
07/28 회의

TDD

public static ArrayList<Integer> answers = new ArrayList<>();

public static ArrayList<Integer> numbers = new ArrayList<>();

메모리구조를 알아야하는 이유!!!

-> 단위테스트는 성공. 통합테스트는 실패. 이유는???

static 은 클래스 로드 시점에 딱 한번만 초기화 되다는 사실. 결국 해당 클래스가 여
러번 만들어져도 answers, numbers 는 초기화 되지 않는다.

TEST Code 함께 리팩토링

객체지향 사실과 오해

Interface 로 얻을 수 있는 이점

인터페이스가 아닌 직접 클래스를 생성하면 확장,변경용이성 이 매우 떨어진다.
예를 들어 UserRepository 가 있고 우리가 JPA 를 통해 구현 되어 있는걸 Querydsl 로 옮기는
작업을 한다고 했을때, 다른 도메인의 계층해서 주입받아 사용하는 로직들을 모두 변경해야한다.
-> SUWIKI 프로젝트 예시를 통해 이해.

인터페이스를 통해 외부에 공개 되는 내용과 실제 구현되는 내부로직을 철저히 구분하여, 구현체
가 바뀌어도 가져다 사용하는 객체는 바꾸지 않게끔 설계 가능하다.

구현체가 2개가 존재한다면 인터페이스는 어떤 구현체를 선택할까?
-> 직접 실습

결론 : 사용하고자 하는 구현체 1개만 빈등록을 시켜주자.

