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Abstract. Federated Learning (FL) has recently attracted high atten-
tion since it allows clients to collaboratively train a model while the
training data remains local. However, due to the inherent heterogeneity
of local data distributions, the trained model usually fails to perform
well on each client. Clustered FL has emerged to tackle this issue by
clustering clients with similar data distributions. However, these model-
dependent clustering methods tend to perform poorly and be costly. In
this work, we propose a distribution similarity-based clustered federated
learning framework FedDSMIC, which clusters clients by detecting the
client-level underlying data distribution based on the model’s memory of
training data. Furthermore, we extend the assumption about data distri-
bution to a more realistic cluster structure. The center models are learned
as good initial points to obtain common data properties in the cluster.
Each client in a cluster gets a more personalized model by performing
one step of gradient descent from the initial point. The empirical evalua-
tion on real-world datasets shows that FedDSMIC outperforms popular
state-of-the-art federated learning algorithms while keeping the lowest
communication overhead.

Keywords: Clustered federated learning · Kullback-Leibler
divergence · Model-Agnostic Meta-Learning · Non-IID data

1 Introduction

Federated learning (FL) is a promising distributed machine learning framework
that can collaboratively train a joint model while keeping the data on the client
side [19]. Classical FL trains a unique global model for all clients [20,22,27,33,
34]. However, such global collaboration always fails to achieve good performance
for individual clients since the data statistical heterogeneity, which is known as
non-i.i.d. data [19,27,38]. In practice, clients usually have varying preferences.
Consider the scenario for mobile device keyboards, certain emojis are used by one
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demographic but not others. Therefore, it is necessary to provide personalized
models for each client in FL.

A variety of personalized approaches have been proposed to tackle data
heterogeneity, mainly from two perspectives: global model personalization and
personalized models learning. The former first trains a global model and then
fine-tune the global model locally [29,41]. However, the local distribution may
be fairly different from the global distribution in highly personalized scenarios.
Consequently, the relevant global model does not exist, and these approaches
downgrade to each client learning only locally [13,32]. While the latter directly
learns multiple individual personalized models. MOCHA [39] frames FL per-
sonalization as an MTL problem by exploiting penalization terms to capture
relationships among clients. Unfortunately, it is usually tricky to simultaneously
optimize multiple non-convex objectives determined by large neural networks.

To address the lack of the above studies, clustered FL groups clients into clus-
ters and trains a model for each cluster, providing a trade-off between a purely
global and personalized model. Several methods [3,38,42] clusters clients at the
server-side based on the cosine similarity or l2 distance of local model weights.
Unfortunately, due to the high dimensionality and permutation invariance of
neural network (NN) parameters, these methods often fail to cluster clients cor-
rectly. Other approaches [14,29] performs the cluster identities estimation at the
client sides. In particular, k global models are randomly initialized, representing
k clusters, and each client selects the model with the lowest loss on its local
data. Clients that select the same model are assigned to a cluster. The methods
improve the clustering performance, however, increasing the communication and
computation burden for receiving and running multiple global models.

i.i.d.

i.i.d.

i.i.d.

(a) Traditional clustered FL

…

…

…

(b) Ours

Fig. 1. Comparison of traditional clustered FL and ours.

Moreover, the existing clustered FL methods are limited by the ideal assump-
tion that each client belongs to a cluster with a specific data distribution. How-
ever, data heterogeneity is usually severe in the cross-device scenario with mas-
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sive clients. Clients in a group can share one learning task, e.g., animals or vehi-
cles classification [4], but the data distributions are still different (e.g., covariate
shift, concept drift, and so forth [19]). We regard it as a more realistic cluster
structure that clients in the same cluster are more loosely separated. Figure 1
depicts a comparison between traditional clustered FL and ours. Under the com-
plicated data distribution, the client’s data distribution information is not fully
exploited using traditional clustered FL, which affects the clustering accuracy
more severely.

In this paper, we present a novel clustered multi-task federated learning
framework named FedDSMIC. Under the assumption of a realistic cluster struc-
ture, FedDSMIC reformulates the problem as an alternating minimization (AM)
approach in the distributed setting, which optimizes the cluster assignment and
minimizes the loss functions of the models alternatively. Specifically, FedDSMIC
clusters clients based on Kullback-Leibler divergence between models’ probabil-
ity output distribution with respect to indicator samples on the server, which
accurately detects the similarity of client-level underlying data distributions.
Inspired by Model-Agnostic Meta-Learning (MAML), the goal of FedDSMIC is
to learn the cluster model as a good initial point shared between all clients in the
cluster, which performs well after each client updates it with respect to its loss
function. The current or new clients in the cluster can quickly get their personal-
ized models by performing one or a few steps of gradient descent from the initial
point. This approach keeps all the benefits of the clustered FL architecture and
leads to more personalized models for each client.

We summarise our main contributions as:

– We propose a dynamic clustered federated learning framework, which clus-
ters clients by detecting the client-level underlying distribution based on the
model’s parameter memory for the training data, improving the clustering
accuracy in high data heterogeneity.

– We illustrate the limitation of sharing one model in the cluster and introduce
a two-step learning method, which builds an initial center model to capture
the intra-cluster common information and learns personalized models for each
client to acquire unique features, improving the personalized model perfor-
mance.

– Extensive experiments conducted on five real-world datasets demonstrate
FedDSMIC outperforms other state-of-the-art methods with fewer commu-
nication rounds and computational consumption.

2 Related Work

Here, we mainly review the existing works from two aspects: classic federated
learning and personalized federated learning.

2.1 Classic Federated Learning

The classic federated learning [33,40] trains a single global model to minimize
an empirical risk function over the union of the data across all clients. However,
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various studies have shown that non-i.i.d. decentralized data leads to statisti-
cal challenges such as model weights divergence [44], data distribution biases
[16], and a drifted global model that is slow to converge even unguaranteed con-
vergence [27]. Li et al. [27] proposed FedProx, which adds a proximal term to
the local objective function to reduce the gap between local and global models.
SCAFFOLD [20] introduces control variates to correct the client drift in its local
updates. FedGen [46] sets a generator on the server to ensemble client informa-
tion and regulate local training using the learned knowledge. While the above
work focus on building a robust global model across non-i.i.d. data, they do not
directly address local model performance relevant to individual clients.

2.2 Personalized Federated Learning

Global Model Personalization. A natural approach for personalized FL is
learning a global model and fine-tuning parameters on each client’s local dataset
[1,9,29,30,41]. The global model serves as a starting point for a few-shot adapta-
tion for each client. Therefore, a class of algorithms referred to as meta-learning
has been developed to train a more suitable global model for local customization
[6,11,18,21]. Interpolation of global and local model [15,24,29] build personal-
ized models for clients by combining the global model and the local model. A
good global model is critical, as the personalization performance directly depends
on the generalization performance of the global model. Unfortunately, it is dif-
ficult to obtain a good global model in high data heterogeneity.

Learning Personalized Models. Multi-Task federated learning methods treat
clients as different tasks and train personalized models for each client. Simth et
al. [39] proposed MOCHA that adds a penalization term to capture relationships
between clients. However, it only learns simple models because of the complex
penalization term. Other MTL-based approaches [17,26] are able to train more
general models at the cost of considering simpler penalization terms. Therefore,
it is tricky to optimize the complex objective function, and all of them lack
statistical assumptions about local data distributions.

Clustered FL assumes that the clients can be partitioned into k clusters,
representing k different distributions. CFL [38] recursively separate clients with
incongruent optimization directions by the cosine similarity of the parameter
updates. FedSEM [42] uses a l2 distance-based stochastic expectation maximiza-
tion (EM) algorithm, which ignores l2 distance often suffer in high-dimension,
low-sample-size (HDLSS) situation [37]. Briggs et al. [3] propose an agglomer-
ative hierarchical clustering method named FL+HC, which relies on iterative
calculating the pairwise distance between all clusters. The above parameter-
based similarity measures always fail to cluster clients correctly because of the
permutation invariance of NN parameters, i.e., for any given NN, many vari-
ants of it only differ in the ordering of parameters. To overcome the drawback,
IFCA [14,29] divides the clients into clusters with a center model that can mini-
mize their loss values while requiring each client to train all k global models per
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round. Therefore, the computational and communication efficiency will become
bottlenecks when IFCA is applied to a large-scale FL system.

Our clustering method is similar to IFCA but allows clustering on the server
for less communication. We focus on detecting the client’s underlying data distri-
bution without explicitly using model parameters. Finally, unlike previous work,
we learn a personalization model for each client based on the center model to
cope with more complicated heterogeneous data.

3 Preliminaries

Consider M clients, each client i has a private labeled dataset Z = {z
(n)
i =

(x(n)
i , y

(n)
i )ni

n=1}, where ni is the training dataset size of client i. It is generated
according to the local distribution Di = {Xi ,Yi}, where Xi and Yi denote the
input features and corresponding labels, respectively. Each private dataset Zi

will be used to train a local supervised learning model wi : Xi → Yi. We define
fi : Rd → R as the expected loss over the data distribution with respect to client
i, i.e.,

fi(w) := E(x,y)∼Di
[li(wi;x, y)] (1)

where wi ∈ R
d is the parameter space, li(wi;x, y) is the error of model wi in

predicting the true label y ∈ Yi given the input x ∈ Xi. The goal of vanilla FL
(FedAvg) is to solve the objective function

min
w∈R

d
F (w) :=

M∑

i=1

ni

n
fi(w). (2)

where n =
∑M

i=1 ni is the total training dataset size. FedAvg optimizes (2) by
the local updates of clients and the aggregation of the server alternately. At
each communication round t, the server broadcasts the latest global model wt

to all clients and selects a random subset Mt of M clients to participate in this
round. Client i optimizes the loss function based on the local data by its local
solver (SGD) with several iterations or epochs and gets the updated local model
wt+1

i . Then, the server takes a weighted average of all local resulting model
parameters {wt+1

1 ,wt+1
2 , ...,wt+1

Mt
} into a global one wt+1 and finish the current

round. However, the different distributions of the local data Di lead to different
local model parameters, failing to converge to a stable optimal global solution
w.

The existing clustered FL framework usually assumes that clients can be
clustered into several groups to address the data heterogeneity. Besides, clients
in the cluster share the same data distribution and optimization goal.

4 Framework

4.1 Problem Formulation

We assume a non-i.i.d. data distribution with a clustering structure: the data
distribution of clients in a cluster is similar but still different, which we dis-
cussed in the Introduction. Under this assumption, we aim first to build several



FedDSMIC 757

clusters and learn the initial center models to capture the intra-cluster common
information, then learn personalized models for each client to discover knowl-
edge different from others in the cluster. Specifically, we formulate a clustered
multi-task federated learning problem as follows:

min
{w i},{w̃ c},{uc

i}

C∑

c=1

Lc(w̃c) −
C∑

c=1

M∑

i=1

uc
iS(wi, w̃c) (3)

Lc(w̃c) =
Mc∑

i=1

ni∑

n=1

li(wi;x
(n)
i , y

(n)
i ), i ∈ Gc (4)

where M is the number of total clients, Mc is the number of clients in cluster
Gc, C is the number of clusters. w̃c is the parameters of the center model for
cluster Gc. In addition, S(wi, w̃c) denotes the similarity of local model wi and
the center model w̃c. {uc

i} denotes the cluster assignment, with uc
i = 1 if the

clients Ci belongs to cluster Gc and uc
i = 0 otherwise.

In the above formulation, the first term (4) is the sum of loss functions of all
center models, and the loss of each center model is given by the sum of empirical
errors across all clients in this cluster. The second term is the sum of similar-
ities between local models and center models, which can be seen as K-means
clustering to maximize the intra-cluster similarity. Here we have three variables
{wi}, {w̃c}, {uc

i} to be solved under federated settings. Alternating minimization
[2] is the general approach to solving such a non-convex optimization problem.
Specifically, we minimize the loss functions based on wi and w̃c, and estimate
the cluster assignment uc

i by alternatively fixing one and optimizing another
until convergence.

We elaborate our alternating optimization with a formal shown in Algorithm
1. As shown in Fig. 2, FedDSMIC is a dynamic clustered federated learning
with four main processes. FedDSMIC starts with C randomly initialized center
models and M local models. At each communication round t, each participat-
ing client i updates locally and sends the local model wt+1

i to the server. The
server computes the similarity of clients based on Kullback-Leibler divergence
between the predictions of local models {wt+1

1 ,wt+1
2 , ...,wt+1

Mt
} and center mod-

els {w̃t
1, ..., w̃

t
c} on “indicator samples”. Then the server updates uc

i and clusters
clients to maximize the intra-cluster similarity of the models. Finally, each center
model w̃t

c is updated by the weighted average of local models in this cluster to
w̃t+1

c and sent to the intra-cluster clients. After training T rounds, the personal-
ized models of clients are obtained by performing one or a few gradient descents
from their corresponding center model. FedDSMIC also allows new clients to get
their personalized models easily. In Sect. 4.2 and Sect. 4.3, we present the opti-
mization of cluster structure and the optimization of the models, respectively.
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Fig. 2. An overview of FedDSMIC

4.2 Cluster Structure Optimization

Based on the guideline of FedDSMIC, we aim to first cluster the clients with
similar data distribution into one group without access to the local data. When
wi and w̃c is fixed, problem (3) w.r.t uc

i can be seen as K-means clustering on the
local’s models. The crucial challenge is how to quantify the similarity of models
for accurately clustering clients with similar underlying data distributions.

Similarity of Models. To tackle the challenge, we leverage the memory
(learned parameters) of the model and get the similarity of models from the
underlying data distribution on which it is trained. Knowledge distillation per-
forms knowledge transfer by reducing the distance between the predicted output
probability distribution of the student model and the teacher model on the same
dataset [43]. Inspired by this, we set up some “indicator samples” on the server
and then feed the samples into the model to get predictions to reflect the training
data distribution of the model. The assumption for the distribution of “indica-
tor samples” is independent and identically distributed. In the experiment, the
samples are randomly sampled from the raw dataset (e.g., 10 samples per class)
before partitioning the client data. In practice, these samples can be sampled
from the relevant public datasets or a small sharing of datasets from clients
under the premise of privacy protection. In addition, we will demonstrate the
effect of indicator sample size on describing clients in Sect. 5.
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Algorithm 1. FedDSMIC
1: Input: numbers of clusters C, initialize {w̃c}C

c=1, {wi}M
i=1, number of communica-

tion rounds T
2: Output: {wi}M

i=1, {w̃c}C
c=1

3: for t = 0, ..., T do
4: Mt ← random subset of M clients
5: Clients:
6: for each client i ∈ Mt in parallel do
7: wt+1

i ← ClientUpdate(i,wt
i)

8: end for
9: Server:

10: for each cluster c = 1, ..., C do
11: Calculate Dis(wt+1

i , w̃t
c) as in (6)

12: Update uc
i using Dis(wt+1

i , w̃t
c) as in (7)

13: end for
14: Group devices into Gc using uc

i

15: Update w̃t+1
c by w̃t+1

c =
∑Mc

i=1
ni
nc

wt+1
i , i ∈ Gc

16: for each cluster c = 1, ..., C do
17: for i ∈ cluster Gc do
18: Send w̃t+1

c to client i
19: end for
20: end for
21: end for

Algorithm 2. ClientUpdate
1: Input: the corresponding cluster center model from server w̃t

c → wt,0
i

2: Output: wt+1
i

3: B ← split Di into batches of size B
4: for k: 1 to τ do
5: Set ŵt+1,k+1

i = wt+1,k
i − η ˜∇li

(

wt+1,k
i , Dk

i

)

6: Set wt+1,k+1
i = wt+1,k

i − ε˜∇li
(

ŵt+1,k+1
i , D

′k
i

)

7: end for
8: wt+1

i = wt+1,τ
i

Let pk be the probability belonging to each class k for an input sample x
given by a neural network w, which is computed as:

pk
w (x) =

exp
(
zk
1

)
∑K

k=1 exp
(
zk
1

) (5)

where the logit zk is the output of the pre-softmax layer of model w on the
data x. The final layer of a recognition model is a fully connected layer with
a softmax non-linearity. Each neuron in this layer corresponds to a class k,
and its activation value is treated as the probability that the model predicts
for that class. The weights connecting the previous layer to this neuron wk

can be considered the template of the label k learned by the network [35]. The
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predicted label probability is proportional to the alignment of the pre-final layer’s
output with the template wk. In other words, the value of trained weights wk

increases with the marginal density of label-k training data p(y)k. Furthermore,
the trained model has a higher probability of predicting the label-k sample as
class k.

Therefore, we leverage the output probability distribution of the model to
approximate the data distribution on which it was trained. To quantify the
distance of the local model’s and center model’s predictions, we use the Kullback
Leibler (KL) Divergence. The KL distance from pwi

of the local model wi to
pw̃c

of the center model w̃c is computed as:

DKL[σ(f(wi,xo)), σ(f(w̃c,xo))]

=
No∑

no=1

σ(f(wi,xo))log
σ(f(wi,xo))
σ(f(w̃c,xo))

=
No∑

no=1

K∑

k=1

pk
wi

(xo) log
pk

wi
(xo)

pk
w̃c

(xo)

(6)

where the logits f(w,xo) is the output of the pre-softmax layer of model w on
the indicator samples xo. σ is the non-linear activation (usually the softmax
function for multi-class classification) applied to such logits. No is the number
of indicator samples, and K is the number of classes (labels).

Cluster Identity Estimation. The server computes the KL divergence
between local models and center models by (6), and obtain a KL divergence
matrix Dis ∈ R

M×C , with Disi,j = DKL[σ(f(wi,xo)), σ(f(w̃j ,xo))]. As the
smaller Disi,j corresponds to the greater similarity S(wi, w̃j) in (3), the server
updates the cluster assignment vector uc

i by (7).

uc
i =

{
1, if c = argminj Disi,j

0, otherwise
(7)

The efficiency analysis of our clustering method is as follows. Suppose the
time of model inference is t, the total number of parameters of the model is d.

– Computation. In FedDSMIC, the time to get the probability distributions is
(M+C)∗t. In IFCA, the time to estimate the cluster identities is M∗C∗t (each
client trains C global models locally). The time complexity of FedDSMIC
constantly grows with the number of clients M , while IFCA grows linearly.
Therefore, our method has lower computational complexity, especially when
M is large.

– Communication. In FedDSMIC, the server sends the cluster model to the
corresponding clients in this cluster and receives M local models, so the traffic
per round is (M +M)∗d. In IFCA, the server sends C cluster models to each
client, so the traffic per round is (C∗M+M)∗d, which is (1+C)/2 times more
than ours. As the modern neural network model grows, the communication
consumption of IFCA will increase.
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4.3 Model Weights Optimization

Now {uc
i} is fixed, the optimization of local models {wi} and center models

{w̃c} are as follows. The goal of FedDSMIC is to find a good initial cluster center
model for representing the common information in this cluster. The cluster model
performs well on all the clients in the cluster after each client updates it with
respect to local data. We use one step of gradient descent from the initial model
for computational efficiency. Therefore, the first term (4) in (3) can be rewritten
as

Lc (w) =
Mc∑

i=1

ni∑

n=1

li

(
w − α∇li (w) ;x(n)

i , y
(n)
i

)
(8)

for all c ∈ C. The optimal solution of w of Lc (w) is the learned cluster center
model w̃c. Equation (8) maintains the advantages of clustered FL, and further
captures the difference between the clients in the cluster. To solve (8), we rede-
fined the local function of client Ci as

gi(w) := li (w − η∇li(w)) (9)

where η is the learning rate. The gradient of gi(wi) is computed as

∇gi(w) =
(
I − η∇2li(w)

) ∇li (w − η∇li(w)) (10)

For computationally efficient, we use the first-order approximations of (10),
i.e., the second-order gradient ∇2li(w) is approximated to zero. Then Eq. (10)
can be rewritten as

∇gi(w) = ∇li (w − η∇li(w)) (11)

Similar to Stochastic Gradient Descent (SGD), we take a batch of data Di

to obtain the unbiased estimate ∇̃li(w) of ∇li(w)

∇̃li (w) :=
1

|Di|
∑

(x,y)∈Di

∇li(w;x, y). (12)

At each communication round t, the server sends the cluster center model
w̃t

c to the corresponding clients in this cluster. Each client Ci in the cluster sets
the initial parameters of the local model wt+1,0

i = w̃t
c. Then client Ci performs

τ steps of stochastic gradient descent locally with respect to gi. The number of
local iterations is τ , then the local updates sequence

{
wt+1,k

i

}τ

k=0
are updated

by
wt+1,k+1

i = wt+1,k
i − ε∇̃gi

(
wt+1,k

i

)
(13)

where ε is the local learning rate, ∇̃gi

(
wt+1,k

i

)
is an estimate of ∇gi

(
wt+1,k

i

)

in (11). The stochastic gradient ∇̃gi

(
wt+1,k

i

)
for all local iterates is computed

using independent batches Dk
i ,D

′k
i as follows

∇̃gi

(
wt+1,k

i

)
= ∇̃li

(
wt+1,k

i − η∇̄li

(
wt+1,k

i ,Dk
i

)
,D

′k
i

)
. (14)
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Actually, the updates in (13) can be implemented in two stages: first, we compute
the first-order update value ŵt+1,k+1

i as in (15), and then compute the final
updated value wt+1,k+1

i as in (16)

ŵt+1,k+1
i = wt+1,k

i − η∇̃li

(
wt+1,k

i ,Dk
i

)
(15)

wt+1,k+1
i = wt+1,k

i − ε∇̃li

(
ŵt+1,k+1

i ,D
′k
i

)
(16)

The steps of client local update are depicted in Algorithm 2. Our solution
procedure follows the previous work [10–12] with convergence guarantees. After
the local models are updated, each cluster model is obtained by the weighted
average of the client models in this cluster as:

w̃t+1
c =

Mc∑

i=1

ni

nc
wt+1

i , i ∈ Gc (17)

where nc is the total data size of cluster Gc. Benefit from the properties of
meta-learning [12], FedDSMIC allows an unseen client, i.e., a client Cnew /∈ [M ]
arriving after the distributed training procedure, to easily learn its personalized
model. Each new client simply first train on its local dataset for a few epochs
and choose the most similar cluster center model through (6) and (7). Then the
client obtains its personalized model by performing one or few steps with respect
to its local data.

5 Experiments

5.1 Datasets and Baselines

Datasets and Models. We evaluate our algorithm on five federated bench-
mark datasets: handwritten digits recognition (MNIST [25]), handwritten char-
acters recognition (EMNIST [7] and FEMNIST [5]), and image classification
(CIFAR10 and CIFAR100 [23]). We train a convex multinomial logistic regres-
sion (MCLR) model on MNIST, a CNN in LEAF [5] on EMNIST and FEM-
NIST, and MobileNet-v2 [36] on CIFAR10 and CIFAR100. Table 1 summarizes
datasets, models, and the number of clients. For all datasets, we randomly split
each local dataset into training (80%) and test (20%) sets.

Table 1. Datasets and models setting

Dataset Clients Total samples Model

MNIST [25] 100 70000 MCLR

EMNIST [7] 100 81415 2-layer CNN + 2-layer FFN

FEMNIST [5] 287 61049 2-layer CNN + 2-layer FFN

CIFAR10 [23] 80 30000 MobileNet-v2 [36]

CIFAR100 [23] 125 30000 MobileNet-v2 [36]
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Baselines

– Local: To make the experiment more comprehensive, we report the perfor-
mance of a naive personalized method named Local that trains only on the
local dataset without collaboration.

– FedAvg [33]: the vanilla federated learning framework.
– FedProx [27]: a popular federated learning optimizer which adds a quadratic

penalty term to the local objective.
– IFCA [14]: a hypothesis-based CFL framework that client selects the model

with minimal empirical loss.
– FedSEM [42]: an l2 distance-based CFL framework that minimizes the expec-

tation of discrepancies between local models and center models stochastically.
– PerFedAvg [11]: a personalized method that finds one initial shared model

for all clients.
– FedDS: clustering-only of our method that the clients in a cluster share the

same model.

5.2 Experimental Setting

Client Heteroeneity. For FEMNIST, the raw data is naturally non-i.i.d dis-
tributed since writers who write the same words have different stroke widths.
For MNIST, EMNIST, CIFAR10 and CIFAR100, similar to prior arts [17,31], we
simulate a data distribution with a clustered structure that satisfies our assump-
tion. First we divide all classes (labels) to C clusters, and then simulate a het-
erogeneous partition into M clients by sampling pc ∼ DirI(α) and allocating a
pc,i proportion of the training instances of cluster c to local client i, in which
a smaller α indicates higher data heterogeneity. The clients in the same cluster
have relatively similar data distributions but are different from each other. We
visualize the effects of adopting different α on the statistical heterogeneity for
the MNIST dataset with M = 20 in Fig. 3.

(a) α = 0.05 (b) α = 0.5 (c) α = 1.0 (d) α = 10.0

Fig. 3. Visualization of a realistic cluster structure simulation among clients on MNIST
dataset, where the x-axis indicates client IDs, the y-axis indicates class labels, and the
size of scattered points indicates the number of training samples for a label available
to that client.
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Implementation. Unless otherwise mentioned, the number of clusters is 3 for
all cluster-based methods, and all clients participate in each round, training
occurred over 300 communication rounds for MNIST and FEMNIST, and 200
rounds for all other datasets. We use the learning rate 0.01, the mini-batch size
B = 32, the local updating steps τ = 20 and SGD with momentum = 0.9 for all
algorithms. In addition, we extract a piece of data from each class of the dataset
as indicator samples before assigning the data to the client.

Evaluation Metrics. Like previous research on personalized federated learning
[11,39], we evaluate the performance of each personalized model on the local test
dataset. In FedAvg and FedProx, we evaluate the global model based on the test
set of all clients. In IFCA and FedSEM, we evaluate the cluster center model
based on the test set of the clients in this cluster. Given the multiple accuracies
of clients with different data sizes, we report the average weighted accuracy
with weights proportional to local dataset sizes. Note that the heterogeneity
will affect the convergence, resulting in more significant fluctuations in model
accuracy during the training process. Therefore, we report the average of the
top-5 test accuracy rates.

5.3 Effectiveness of Proposed Framework

Average Performance of Personalized Models. The comparison results
with respect to the average performance of personalized models are shown in
Table 2 and Fig. 4. We have the following findings from the results:

– Overall, FedDSMIC obtains the best performance across all datasets and has
the most rapid learning curves. Notably, FedDSMIC improves test accuracy
by around 3% to 5% on handwritten digit recognition tasks while improv-
ing accuracy more than by +10% on CIFAR10 and CIFAR100, which are
more complex classification tasks. The results demonstrate the effectiveness
of FedDSMIC, especially when the data distribution is highly complicated.

– As one of the most competitive baselines, IFCA can achieve similar per-
formance to FedDS in specific settings, but the convergence is slower than
FedDS. This result implies that our method fully leverages information about
underlying data distribution, whose effect is more explicit.

– FedSEM performs worst in all settings compared with FedDSMIC and IFCA,
which can be interpreted as failing to cluster clients correctly. FeSEM always
clusters all clients into a group. Therefore, it has been downgraded to one
optimization direction and behaves similarly to FedAvg.
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Table 2. Average test accuracy across clients/bottom test accuracy under different
settings. For MNIST and EMNIST, a smaller α indicates higher heterogeneity. For
FEMNIST, r denotes the ratio between active users and total users. For CIFAR10 and
CIFAR100, τ denotes the local training steps, E denotes the local training epochs.

Dataset Setting Local FedAvg FedProx IFCA FedSEM PerFedAvg FedDS FedDSMIC

MNIST α = 0.05 94.0/65.5 89.7/76.7 89.6/76.7 92.8/75.3 90.6/72.1 92.0/77.4 92.5/75.0 94.2/79.0

α = 0.5 88.9/73.5 90.0/83.4 90.7/83.4 90.7/84.8 90.1/82.2 91.5/85.0 91.5/82.9 92.5/86.0

α = 1.0 87.5/68.3 90.4/84.2 90.3/84.0 90.7/83.1 90.4/84.1 91.8/86.6 90.7/84.2 92.0/85.4

EMNIST α = 0.05 90.1/48.4 86.6/76.5 85.7/81.3 92.3/72.7 84.6/77.0 92.0/84.1 92.7/82.1 93.2/84.4

α = 0.5 78.6/31.2 88.0/80.9 87.6/79.3 89.1/80.7 87.7/81.9 88.9/81.9 89.4/80.2 90.7/83.0

α = 1.0 75.2/55.9 87.6/82.5 87.0/81.7 87.1/80.8 87.5/82.5 88.2/84.6 88.9/83.9 89.0/84.1

FEMNIST r = 0.2 69.2/50.8 81.7/64.2 81.5/63.1 87.7/67.2 79.8/63.8 83.8/72.3 87.2/65.7 87.4/67.1

r = 0.5 69.4/47.7 84.0/53.8 82.5/48.1 87.1/67.5 83.4/59.4 86.8/67.4 87.0/62.3 87.1/68.0

r = 1.0 69.5/48.6 83.9/51.0 82.3/45.1 87.0/67.3 84.1/56.0 86.8/67.9 87.0/62.5 87.4/68.2

CIFAR10 τ = 10 36.8/18.0 70.5/44.3 69.1/47.0 73.1/49.7 64.4/38.9 73.4/53.4 75.3/56.4 75.5/55.6

τ = 20 35.7/17.9 72.3/47.5 70.5/45.3 73.5/44.8 66.2/42.4 72.5/52.6 75.6/52.1 76.2/60.5

CIFAR100 E = 3 13.8/3.2 40.9/10.0 39.1/10.9 42.7/9.6 39.9/7.0 41.1/6.2 42.7/7.8 44.9/11.2

E = 6 13.1/4.5 41.8/10.8 36.6/10.5 43.9/10.5 40.5/8.9 40.9/3.4 43.7/9.2 44.8/11.6
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Fig. 4. Average test accuracy vs. communication rounds on MNIST, EMNIST,
CIFAR10, CIFAR100, α = 0.5 for all datasets, C = 3 for FedDSMIC, FedDS, IFCA
and FeSEM.

Fairness Across Clients. This work discusses heterogeneous data scenarios in
horizontal federated learning, so we mainly focus on performance fairness, i.e.,
accuracy is evenly distributed among clients [45]. Unfair performance could result
from learning excellent models for some clients at the expense of poor models for
other clients [31]. Consequently, we show the average of the five worst accuracies
called bottom accuracy in Table 2 (the minimum accuracy is particularly noisy
when some local datasets are too small). FedDSMIC ensures that clients with
the worst personalized model are better than other methods.

Generalization to Unseen Clients. Table 3 shows that FedDSMIC allows
new clients to learn a personalized model and consistently outperforms other
CFL-based methods. As discussed in Sect. 4.3, FedDSMIC allows new clients
arriving after the distributed training to learn their personalized models quickly.
To evaluate the quality of unseen clients’ personalized models, we performed
an experiment where only 80% of the clients participate to the training. The
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remaining 20% join the system after training and get their personalized model
by our method.

Table 3. Average test accuracy across clients unseen at training

Dataset FedAvg IFCA FedSEM FedDMIC

MNIST 90.92 90.62 88.93 91.52

EMNIST 81.89 81.71 82.56 86.18

FEMNIST 73.84 74.76 72.94 75.75

CIFAR10 35.59 36.89 42.45 57.74

CIFAR100 13.8 14.37 10.26 15.43

Communication Consumption. As shown in Fig. 5, FedDSMIC has the low-
est communication consumption and highest accuracy on different network struc-
tures. FedDSMIC and FedSEM perform cluster estimation on the server side
without sending additional models, therefore having the same traffic as FedAvg.
As discussed in Sect. 4.2, IFCA requires the server to send all center models to
each client, thus consuming the most communication.

(a) MLP-MNIST (b) CNN-EMNIST (c) Mobilenet-v2 -CIFAR10

Fig. 5. Communication consumption of FL frameworks on different network structures
for 300 rounds.

5.4 Sensitivity Analysis

Impacts of Data Heterogeneity. As shown in Fig. 6, FedDSMIC performs
better than others under various data heterogeneity settings, and the gain of
FedDSMIC is more notable when the data distributions are highly heteroge-
neous (with a small α). This result verifies our motivations since the advantage
of FedDSMIC is building personalized models for each client based on its corre-
sponding cluster model, which mitigates the data heterogeneity. This advantage
is otherwise not obtained by other baselines. For MNIST, Per-FedAvg has the
best performance at the i.i.d setting (α = 10) because it may utilize infor-
mation from more training data. For the more complex dataset EMNIST, the
performance gain of our approach is consistently significant, which verifies the
robustness of our method to fit complex distributions.
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(a) MNIST (b) EMNIST

Fig. 6. Performance w.r.t data heterogeneity. Fig. 7. Effects of indica-
tor samples on MNIST
with α = 0.5.

Effects of the Indicator Sample Size. We test the effect of FedDSMIC
with different indicator sample sizes on MNIST as in Fig. 7. Nc is the number of
samples per class. The gain of FedDSMIC over FedAvg is consistently remarkable
given different indicator sample sizes, whereas a sufficient number of indicator
samples brings better performance. The model accuracy is high enough when
Nc = 1, proving that it is acceptable to distinguish different customers despite
the small sample size. When Nc reaches 100, the performance tends to stabilize.

Impacts of Straggler Clients. We explore different numbers of total clients
versus active clients on FEMNIST, with active ratios of 0.2, 0.5, and 1.0, respec-
tively. Figure 8 that FedDSMIC consistently outperforms all baselines under var-
ious active client settings. Combined with Fig. 8(a),(b), and (c), we can observe
that our approach requires much fewer communication rounds to reach the same
performance, regardless of the setting of straggler clients.

(a) r = 1.0 (b) r = 0.5 (c) r = 0.2

Fig. 8. Average test accuracy vs. communication rounds on FEMNIST w.r.t different
ratio of straggler clients

Effects of Communication Frequency: We explore local updating steps τ
and local epochs E for CIFAR10 and CIFAR100, respectively. The higher τ or
E means longer communication delays before global communication. As shown
in the last two rows of Table 2, our approach is robust against different levels of
communication delays.
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5.5 Ablation Results

We set up ablation experiments to explore the role of the two points. FedDS
(clustering-only of our method) and FedDSMIC are shown in the last two
columns of Table 2. The results indicate that FedDS is already better than other
cluster FL methods, especially the faster convergence speed (Fig. 4 and Fig. 8),
which demonstrates our similarity calculation method detects the data distri-
bution to cluster accurately. FedDSMIC can further improve performance by
building personalized models for clients, especially under complicated data dis-
tribution.

5.6 Discussion

Finally, we visualize the feature representations of the training data via client-
side models on CIFAR10 obtained by Local, FedAvg, and FedDSMIC, respec-
tively. There are two types of clients. One is shown in Fig. 9, which has enough
local data to train its model. The performance of FedAvg degrades because
the global model does not fit the local data distribution. In contrast, the client
model obtained with FedDSMIC can benefit clients with similar data distribu-
tions. Therefore, the feature representation of the client model is looser than
the local-trained model under the premise of ensuring good classification abil-
ity, i.e., the model’s generalization will be more robust. The other is shown in
Fig. 10, whose local data is insufficient to train a good model. Although FedAvg
performs better than Local, the accuracy is still low due to heterogeneous data
distribution. Whereas FedDSMIC can get an excellent personalized model that
fits the data distribution nearly perfectly, leading to better generalization.

(a) LocalTrain (b) FedAvg (c) Ours

Fig. 9. The visualization of feature representations of 59-th local model with t-SNE
for CIFAR10.
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(a) LocalTrain (b) FedAvg (c) Ours

Fig. 10. The visualization of feature representations of 17-th local model with t-SNE
for CIFAR10.

6 Conclusion

In this paper, we proposed a new clustered multi-task framework based on the
assumption of a realistic cluster structure to address client heterogeneity. Our
algorithm detected the local underlying data distribution by the trained model’s
memory to cluster similar clients. Furthermore, we learned personalized mod-
els for each client based on the initial cluster model to address the limitations
of existing clustered FL. Extensive empirical evaluation has shown that our
approach trained models with higher accuracy, fairness, and lower resource con-
sumption than state-of-the-art FL algorithms, even for clients not present at
training time.
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