Spectre Finance: A technical implementation

DRAFT

Mrisho Lukamba
Protocol engineer & Tech Lead, Spectre Finance
MrishoLukamba@proton.me

April 15, 2024

Abstract

Blockchain technology capacitated Decentralized Finance (DeFi).
This new financial paradigm democratized how financial players (i.e Traders,
Exchanges, etc) access and interact with financial tools. We have seen
Defi platforms move around $1.4T in volumes. Traders benefit from hav-
ing options in interact with these platforms such as , Trading, Liquidity
provision, Arbitrage, MEV, etc. In Defi traders with low and high amount
of capital both benefit but the chances are more aligned with high capital
traders. Spectre Finance is building a decentralized proprietary trad-
ing platform, connecting investors who will provide large trading capital
to skilled and onchain proven traders with allocated capital to trade in
Dexs and grow the capital. Traders will be tracked on their performance
and have ranking, Spectre Finance will employ a proper risk management
framework enforcing traders to have rational trades and control of the cap-
ital. We are helping moving forward how Defi can be used and accessed
by empowering financial players in a more secure and trustless ways.

1 Introduction

To make Spectre Finance a robust and high throughput with lower latency plat-
form for traders interacting with numerous Dexs with the allocated capital, It
must focus on implementating a solution which employ cryptographically com-
mitment schemes ensuring verification and proving of trade executions across
Dexs and capital tracking, It must be interropable with other consensus systems
and it must be secured under shared economic security.

We will be deploying the protocol in Polkadot, but we will be evaluating the asset
inflows, Dex interactions and bridging performance. Our alternative ecosystem
will be EigenLayer.

The interactions in Spectre Finance are defined with the following components.
These components work in a modular architecture ensuring the failure of one

component does not affect the other.

1.1 Investor registration

Investors will first have to bridge native assets such as DOT, USDT, USDC as
Spectre Finance will be first launched on Polkadot ecosystem. Bridging involves
depositing assets to Spectre Derived Account on the Relay Chain and miniting
equivalence of the assets per user account in Spectre parachain. The depositing
of asset to SDA is what increases Total Value Locked in a protocol.

After depositing, the investor will have to allocate the balance to the related
asset pool and the percentage ownership will be calculated.

1.2 Trader registration

Same as investors, traders will have to bridge asset and bond any amount above
threshold to be registered. But traders have two registrations to make, one in
the parachain and the other in the smart contract.

In the contract, traders will generate a pair of private and public key which will
serve as onchain trading accounts linked to the trader. The onchain trading
account private is opaque to traders as this account will be the one of which the
funds will be deposited into for trading. The onchain trading private key will
be used to sign trade transactions of which will be submitted to the target Dex
network.

After generating the onchain tading keypairs, trader will have to register the
public key to the spectre parachain for linking between trader sovereign account
to onchain trading account

1.3 Oracles & light clients

The protocol for it to interact with non shared consensus Dexs/network it must
have access to consensus commitments and state commitments proofs to prove
the state transitions and data commited is final. The oracle or onchain light
clients will be synced with the target Dex’s network to provide block headers,
consensus proofs and state proofs to Spectre parachain.

These data will be used to prove that the trade was executed in the Dex, the
balance used and the returns made. This will be used to update the capital
pool effeciently in a trustless manner.

1.4 Trade transaction inclusion, execution proof verifica-
tion & balance updates

The protocol needs to process 2 trades (buy & sell). These trades are signed
by onchain trading private key and submitted to the target Dex’s network to be

executed. The buy trade involves deduction of allocated capital asset, resulting
unrealized loss in the tota pool capital. As there are 2 distinctive accounts, total
capital pool account and onchain trading account, the capital pool account
tracks all allocated and non allocated capital, and onchain trading account
tracks spent and unspent allocated trading capital.

After buy trade execution, the consensus state proof at N block, transaction id
and state (balance) proofs must be verified and the capital pool balance shall
be updated accordingly after reading state proofs. The capital pool will reflect
a lesser amount than initially as the funds deducted was used in buy trade.

Then after sell trade execution, all proofs neccessary will be verified and the
capital pool will be updated reflecting unrealized profits, as it measures an
increased pool amount. The actual addition of funds will be present in onchain
trading account but the pool must have a representation in order to track and
do the accounting.

All trades and returns shall be recorded per trader and per asset capital pool,
as this data is essential for withdraw process.

1.5 Shared Security

For Spectre protocol to operate under high trust assumptions on verifying trade
execution commitments and for the oracle to be able to provide high trusted
data, they all should live under shared economic security. As this increases the
cost of attack on the protocols.

1.6 Withdraw

The withdraw functionality needs to take into account the following parame-
ters, Investor capital allocation blocknumber, number of transactions
executed post allocation per investor, percentage pool ownership, un-
realized balance, blocknumber at which the withdraw is scheduled,
pending unconfirmed sell trade transactions, pool fees and traders re-
turns allocation

For withdraw to be effective and to not pose any security concerns, it will be a
scheduled event upon which all capital allocated per investor will be frozen to
not be included in the allocation fo trading. And the current allocated funds
in which the withdrawing investor is part, will be waiting until all sell trades
associated with it are verified and the balance is reflected.

Withdrawal process needs to be reviewed upon implementation as it is critical
to be subjected in attacks

2 Protocol implementation

We will dive in details how each component interact with other components and
outside world.

2.1 Investor onchain registration

capi’tal to the asset pool

(Relat/ Chain] [Spectre Finance Parachain J
] T
| : ’.
]
| : :
1 SP| =1 2 ! 3 !
Tr‘ao(er Bl‘?o{ging do : Depos?t to tr adef account E Regastep LL/ o(eposﬁ;;ng :
| | :
| | |

Figure 1: investor registration interactions

e Asset Pool capital contribution

Py = (Paa1+Xi)BT (1)
BT = BlockTime (2)
P = AssetPoolState (3)

X = Investor AssetCapitalContribution (4)

e All contributions will also be representated as percantage ownership of the
pool

2.2 Trader onchain registration

[Spectre Finance Parachain] Spectre Contract

sF
AQ

2 3 5. .

Deposit to trader account

Bond and register trader

Registering the on chain trading | Trader generating on-chain
with X asset Id

Pubhc ke,y$ to the chain hnk‘mg to, (Secretl(et/, Pub[icl(e_y)
trader sovereign Public key

Troder briolging

|
1
S
| Register trader Account
|
1
i

e N

Figure 2: trader registration interactions

e oncontract
register(Ar) = (sr25519(Sk), ed25519(S), EDCSA(Sy)) (1)
e onparachain

bridging deposit & bond = lock(X:) (2)
complete registration T' = lock(X;) + (register(A:)(Py) +7) (3)
where m = proof of onchain trading account ownership (4)
2.3 Trade inclusion and execution proof verification

(Spectre Finance Parachain] Spectre Contract [Dex/ Target Network]
1

1
1
Oracle/! L‘.ﬁh‘t Client E
1

Trade txm signing & submission
Trade execution verification il 45’ e

prooPs verification

1
|
|
| Execution
. - '
! | update chain proofs & header ! I bttt B g \
P} pdete don grefs breden, 3 ST ook varention | oot el £ st
' ' ' ' ' ' !
B e B : :
] [, Tl ki St ittt ittt
:___; i uEi T:t:' as::fs : “ : tx id proofs verification] prooft retrieval & submission ‘:
:<——§e—f—: ! 1 '
1 1 _a
: TS e |
!) state proofs verification proof retrieval & submission
|
|
|
1
|

Figure 3: consensus, tx, state proofs verification

e execution & verification
(Sk, T) = ar => signing transaction (1)
Ezecute(ar) = (Cp, Sp, Tp) (2)
oracle/lightClient = (C,., S,,T}) (3)
verify (Cp, Cyr, Sp, St, T, T)) = bool (4)
e updating pools for buy trades

readProofs(St, S,) = balance (5)
pool = Nassetbalance (6)
update Pool(pool, balance) = UnrealiazedLossPool(pool — balance) (7)

e updating pools for sell trades

readProofs(St,Sy) = balance (8)
pool = assetbalance (9)

updatePool(pool, balance) = UnrealiazedProfitPool(pool + balance)
(10)

2.4

(Spectre Finance Po.raqho&nJ (seec‘tre con‘tmc‘t] (substrate Dex]

Asset flow onchain

2

Br:o(s,ins, asset
1

bl

asset transfered in
trade execution

transfer to onchain
troxding account

Tronsfer asset to onchain

Upo(a‘ting asset balonce eth trading account

sol troding account

trading, signing etiysol tx

<_ ____________________________

< _________________________

Eth contract/AVS
Solana spectre
contract

(Forejgn Dex Eth, Sol)]

Figure 4: assets flow

bridging involves depositing balance to Spectre Sovereign Derived Ac-
count (SDA) on RelayChain and minting equivalence of token in spectre
parachain bridge(Asset) = SDA(Asset)

Tranfering to onchain trading account involves taking balance from SDA

and depositing to onchain trading account SD A(asset) = OnChainTradingAccount(asset+)

and updating the bridged asset to reflect the remaining asset in SDA

The balance in onchain trading account can be used to trade assets in
Dexs

After trading the balance in onchain trading account will change and we
are only tracking the main token and not the swapped one, so in updating
pool balance, the actual tokens will be in onchain trading account while
in the assetpools will be a reflection of them in totality.

In interacting with foreign Dexs (i.e Uniswap), its either we bridge the
tokens inside onchain trading account or we deploy a contract in Ethereum,
Solana, etc and allow pools to exist on the contracts and the funds will be
moving from those contracts to onchain trading account specific for that
network. But for all that we need to maintain the reflection of those assets
in spectre parachain

2.5 Withdraw
2.6 Asset Pools rebalancing

2.7 Bridges for moving assets from onchain trading ac-
counts

3 Exploring zk proofs

Conclusion

Spectre Finance aims to have high throughput transaction verification process-
ing, allowing traders to interact with Dexs and make N numbers of trades in
asynchronous with trade execution verification in Spectre chain.

With this architecture we can achieve good user experience, low latency trades as
users interact with Dex directly offchain securely and later verify their trades.
We will be exploring which ecosystem is best of on chain asset liquidity and
also exploring how we can interact with non Polkadot Dexs such as Uniswap
in secured manner. As interaction with other foreign Dexs involve movement
of asset to onchain trading account of that Dex’s network account type (eg,
EDCSA, ED25519).

We will also be exploring how we can use Zk proofs to verify trader sovereign
account with trader onchain trading account keypairs, And also verification of
trade execution We aim Spectre Finance to be a canonical multichain secured
onchain proprietary trading protocol.

