software Technology for Adaptable,

Reliable Systems, 77
Some data and some functions, 102
Some functions and no data, 102
somefors, 100
somehows, 100
someones, 100
somethings, 100
someways, 100
somewheres, 100
Source Commander, 189
SourceForge, 147
SourceGraph, 148
sources, 100
Sowa, 107
Sowa’s, 107
SPOF, 182
SPOT, 182
StackExchange, 169
Stage, 118
Stan Shebs, 171

Standard Viewpoint, 65
Standardizing, 181
Standards, 65
STARS, 77, 122
status quo, 71
StdV, 65
STEM, 3, 6
Steve Jobs, 24
stratification, 122
Stratifications, 122
sublibrary, 42
subversion, 161
sudo updatedb, 159
Sun Microsystems, 181
sunk cost fallacy, 102
SV, 65
SvcV, 65
svn, 161
SWOT, 20
syntax, 108
System Definition, 34
Systems Viewpoint, 65

Taelon, 149
TAO, 24, 182
taxpayers, 206
TBP, 211
TCP/IP, 38
TCP/UDP, 38
TED Talks, 108
The 4 Fair Use Considerations, 128
The ACE ORB, 24
The ACE Orb, 182
The Art of Unix Programming, 182
The Axe Wedge, 70
The Axe Wedge analogy, 69
The Cathedral and the Bazaar, 116
The Commonality, 148
The Law of Finds, 205

INDEX 233

The Linux Programming Interface,
117, 187

The ReUse Software Movement, 77
The Ultimate Goal, 106
The US Naval Postgraduate School,

33
Third consideration of fair use, 130
Three C’s (Concept/Context/Content),

89
to be promulgated, 211
Tom Calloway, 112
Tom Tromey, 160
Tools, 65
Tools Identification, 151
Top down, 179
topos, 26
topos theories, 26
touch, 192
Training courses, 70
transformations, 100
Transport, 38
tribalism, 82
Twelvefold way of combinatorics,

106
Twentyfold path, 106

Ubuntu, 191
UML, 79
unipolar success, 114
Universal Markup Language, 79
University computers, 147
UNIX, 91
Unix, 181
Unix Philosophy, 162
Unix philosophy, 29
unlikely candidates for reuse, 48
Untrapped Value: The Problem, 21
US Air Force, 77
US Department of Defence, 77
US DoD, 33

verbs, 100
Victor R. Basili, 88
Vistaster, 24
visual programming, 72
VisualC++, 159
voxel distances, 173

waterfall model, 42
which, 200
Will Tracz, 89
Windows, 23, 159
Windows Vista, 23
Word Histogram, 84
WordsSmashedTogether, 180
workaround, 97
worse is better, 11

Yum, 191
yum install, 200

zbMath, 143
zbMath.org, 104
ziff, 137

Bibliography

[1] ISO/IEC 24707. Information technology- common logic (cl): A framework
for a family of logic-based languages, 2007.

[2] John W Bailey and Victor R Basili. The software-cycle models for re-
engineering and reuse. In Proceedings of the conference on TRI-Ada’91:
today’s accomplishments; tomorrow’s expectations, pages 267–281, 1991.

[3] Victor R Basili. Maintenance= reuse-oriented software development. In
Conference on Software Maintenance, number UMIACS-TR-89-48, 1989.

[4] Victor R Basili and H Dieter Rombach. Towards a comprehensive frame-
work for reuse: A reuse-enabling software evolution environment. In
NASA, Goddard Space Flight Center, Proceedings of the Thirteenth Annual
Software Engineering Workshop, number UMIACS-TR-88-92, 1988.

[5] Richard P Feynman, Michael A Gottlieb, and Ralph Leighton. Feynman’s
tips on physics: reflections, advice, insights, practice. Basic Books, 2013.

[6] Bill Gallmeister. POSIX. 4 Programmers Guide: Programming for the real
world. " O’Reilly Media, Inc.", 1995.

[7] Pete Goodliffe. Becoming a Better Programmer: A Handbook for People Who
Care About Code. " O’Reilly Media, Inc.", 2014.

[8] Brian J Gough and Richard Stallman. An Introduction to GCC. Citeseer,
2004.

[9] ISO/IEC. Programming Languages - C - Extensions to support embedded
processors. Technical Report 18037, International Standards Organiza-
tion/ International Electronics Communication, July 2004.

[10] Michael Kerrisk. The Linux programming interface: a Linux and UNIX sys-
tem programming handbook. No Starch Press, 2010.

235

236 BIBLIOGRAPHY

[11] J Marshall, Stephen Berrick, Angelo Bertolli, Corey Bettenhausen, Howard
Burrows, Saurabh Channan, Victor Delnore, Robert R Downs, Yonsook
Enloe, Stefan Falke, et al. Reuse readiness levels (rrls). sciencedatasystems.
org, 2010.

[12] Peter Seebach. Beginning portable shell scripting. New York, 2008.

[13] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb.
Free Software Foundation, 675, 1988.

[14] Richard M Stallman et al. Using the gnu compiler collection. Free Software
Foundation, 4(02), 2003.

[15] Will Tracz. Where does reuse start? ACM SIGSOFT Software Engineering
Notes, 15(2):42–46, 1990.

www.editorium.com
editor@editorium.com

	List of Figures
	List of Tables
	Macroscopic View: The Manifesto
	Introduction
	Software Reuse: Conceptually
	Untrapped Value: The Problem
	Knowledge Reuse by Dialog: 1993 to 2022
	The ReUse Software Movement
	A Reuse Strategy beyond Fads
	Linux: The Pinnacle of Software Reuse
	Organizational Considerations
	Legal Aspects of Code
	Re-Use Library Abstraction (RULA)

	Microscopic View: The Toolbox
	Pirate Treasure Map
	Reuse Tools
	General Methods of Improving Code
	Logger Reuse Code Exemplar
	Reuse Legal Actions
	Re-Use Library Abstraction (RULA)
	Conclusion - What's at stake?
	Acknowledgments
	All-Encompassing Index
	Index
	Bibliography

