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Affine Formation Maneuver Control
of Multiagent Systems

Shiyu Zhao

Abstract—A multiagent formation control task usually
consists of two subtasks. The first is to steer the agents
to form a desired geometric pattern, and the second is to
achieve desired collective maneuvers so that the centroid,
orientation, scale, and other geometric parameters of the
formation can be changed continuously. This paper pro-
poses a novel affine formation maneuver control approach
to achieve the two subtasks simultaneously. The proposed
approach relies on stress matrices, which can be viewed
as generalized graph Laplacian matrices with both posi-
tive and negative edge weights. The proposed control laws
can track any target formation that is a time-varying affine
transformation of a nominal configuration. The centroid, ori-
entation, scales in different directions, and even geometric
pattern of the formation can all be changed continuously.
The desired formation maneuvers are only known by a small
number of agents called leaders, and the rest of the agents
called followers only need to follow the leaders. The pro-
posed control laws are globally stable and do not require
global reference frames if the required measurements can
be measured in each agent’s local reference frame.

Index Terms—Affine transformation, formation control,
multiagent systems, stress matrices.

I. INTRODUCTION

AMULTIAGENT formation control task is usually consti-
tuted by two subtasks. The first is formation shape control,

which is to steer a group of mobile agents to form a desired ge-
ometric pattern given any initial configuration. The second is
formation maneuver control, which is to steer the mobile agents
to maneuver as a whole such that the centroid, orientation, scale,
and other geometric parameters of the formation can be changed
continuously. Formation maneuver control is important for a
formation of agents to achieve desired navigation tasks or dy-
namically respond to the environment to, for example, avoid
obstacles.

Multiagent formation control has been studied by various ap-
proaches in the last two decades. The approaches proposed in
the early stage such as behavior-based ones can handle com-
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plicated formation tasks subject to various agent dynamics and
constraints (see, for example, [1]–[4]). However, the system
convergence of these approaches is difficult to prove mathemat-
ically [4]. From the practical point of view, system convergence
is vital for a multiagent control system because it guarantees the
system to behave as expected.

Since the successful application of the consensus theory in
formation control [5], [6], tremendous research efforts have been
devoted to developing convergence-guaranteed formation con-
trol approaches (see [7] and [8] for recent surveys). These exist-
ing formation control approaches can be classified by how the
target formation is defined. For example, displacement-based,
distance-based, and bearing-based approaches are three conven-
tional approaches that define target formations by using constant
constraints on interagent displacements, distances, and bearings,
respectively [8]–[10]. The invariance of the constant constraints
of the target formation has a critical impact on the formation ma-
neuverability. In particular, interagent displacement constraints
are invariant to formation translation. As a result, displacement-
based formation control laws can be applied to track target
formations with time-varying translations [11], [12]. However,
the scale or orientation of the formation is difficult to control
using this approach because changing the scale or orientation
requires changing the displacement constraints. As a compari-
son, distance-based control laws can be applied to track target
formations with time-varying translations and orientations [13],
[14], but it is difficult to track time-varying formation scales.
Bearing-based control laws can track formations with time-
varying translations and scales [9], [10], but it is difficult to
track time-varying orientations.

Motivated by the limitations of the three approaches, re-
searchers have proposed some methods to modify them in order
to achieve desired formation maneuvers. For example, the work
in [15] modified the displacement-based formation control ap-
proach by adding a formation-scale estimation mechanism, and
the work in [16] modified the distance-based formation con-
trol approach to allow the final formation have an unspecified
scale. These modifications, however, usually result in compli-
cated control and estimation problems and may require addi-
tional sensing or communication abilities for each agent. An
approach that can track general time-varying formations has
been proposed recently in [17]. However, the desired maneuver
of each agent must be prespecified in this approach.

Very recently, researchers have proposed some approaches
defining target formations using new types of constant con-
straints such as local bearings [18], barycentric coordinates [19],
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complex Laplacians [20], [21], and stress matrices [22]. These
approaches are appealing due to the enhanced invariance of
the new constraints. For example, a complex Laplacian is in-
variant to the translation, rotation, and scaling variations of a
formation. As a result, the approach based on complex Lapla-
cians can be applied to simultaneously achieve translational,
rotational, and scaling formation maneuvers. This approach
is, however, merely applicable to formation control in two
dimensions.

Among these new approaches, the one based on stress matri-
ces is promising to achieve general formation maneuvers. The
stress matrix of a formation can be viewed as a generalized
graph Laplacian. Its structure is determined by the underlying
graph, but the values of the entries are jointly determined by
the formation configuration. Unlike conventional graph Lapla-
cian matrices, in a stress matrix, the weight of an edge may
be positive, negative, or zero. Stress matrices have been ap-
plied in stabilization of stationary target formations in [22], but
their great potential to solve formation maneuver control has not
been explored yet. In fact, the stress matrix is invariant to any
affine transformation of the formation configuration. An affine
transformation is a general linear transformation that may corre-
spond to a translation, rotation, scaling, shear, or compositions
of them. As a result, stress matrices provide a powerful tool to
achieve various formation maneuver behaviors.

In this paper, we adopt the leader–follower strategy to solve
the problem of formation maneuver control based on stress ma-
trices. The main contributions of this paper are threefold. First,
we address the leader selection problem and introduce the no-
tion of affine formation localizability that indicates whether or
not the selected leaders can fully control the entire formation
to achieve desired affine transformations. Necessary and suf-
ficient conditions for affine localizability are proved. Second,
we propose a variety of distributed control laws for single- and
double-integrator agent dynamics based on different types of
measurements. With the proposed control laws, not only the de-
sired formation pattern can be achieved, any time-varying affine
transformation such as a translation, rotation, scaling, or even
shape deformation of the formation can be tracked. The pro-
posed control laws are globally stable and applicable to forma-
tion control in arbitrary dimensions. Third, we propose control
laws for unicycle models subject to linear and angular velocity
saturation constraints. The proposed nonlinear control laws are
proved to be globally stable in the case of stationary leaders. It
is worth mentioning that the proposed control laws do not re-
quire global reference frames if the desired measurements can
be measured in each agent’s local reference frame.

The rest of this paper is organized as follows. Notations
and preliminaries are given in Section II. In Section III, the
problem of affine formation control is described, and neces-
sary results are presented. The problem of leader selection and
affine localizability are studied in Section IV. Control laws for
single- and double-integrator agent dynamics are proposed in
Section V. Nonlinear control laws for unicycle agents are pro-
posed in Section VI. The implementation of the control laws
and simulation examples are given in Section VII. Conclusions
are drawn in Section VIII.

II. NOTATIONS AND PRELIMINARIES

This section presents some notations and preliminary results
that will be used throughout this paper.

A. Notations for Formations

Consider a group of n mobile agents in Rd , where d ≥ 2
and n ≥ d + 1. Let pi ∈ Rd be the position of agent i and
p = [pT

1 , . . . , pT
n ]T ∈ Rdn be the configuration of all the agents.

The interaction among the agents is described by a fixed graph
G = (V, E), which consists of a vertex set V = {1, . . . , n}
and an edge set E ⊆ V × V . The edge (i, j) ∈ E indicates
that agent i can receive information from agent j, and agent
j is a neighbor of i. The set of neighbors of vertex i is
Ni = {j ∈ V : (i, j) ∈ E}. This paper only consider undirected
graphs, where (i, j) ∈ E ⇔ (j, i) ∈ E . Let m be the number
of undirected edges. An orientation of an undirected graph is
the assignment of a direction to each undirected edge. An ori-
ented graph is an undirected graph together with an orientation.
The incidence matrix H ∈ Rm×n of an oriented graph is the
{0,±1}-matrix with rows indexed by edges and columns by
vertices [9].

A formation, denoted as (G, p), is the graph G with its vertex
i mapped to point pi . Without loss of generality, suppose the
first n� agents are leaders and the rest nf = n − n� agents are
followers. Let V� = {1, . . . , n�} and Vf = V \ V� be the sets of
leaders and followers, respectively. The positions of the leaders
and followers are denoted as p� = [pT

1 , . . . , pT
n�

]T and pf =
[pT

n� +1 , . . . , p
T
n ]T , respectively.

Denote ⊗ as the Kronecker product and vec(·) the vec-
tor obtained by stacking all the columns of a matrix. A use-
ful property of vec(·) is that vec(ABC) = (CT ⊗ A)vec(B),
where A,B, and C are real matrices of appropriate dimen-
sions. As a special yet useful consequence, x ⊗ y = vec(yxT )
for any real vectors x, y, because vec(yxT ) = vec(y1xT ) =
(x ⊗ y)vec(1) = x ⊗ y. The two properties will be frequently
used in this paper.

Let Null(·) and Col(·) be the null and column spaces of a
matrix, respectively. Let ‖ · ‖ be the Euclidian norm of a vector
or the spectral norm of a matrix, Id ∈ Rd×d the identity matrix,
1n ∈ Rn the vector with all entries equal to one, and dim(·) the
dimension of a linear space. For any vector x, diag(x) denotes
the diagonal matrix whose iith diagonal entry is the ith entry
of x.

B. Affine Span and Affine Dependence

Given a set of points {pi}n
i=1 in Rd , the affine span of these

points, denoted as S, is

S =

{
n∑

i=1

aipi : ai ∈ R for all i and
n∑

i=1

ai = 1

}
.

For example, the affine span of two distinct points is the 1-D line
passing through the two points. The affine span of three points
that are not collinear is the 2-D plane passing through the three
points. The affine span of four points that are not coplanar is
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R3 . If ai is restricted to be nonnegative, affine span degenerates
to convex hull.

Given any affine span, we can always translate it to contain
the origin to obtain a linear space. The dimension of the obtained
linear space is defined as the dimension of the affine span. If the
dimension of the affine span is d, then we say that these points
affinely span Rd .

The set of points {pi}n
i=1 are called affinely dependent if there

exist scalars {ai}n
i=1 that are not all zero such that

∑n
i=1 aipi =

0 and
∑n

i=1 ai = 0, and affinely independent otherwise. Define
the configuration matrix P ∈ Rn×d and an augmented matrix
P̄ ∈ Rn×(d+1) as

P (p) =

⎡
⎢⎢⎣

pT
1

...

pT
n

⎤
⎥⎥⎦ , P̄ (p) =

⎡
⎢⎢⎣

pT
1 1
...

...

pT
n 1

⎤
⎥⎥⎦ = [P (p),1n ]

where 1n � [1, . . . , 1]T ∈ Rn . By definition, {pi}n
i=1 are

affinely dependent if and only if the rows of P̄ (p) are lin-
early dependent, i.e., there exists a = [a1 , . . . , an ]T such that
P̄ T (p)a = 0; and {pi}n

i=1 are affinely independent if and only
if the rows of P̄ (p) are linearly independent. Since P̄ (p) has
d + 1 columns, there exist at most d + 1 points that are affinely
independent in Rd .

If {pi}n
i=1 affinely span Rd , there must exist d + 1 points

that are affinely independent. As a result, P̄ (p) has d + 1 rows
that are linearly independent, and consequently, rank(P̄ (p)) =
d + 1. This useful result is given as a lemma.

Lemma 1 (Rank condition for affine span): The set of
points {pi}n

i=1 affinely span Rd if and only if n ≥ d + 1 and
rank(P̄ (p)) = d + 1.

C. Stress Matrices

For formation (G, p), a stress is a set of scalars, {ωij}(i,j )∈E ,
where ωij = ωji ∈ R, assigned to all the edges. A stress is called
an equilibrium stress [23]–[25] if it satisfies

∑
j∈Ni

ωij (pj − pi) = 0, i ∈ V. (1)

The mechanical interpretation of equilibrium stresses is as fol-
lows. The value ωij represents an attracting force in edge (i, j)
when ωij > 0 and a repelling force when ωij < 0. The vector
ωij (pj − pi) represents the force applied on agent i by agent j
through edge (i, j). Thus, (1) means that the forces applied on
agent i by agents j ∈ Ni are balanced. See Fig. 1 for an illustra-
tion. Denote ω = [ω1 , . . . , ωm ] ∈ Rm as the stress vector, where
ωk corresponds to the kth undirected edge (k = 1, . . . , m). Note
that equilibrium stresses can only be determined up to a scalar
factor. That means if ω is an equilibrium stress, then kω is also
an equilibrium stress for any k ∈ R �=0 .

Equation (1) can be expressed in a matrix form as

(Ω ⊗ Id)p = 0

Fig. 1. Example to illustrate equilibrium stresses and stress matrices.
In this example, the four points form a square where the length of each
side is equal to 1 and the length of each diagonal chord is equal to√

2. The corresponding stress matrix is positive semidefinite and its
eigenvalues are {4, 0, 0, 0}.

where Ω ∈ Rn×n is the stress matrix satisfying

[Ω]ij =

⎧⎪⎨
⎪⎩

0, i �= j, (i, j) /∈ E
−ωij , i �= j, (i, j) ∈ E∑

k∈Ni
ωik , i = j.

The stress matrix has a similar structure as graph Laplacian
matrices. The difference is that the weight for an edge in a stress
matrix may be positive, negative, or zero, whereas the weight
for an edge in a graph Laplacian is usually positive. See Fig. 1
for an illustrative example of stress matrices.

The properties of stress matrices have intimate connections
to the structural rigidity of the formation. We next review
some necessary notions in the distance rigidity theory [23]–
[25]. In Rd , two formations (G, p) and (G, p′) are equiva-
lent if ‖pi − pj‖ = ‖p′i − p′j‖ for all (i, j) ∈ E , and congru-
ent if ‖pi − pj‖ = ‖p′i − p′j‖ for all i, j ∈ V . Formation (G, p)
is globally rigid if an arbitrary formation that is equivalent to
(G, p) is also congruent to it. Formation (G, p) in Rd is uni-
versally rigid if it is globally rigid in any Rd1 , where d1 ≥ d.
A configuration is generic if the coordinates of all the nodes
do not satisfy any nontrivial equations with rational coefficients
[25, Sec. 7.2]. The following result establishes the connection
between stress matrices and universal rigidity.

Lemma 2 (Generic universal rigidity [23], [26], [27]):
Given an undirected graph G and a generic configuration p,
formation (G, p) is universally rigid if and only if there ex-
ists a stress matrix Ω such that Ω is positive semidefinite and
rank(Ω) = n − d − 1.

III. PROBLEM STATEMENT OF AFFINE FORMATION

MANEUVER CONTROL

This section first defines the time-varying target formation
and then explores the properties of an important notion termed
affine image.

A. Time-Varying Target Formation

The objective of affine formation maneuver control is to steer
a group of agents to track the time-varying target formation
defined as follows.
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Fig. 2. Illustration of affine transformations of a nominal configuration.
The formations in (b), (c), and (d) are obtained by rotating, scaling, and
shearing the original formation in (a), respectively. The formation (e) is
obtained from (d) by reducing the scale in the vertical direction. The
formation (f), where the four points are collinear, is obtained from (e) by
reducing the scale in the vertical direction to zero.

Definition 1 (Target formation): The time-varying configu-
ration of the target formation has the form of

p∗(t) = [In ⊗ A(t)]r + 1n ⊗ b(t)

where r = [rT
1 , . . . , rT

n ]T = [rT
� , rT

f ]T ∈ Rdn is a constant con-
figuration, and A(t) ∈ Rd×d and b(t) ∈ Rd are continuous of
t. The desired position of agent i ∈ V in the target formation is
p∗i (t) = A(t)ri + b(t).

The constant configuration r represents a typical geometric
pattern that the formation would like to maintain. Here, r is
called the nominal configuration and (G, r) the nominal forma-
tion. The target configuration is actually a time-varying affine
transformation of the nominal configuration. Affine transforma-
tion is a general linear transformation that may correspond to
a translation, rotation, scaling, shear, or compositions of them.
Note that shearing or scaling of the formation in different di-
rections would deform the formation shape (see Fig. 2 for
an illustration). Affine transformation preserves straight lines
and planes. As a result, collinear (or coplanar) points remain
collinear (or coplanar) after any affine transformations. Parallel
lines are also preserved by affine transformations.

With the notion of the target formation, the problem to be
solved in this paper is to control the group of agents to track
the time-varying target configuration so that p(t) → p∗(t) as
t → ∞. A trivial control strategy to solve this problem is to
let each agent know A(t), b(t), and ri so that each agent can
track its individual reference trajectory. The disadvantage of the
strategy is that it requires A(t) and b(t) for all t to be specified in
advance and stored on each agent, which is impractical because
the formation is not able to dynamically respond to unexpected
situations such as pop-up obstacles.

In order to achieve the target formation in a distributed man-
ner, we adopt the leader–follower strategy, where the desired
formation maneuvers are merely known by a small number of
agents, called leaders, and the other agents, called followers,
only need to follow the motion of the leaders. As will be shown
later, the leaders’ positions will have a one-to-one correspon-
dence to the affine transformation (A, b). Therefore, the affine

transformation of the entire formation is achieved by controlling
the positions of the leaders. Since the number of the leaders is
usually small, in this work, we do not specifically design co-
ordination control laws for the leaders and simply assume that
they can be controlled properly. In practice, the leaders may be
controlled by human operators or intelligent decision making
programs. Suppose the position of each leader is equal to the
desired value in the target formation, i.e., p�(t) = p∗�(t) for all t.
Then, the control objective becomes steering the followers such
that pf (t) → p∗f (t) as t → ∞. In order to achieve the control
objective, we need to study an important notion termed affine
image in the rest of the section.

B. Affine Image of Nominal Configuration

The affine image of the nominal configuration is defined
as [22]

A(r) =
{
p ∈ Rdn : p = (In ⊗ A)r + 1n ⊗ b,

A ∈ Rd×d , b ∈ Rd
}

=
{
p = [pT

1 , . . . , pT
n ]T ∈ Rdn : pi = Ari + b,

A ∈ Rd×d , b ∈ Rd , i = 1, . . . , n.
}

.

The affine image is a set consisting of all the affine transforma-
tions of the nominal configuration r. The time-varying target
configuration p∗(t) is in A(r) for all t.

The affine imageA(r) is a linear subspace because it is closed
under addition and scalar multiplication. The dimension ofA(r)
is analyzed in the following lemma, which is a fundamental
result for the subsequent analysis in the paper.

Lemma 3 (Dimension of affine image): The dimension of
A(r) equals d2 + d if and only if {ri}n

i=1 affinely span Rd .
Proof: Denote Eij ∈ Rd×d as a matrix with its ijth entry

equal to one and the others zero, and ei ∈ Rd a vector with its
ith entry equal to one and the others zero. Consider the following
d2 + d vectors:

(In ⊗ Eij )r, i, j = 1, . . . , d; 1n ⊗ ei, i = 1, . . . , d. (2)

It is easy to verify that these vectors are all in A(r), and any
other vectors inA(r) can be expressed as a linear combination of
them. As a result, dim(A(r)) is equal to the number of linearly
independent vectors in (2).

Consider the set of coefficients αij (i, j = 1, . . . , d) and βi

(i = 1, . . . , d) that satisfy

d∑
i=1

d∑
j=1

αij (In ⊗ Eij )r +
d∑

i=1

βi(1n ⊗ ei) = 0. (3)

By using the properties that vec(ABC) = (CT ⊗ A)vec(B)
for any real matrices A,B,C of appropriate dimensions and
x ⊗ y = vec(yxT ) for any real vectors x, y, we have

(In ⊗ Eij )r = vec[(In ⊗ Eij )r]

= vec(EijP
T (r)In ) = vec(EijP

T (r))

1n ⊗ ei = vec(1n ⊗ ei) = vec(ei1T
n ).
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As a result, (3) is equivalent to

d∑
i=1

d∑
j=1

αijEijP
T (r) +

d∑
i=1

βiei1T
n = 0

which can be rewritten as

[∑d
i=1

∑d
j=1 αijEij

∑d
i=1 βiei

]
︸ ︷︷ ︸

M ∈Rd ×(d + 1 )

[
PT (r)
1T

n

]
︸ ︷︷ ︸

P̄ T (r)

= 0.

Note that MP̄T (r) = 0 ⇔ P̄ (r)MT = 0.
(Sufficiency) If {ri}n

i=1 affinely span Rd , it follows from
Lemma 1 that rank(P̄ (r)) = d + 1, and hence, Null(P̄ (r)) =
0. As a result, MT must be zero, and hence, all the coefficients
αij , βi are zero. It then follows that all the vectors in (2) are
linearly independent, and hence, dim(A(r)) = d2 + d. (Neces-
sity) If {ri}n

i=1 do not affinely span Rd , there exist nonzero
vectors in Null(P̄ (r)). As a result, there exist nonzero values of
αij , βi such that P̄ (r)MT = 0, and consequently, the vectors
in (2) are linearly dependent. Since there are less than d2 + d
linearly independent vectors in (2), dim(A(r)) < d2 + d. �

Remark 1: The dimension of A(r) has also been analyzed
in [22, Lemma 3.1]. However, the conclusion in [22] that
dim(A(r)) = d2 + d if {ri}n

i=1 “linearly” span Rd is inaccurate
because the proof of [22, Lemma 3.1] merely considers the lin-
ear dependence of (In ⊗ Eij )r (i, j = 1, . . . , d) without incor-
porating 1n ⊗ ei (i = 1, . . . , d). Specifically, if {ri}n

i=1 linearly
span Rd , it can be proved that (In ⊗ Eij )r (i, j = 1, . . . , d) are
linearly independent, but it is not sufficient to show that all the
vectors in (2) are linearly independent. Lemma 3 corrects this
inaccuracy and generalizes the condition to be both necessary
and sufficient.

When dim(A(r)) = d2 + d, any point in A(r) will corre-
spond to a unique pair of (A, b). When dim(A(r)) < d2 + d,
for any p ∈ A(r), there exist an infinite number of (A, b) sat-
isfying p = (In ⊗ A)r + 1n ⊗ b. More information on how to
compute A and b given any p ∈ A(r) can be found later in
Theorem 1 and Corollary 1.

Motivated by Lemma 3, we make the following assumption
on the nominal formation.

Assumption 1 (Affine span of nominal formation): For the
nominal formation (G, r), assume that {ri}n

i=1 affinely span
Rd .

C. Affine Image as Null Space

This subsection explores under what conditions A(r) is the
null space of a matrix. In the rest of this paper, we write Ω(r)
as Ω in short, and Ω always represents the stress matrix of the
nominal formation.

Lemma 4: For any nominal configuration r, it always holds
that

A(r) ⊆ Null(Ω ⊗ Id) (4)

Col(P̄ (r)) ⊆ Null(Ω). (5)

Proof: First, since {ri}n
i=1 satisfies (1), it can be verified that

{Ari + b}n
i=1 also satisfies (1) for any A ∈ Rd×d and b ∈ Rd .

As a result, any point inA(r) is also in Null(Ω ⊗ Id), and conse-
quently,A(r) ⊆ Null(Ω ⊗ Id). Second, since r = vec(PT (r)),
it follows from (Ω ⊗ Id)r = 0 that (Ω ⊗ Id)vec(PT (r)) =
vec(IdP

T (r)ΩT ) = 0. As a result, PT (r)ΩT = 0 ⇔ ΩP (r) =
0. Since Ω1n = 0, we have ΩP̄ (r) = 0 and consequently
Col(P̄ (r)) ⊆ Null(Ω). �

Next, we show when the equalities in (4) and (5) hold. In order
to do that, we make the following assumption on the nominal
formation.

Assumption 2 (Stress matrix of nominal formation): Assume
that the nominal formation (G, r) has a positive-semidefinite
stress matrix Ω satisfying rank(Ω) = n − d − 1.

Assumption 2 is satisfied if (G, r) is generically universally
rigid according to Lemma 2. This assumption may still be valid
even if r is not generic [28]. Figure 1 shows a nominal formation
that satisfies Assumption 2. The configuration of this formation
is not generic because the four agents are located on a circle
[25, Sec. 7.2].

The next result shows when the equalities in (4) and (5) hold.
Lemma 5 (Null space of the stress matrix): Under Assump-

tion 2, the following conditions are equivalent to each other.
1) {ri}n

i=1 affinely span Rd .
2) Null(Ω ⊗ Id) = A(r).
3) Null(Ω) = Col(P̄ (r)).
Proof: First, since A(r) ⊆ Null(Ω ⊗ Id) as shown in

Lemma 4, we have that Null(Ω ⊗ Id) = A(r) if and only
if dim(Null(Ω ⊗ Id)) = dim(A(r)). Note that dim(Null(Ω ⊗
Id)) = d(d + 1) by Assumption 2. Since dim(A(r)) = d(d +
1) if and only if {ri}n

i=1 affinely span Rd according
to Lemma 3, the equivalence between 1) and 2) fol-
lows. Second, since Col(P̄ (r)) ⊆ Null(Ω) as shown in
Lemma 4, we have that Col(P̄ (r)) = Null(Ω) if and only if
dim(Col(P̄ (r)) = dim(Null(Ω)). Note that dim(Null(Ω)) =
d + 1 by Assumption 2. Since dim(Col(P̄ (r))) = rank(P̄ (r))
and rank(P̄ (r)) = d + 1 if and only if {ri}n

i=1 affinely span Rd

by Lemma 1, the equivalence between 1) and 3) follows. �

IV. AFFINE LOCALIZABILITY AND LEADER SELECTION

This section studies the problem of leader selection. In order
to manipulate the entire formation through the leaders, we must
select sufficient and appropriate leaders. First of all, we define
a notion termed affine localizability.

Definition 2 (Affine localizability): The nominal formation
(G, r) is affinely localizable by the leaders if for any p =
[pT

� , pT
f ]T ∈ A(r), pf can be uniquely determined by p� .

Affine localizability indicates that if a configuration is in
A(r), then the positions of the leaders can uniquely determine
those of the followers. As will be shown later, it is the key
property to ensure that the followers track any desired affine
transformation maneuvers. We next give a necessary and suffi-
cient condition of affine localizability.

Theorem 1 (Leader selection for affine localizability): Under
Assumption 1, the nominal formation (G, r) is affinely localiz-
able if and only if {ri}i∈V�

affinely span Rd .
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Proof: For any p ∈ A(r), there exist (A, b) such that

p1 = Ar1 + b

...

pn = Arn + b.

Since Ari = vec(Ari) = [rT
i ⊗ Id ]vec(A), the above equations

can be rewritten as⎡
⎢⎢⎣

p1

...

pn

⎤
⎥⎥⎦

︸ ︷︷ ︸
p

=

⎡
⎢⎢⎣

rT
1 1
...

...

rT
n 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
P̄ (r)

⊗Id

[
vec(A)

b

]
︸ ︷︷ ︸

z∈Rd 2 + d

which can be partitioned to be

p� = (P̄ (r�) ⊗ Id)z (6)

pf = (P̄ (rf ) ⊗ Id)z. (7)

(Sufficiency) If {ri}i∈V�
affinely span Rd , it follows from

Lemma 1 that rank(P̄ (r�)) = d + 1. Then, z can be uniquely
determined as

z =
[(

P̄ T (r�)P̄ (r�)
)−1

P̄ T (r�)
]
⊗ Idp�. (8)

Then, pf can be uniquely determined using (7), and hence,
the nominal formation is affinely localizable. (Necessity) If
{ri}i∈V�

do not affinely span Rd , rank(P̄ (r�)) < d + 1, and
there will be an infinite number of z satisfying (6). In partic-
ular, if z∗ is a solution of (6), then z = z∗ + z0 with z0 �= 0
and z0 ∈ Null(P̄ (r�) ⊗ Id) is another solution of (6). Assump-
tion 1 implies that P̄ (r) ⊗ Id is of full column rank. As a result,
z0 /∈ Null(P̄ (rf ) ⊗ Id) (otherwise, P̄ (r) ⊗ Id is not of full col-
umn rank). Therefore, z = z∗ + z0 and z = z∗ would yield dif-
ferent values of pf . Hence, pf cannot be uniquely determined,
and hence, the nominal formation is not affinely localizable. �

Theorem 1 suggests that any agents in the nominal formation
that affinely span Rd can be selected as leaders to ensure affine
localizability. Since the affine span of Rd requires at least d + 1
points, the minimum number of leaders is d + 1. For example,
we need at least three leaders in R2 and at least four leaders
in R3 . When there are exactly d + 1 leaders, given any leader
positions p� , there always exists (A, b) solving (6). When there
are more than d + 1 leaders, the positions of the leaders must be
dependent on each other; otherwise, there may not exist (A, b)
solving (6) because (6) is an overdetermined linear system in
this case.

The leader selection problem has been studied in [22, Ths. 7.1
and 7.2]. These results address under what conditions A can be
uniquely determined by some agents as a rotational or identity
matrix. Theorem 1 is a generalization of these results in the
sense that it addresses under what conditions a general matrix
A can be uniquely determined.

When the leaders affinely span Rd , there is a one-to-one cor-
respondence between the positions of the leaders and the affine
transformation (A, b). The next result shows how to calculate
(A, b) using the positions of the leaders.

Corollary 1 (Calculation of affine transformation): If
{ri}i∈V�

affinely span Rd , for any p ∈ A(r), the correspond-
ing A and b can be uniquely determined by

A =

(∑
i∈V�

pi r̃
T
i

)(∑
i∈V�

r̃i r̃
T
i

)−1

(9)

b =
1
n�

∑
i∈V�

pi −
(∑

i∈V�

pi r̃
T
i

)(∑
i∈V�

r̃i r̃
T
i

)−1

r̄ (10)

where r̄ =
∑

i∈V�
ri/n� and r̃i = ri − r̄.

Proof: This result can be proved in two ways. The first is to
solve (8) to obtain A and b. In this direction, note that

P̄ T (p�)P̄ (p�) =

[∑
i∈V�

rir
T
i

∑
i∈V�

ri∑
i∈V�

rT
i n�

]
.

The Schur complement of n� in the above matrix is Δ =∑
i∈V�

rir
T
i − (

∑
i∈V�

ri)(
∑

i∈V�
ri)T /n� . It can be verified

that Δ =
∑

i∈V�
r̃i r̃

T
i . By using the inverse of block matrices

[29, eq. (2.3)], we obtain

(P̄ T (p�)P̄ (p�))−1 =

[
Δ−1 −Δ−1 r̄

−r̄T Δ−1 1/n� + r̄T Δ−1 r̄

]
.

It follows that

z = [(P̄ T (p�)P̄ (p�))−1 P̄ T (p�)] ⊗ Idp�

=

[ ∑
i∈V�

(Δ−1 r̃i) ⊗ Idpi∑
i∈V�

pi/n� −
∑

i∈V�
(r̄T Δ−1 r̃i) ⊗ Idpi

]
.

As a result, vec(A) =
∑

i∈V�
(Δ−1 r̃i) ⊗ Idpi = vec(

∑
i∈V�

pi r̃
T
i Δ−1), which implies (9), and b =

∑
i∈V�

pi/n� −∑
i∈V�

(r̄T Δ−1 r̃i) ⊗ Idpi =
∑

i∈V�
pi/n� −

∑
i∈V�

pi r̃
T
i Δ−1 r̄,

which is (10).
The second way to prove is to directly substitute pi = Ari + b

into (9) and (10) to verify. In particular, rewrite pi as pi =
A(ri − r̄) + Ar̄ + b := Ar̃i + c. Note that

∑
i∈V�

r̃i = 0. Sub-
stituting pi = Ar̃i + c into the right-hand side of (9) leads to
A, which verifies (9). Substituting it into the right-hand side of
(10) leads to c − Ar̄ = b, which verifies (10). �

Remark 2: Corollary 1 also implies that {ri}i∈V�
affinely

span Rd if and only if
∑

i∈V�
r̃i r̃

T
i is nonsingular.

While Theorem 1 gives an intuitive condition for affine local-
izability, we next give another mathematical condition expressed
in terms of stress matrices. This mathematical condition will be
widely used in the stability analysis of the control laws pro-
posed in the following sections. In the rest of this paper, denote
Ω̄ = Ω ⊗ Id for notational simplicity. Partition Ω̄ according to
the partition of leaders and followers as

Ω̄ =

[
Ω̄�� Ω̄�f

Ω̄f � Ω̄f f

]

where Ω̄f f ∈ R(dnf )×(dnf ) and Ω̄f � ∈ R(dnf )×(dn� ) .
Theorem 2 (Stress condition for affine localizability): Under

Assumptions 1 and 2, the nominal formation (G, r) is affinely
localizable if and only if Ω̄f f is nonsingular. When Ω̄f f is
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nonsingular, for any p = [pT
� , pT

f ]T ∈ A(r), pf can be uniquely
calculated as pf = −Ω̄−1

f f Ω̄f �p� .
Proof: (Sufficiency) Since any p ∈ A(r) is also Null(Ω̄)

by Lemma 4, any p ∈ A(r) satisfies Ω̄p = 0, which implies
Ω̄f f pf + Ω̄f �p� = 0. If Ω̄f f is nonsingular, pf can be uniquely
determined as pf = −Ω̄−1

f f Ω̄f �p� , and hence, the nominal for-
mation is affinely localizable.

(Necessity) Assume that Ω̄f f is singular, and hence, there
exists a nonzero vector x0 ∈ Rdnf such that Ω̄f f x0 = 0. Let
x = [0, xT

0 ]T ∈ Rdn . Then, xT Ω̄x = xT
0 Ω̄f f x0 = 0. Under As-

sumptions 1 and 2, it follows from Lemma 5 that A(r) =
Null(Ω̄). As a result, for any p ∈ A(r) = Null(Ω̄), we have
(p + x)T Ω̄(p + x) = 0, and consequently, p + x ∈ Null(Ω̄) =
A(r). Therefore, for any p ∈ A(r), p + x is also in A(r). Note
that p and p + x have the same leaders’ positions but different
followers’ positions because the first dn� elements of x are zero.
As a result, it is impossible to distinguish p from p + x merely
using the leaders’ positions, and consequently, the nominal for-
mation is not affinely localizable. �

Now, we are ready to make the third assumption of the nom-
inal formation.

Assumption 3 (Affine localizability of nominal formation):
Assume that the nominal formation (G, r) is affinely localizable
by the leaders.

Up to now, we have made three assumptions on the nom-
inal formation. Assumption 1 requires that the nominal con-
figuration affinely span Rd so that dim(A(r)) = d2 + d. As-
sumption 2 requires that the nominal formation satisfies some
rigidity constraints so that Ω(r) is positive semidefinite and
rank(Ω(r)) = n − d − 1. Assumption 3 requires that the se-
lected leaders in the nominal formation affinely span Rd . Ac-
cording to Theorem 2, the three assumptions imply an important
mathematical conation: Ω̄f f is positive definite.

Recall that the control objective is to achieve pf (t) → p∗f (t)
as t → ∞, where p∗f (t) is the desired position of the followers
in the target formation. If Ω̄f f is positive definite, we have
p∗f (t) = −Ω̄−1

f f Ω̄f �p
∗
�(t). Define the tracking error as

δpf
(t) = pf (t) − p∗f (t) = pf (t) + Ω̄−1

f f Ω̄f �p
∗
�(t).

As a result, the control objective becomes steering the followers
so that δpf

(t) → 0 as t → ∞. The subsequent sections will
present distributed control laws to achieve this objective.

V. AFFINE FORMATION MANEUVER CONTROL LAWS

In this section, we propose distributed affine formation ma-
neuver control laws for single- or double-integrator agent dy-
namics based on different types of measurements.

A. Single-Integrator Agent Dynamics

We first consider the case where each mobile agent can be
modeled by a single integrator: ṗi = ui where ui is the control
input to be designed.

1) Stationary Leaders: We start by considering the sim-
plest case where the leaders are stationary, i.e., ṗi = 0 for i ∈ V� .
In this case, the target formation is also stationary, and the affine

formation control problem can be solved by the following con-
trol law:

ṗi = −
∑
j∈Ni

ωij (pi − pj ), i ∈ Vf . (11)

The matrix-vector form of (11) is

ṗf = −Ω̄f f pf − Ω̄f �p
∗
� . (12)

Since (12) can be rewritten as ṗf = −Ω̄f f δpf
, it can be viewed

as a gradient-decent control law for the Lyapunov function V =
1/2δT

pf
Ω̄f f δpf

. When there are no leaders, (12) becomes ṗ =
−Ω̄p, which is the control law studied in [22].

Control law (11) can be implemented in each agent’s local
reference frame since ωij is a scalar. More specifically, de-
note pij = pi − pj and suppose Ri is the rotational transforma-
tion from a global frame to the local frame of agent i. Then,
p

(i)
ij = Ripij is the relative position of agent j expressed in

agent i’s local reference frame. Consider the following control
law: v

(i)
i = −∑i∈Ni

ωij p
(i)
ij , where v

(i)
i is the velocity of agent

i expressed in its own reference frame. This control law merely
requires the relative position measured in agent i’s local refer-
ence frame. On the other hand, since v

(i)
i = Riṗi , this control

law can be written as Riṗi = −∑i∈Ni
ωijRipij , which is the

same as (11). It can be similarly shown that the control laws
presented in the rest of this paper can also be implemented in
each agent’s local reference frame if the relative measurements
can be measured in each agent’s local reference frame.

The stability of control law (11) is analyzed in the following.
Theorem 3 (Zero leader velocities): Under Assumptions 1–

3, if the leader velocity ṗ∗�(t) is constantly zero, then the tracking
error δpf

(t) under the action of control law (11) converges to
zero globally and exponentially fast.

Proof: Substituting (12) into δ̇pf
gives

δ̇pf
= ṗf (t) + Ω̄f � ṗ

∗
� = −Ω̄f f δpf

+ Ω̄f � ṗ
∗
� . (13)

Since ṗ∗� = 0, the tracking error δpf
is globally and exponentially

stable if Ω̄f f is nonsingular. �
As shown in the error dynamics in (13), if ṗ∗�(t) is not identi-

cally zero, it may be viewed as a disturbance of the system and
can cause nonzero tracking errors. However, since the control
law is linear, if the leader velocities are sufficiently small, the
tracking error would also be sufficiently small. We next present
another two control laws that can eliminate the tracking error
even when ṗ∗�(t) is nonzero.

2) Moving Leaders With Constant Velocities: If the lead-
ers move with constant nonzero velocities, then control law
(11) is not able to guarantee zero tracking errors. To handle this
case, we introduce an additional integral term and propose the
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following proportional–integral (PI) control law:

ṗi = −α
∑
j∈Ni

ωij (pi − pj )

︸ ︷︷ ︸
proportional term

− β

∫ t

0

∑
j∈Ni

ωij (pi(τ) − pj (τ))dτ

︸ ︷︷ ︸
integral term

, i ∈ Vf (14)

where α and β are positive constant control gains. Note that
control law (14) does not require additional measurements com-
pared to (11). By defining a new state for the integral term,
control law (14) can be rewritten as

ṗi = −α
∑
j∈Ni

ωij (pi − pj ) − βξi

ξ̇i =
∑
j∈Ni

ωij (pi − pj ), i ∈ Vf . (15)

Let ξ = [· · · ξT
i · · · ]T ∈ Rdnf . The matrix-vector form of (15)

is

ṗf = −αΩ̄f f pf − αΩ̄f �p
∗
� − βξ

ξ̇ = Ω̄f f pf + Ω̄f �p
∗
� . (16)

The stability of the control law is analyzed in the following.
Theorem 4 (Constant leader velocities): Under Assump-

tions 1–3, if the leader velocity ṗ∗�(t) is constant, then the track-
ing error δpf

(t) under the action of control law (14) converges
to zero globally and exponentially fast.

Proof: Substituting control law (16) into the error dynamics
gives

δ̇pf
= ṗf + Ω̄−1

f f Ω̄f � ṗ
∗
�

= −αΩ̄f f pf − αΩ̄f �p
∗
� − βξ + Ω̄−1

f f Ω̄f � ṗ
∗
�

= −αΩ̄f f δpf
− βξ + Ω̄−1

f f Ω̄f � ṗ
∗
� .

Together with the dynamics of ξ, we obtain the error dynamics
as[

δ̇pf

ξ̇

]
=

[
−αΩ̄f f −βIdnf

Ω̄f f 0

][
δpf

ξ

]
+

[
Ω̄−1

f f Ω̄f �

0

]
ṗ∗� .

(17)

Suppose λ is an eigenvalue of the state matrix. By using the
results in [29], we obtain

det

([
λI + αΩ̄f f βI

−Ω̄f f λI

])
= det

(
λ2I + αλΩ̄f f + βΩ̄f f

)

= det
(

(αλ + β)
(

λ2I

αλ + β
+ Ω̄f f

))
= 0. (18)

It follows that either λ = −β/α < 0 or

λ2

αλ + β
= −σ

where σ is the eigenvalue of Ω̄f f . Since Ω̄f f is symmetric posi-
tive definite and hence σ > 0, the solution to the above equation
satisfies λ < −β/α < 0. As a result, the error dynamics is stable
and the steady state satisfies[

−αΩ̄f f −βIdnf

Ω̄f f 0

][
δpf

(∞)
ξ(∞)

]
+

[
Ω̄−1

f f Ω̄f �

0

]
ṗ∗� = 0.

(19)

It follows that δpf
(∞) = 0. �

As can be seen from the error dynamics (17), the constant
leader velocity may be viewed as a constant disturbance. The
role of the integral term is to eliminate this disturbance. This
can be seen from (19), where ξ(∞) cancels the term containing
ṗ∗� .

3) Moving Leaders With Time-Varying Velocities: When
the velocities of the leaders are time varying, the PI control law
in (14) is not able to ensure zero tracking errors. In order to
handle the time-varying case, we propose the following control
law that requires absolute velocity feedback:

ṗi = − 1
γi

∑
j∈Ni

ωij [(pi − pj ) − ṗj ] , i ∈ Vf (20)

where γi =
∑

j∈Ni
ωij . Although ωij may be negative, the non-

singularity of γi is guaranteed by the affine localizability as
shown in the following.

Proposition 1 (Nonsingularity of γi): Under Assump-
tions 1–3, γi > 0 for all i ∈ Vf .

Proof: Note that γi =
∑

j∈Ni
ωij = [Ω]ii . Since Ωf f is pos-

itive definite by Assumptions 1–3, all the diagonal entries of
Ωf f is positive, and consequently, γi > 0 for all i ∈ Vf . �

The stability of control law (20) is analyzed in the following.
Theorem 5 (Time-varying leader velocities): Under As-

sumptions 1–3, if the leader velocity ṗ∗�(t) is time-varying and
continuous, then the tracking error δpf

(t) under the action of
control law (20) converges to zero globally and exponentially
fast.

Proof: Multiplying γi on both sides of (20) gives∑
j∈Ni

ωij (ṗi − ṗj ) = −
∑
j∈Ni

ωij (pi − pj ), i ∈ Vf .

Denote εi =
∑

j∈Ni
ωij (pi − pj ) for i ∈ Vf . Then, we have

ε̇i = −εi , which implies that εi converges to zero globally
and exponentially fast. If εi = 0 for all i ∈ Vf , then we have
−Ω̄f f pf − Ω̄f �p

∗
� = 0, which can be rewritten as Ω̄f f δpf

=
0 ⇒ δpf

= 0. �
In practice, the absolute velocity measurement ṗj may be

transmitted from agent j to agent i via wireless communi-
cation or obtained by differentiating the position measure-
ment pj . Both of the methods will result in measurement er-
rors due to, for example, communication delays. However,
since the system is linear, if the velocity measurement er-
rors are bounded (or sufficiently small), the tracking error
would also be bounded (or sufficiently small). Note that con-
trol law (20) cannot be implemented in each agent’s local ref-
erence frame due to the requirement of the absolute velocity
measurement.
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B. Double-Integrator Agent Dynamics

We now consider the case where each mobile agent can be
modeled by a double integrator: ṗi = vi and v̇i = ui , where vi

is the agent velocity and ui is the control input to be designed.
1) Moving Leaders With Zero Accelerations: We start by

considering the simplest case where the accelerations of the
leaders are zero. The following control law can be used to handle
this case:

ṗi = vi

v̇i = −
∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj )] , i ∈ Vf (21)

where kp and kv are positive constant control gains. The matrix-
vector form of (21) is

ṗf = vf

v̇f = −kp(Ω̄f f pf + Ω̄f �p
∗
�) − kv (Ω̄f f vf + Ω̄f �v

∗
� ) (22)

where vf ∈ Rdnf and v∗
� = ṗ∗� are the velocities of the followers

and leaders, respectively.
The stability of the control law is analyzed in the following.
Theorem 6 (Zero leader accelerations): Under Assump-

tions 1–3, if the leader acceleration v̇∗
� (t) is constantly zero,

then the tracking error δpf
(t) under the action of control law

(21) converges to zero globally and exponentially fast.
Proof: Define the velocity error as δvf

= δ̇pf
= vf +

Ω̄−1
f f Ω̄f �v

∗
� . Substituting (22) into δ̇vf

gives

δ̇vf
= −kp Ω̄f f δpf

− kv Ω̄f f δvf
+ Ω̄−1

f f Ω̄f � v̇
∗
� .

The position and velocity error dynamics can be expressed as[
δ̇pf

δ̇vf

]
=

[
0 Idnf

−kp Ω̄f f −kv Ω̄f f

][
δpf

δvf

]
+

[
0

Ω̄−1
f f Ω̄f �

]
v̇∗

� .

(23)

Note that v̇∗
� = 0. Let λ be an eigenvalue of the state matrix

of (23). The characteristic equation of the state matrix is given
by det(λ2I + λkv Ω̄f f + kp Ω̄f f ) = 0. Similar to (18), it can
be shown that λ ≤ −kp/kv < 0. As a result, the state matrix
is Hurwitz, and hence, δp and δv globally and exponentially
converge to zero. �

As can be seen from the error dynamics (23), when v̇∗
� is

nonzero, it would cause nonzero tracking errors. Control laws
that can eliminate the tracking errors in the presence of nonzero
v̇∗

� will be proposed in the following subsections.
2) Moving Leaders With Constant Accelerations: In or-

der to handle the case where the leaders move with nonzero
constant accelerations, we propose the following PI control law:

ṗi = vi

v̇i = −α
∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj )]

− β

∫ t

0

∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj )] dτ (24)

for i ∈ Vf . Note that control law (24) does not require additional
measurements compared to control law (21). The stability of
control law (24) is analyzed in the following.

Theorem 7 (Constant leader accelerations): Under Assump-
tions 1–3, if the leader acceleration v̇∗

� (t) is constant for all t,
then the tracking error δpf

(t) under the action of control law
(24) converges to zero globally and exponentially fast.

Proof: By denoting a new variable ξi ∈ Rd for the integral
term, control law (24) can be rewritten as

ṗi = vi

v̇i = −α
∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj )] − βξi

ξ̇i =
∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj )] .

Let ξ = [· · · ξT
i · · · ]T ∈ Rdnf . The matrix-vector form is

ṗf = vf

v̇f = −αkp Ω̄f f δpf
− αkv Ω̄f f δvf

− βξ

ξ̇ = kp Ω̄f f δpf
+ kv Ω̄f f δvf

.

The velocity error dynamics can be written as δ̇vf
= v̇f +

Ω̄−1
f f Ω̄f � v̇

∗
� = −αkp Ω̄f f δpf

− αkv Ω̄f f δvf
− βξ + Ω̄−1

f f Ω̄f � v̇
∗
� .

Then, we obtain the following error dynamics:⎡
⎢⎣

δ̇pf

δ̇vf

ξ̇

⎤
⎥⎦ =

⎡
⎢⎣

0 I 0
−αkp Ω̄f f −αkv Ω̄f f −βI

kp Ω̄f f kv Ω̄f f 0

⎤
⎥⎦
⎡
⎢⎣

δpf

δvf

ξ

⎤
⎥⎦

+

⎡
⎢⎣

0
Ω̄−1

f f Ω̄f �

0

⎤
⎥⎦ v̇∗

� .

Partition the state matrix into a two-by-two block matrix as
depicted above. By using the results in [29], it can be verified
that the state matrix is Hurwitz for any positive α, β, kp , kv .
The details are omitted here due to space limitations. Then,
by examining the steady-state values, we obtain δpf

(∞) = δvf

(∞) = 0. �
3) Moving Leaders With Time-Varying Accelerations: In

order to handle the case where the leaders move with time-
varying velocities, we propose the following control law that
requires absolute acceleration measurements:

ṗi = vi

v̇i = − 1
γi

∑
j∈Ni

ωij [kp(pi − pj ) + kv (vi − vj ) − v̇j ] (25)

where γi =
∑

j∈Ni
ωij . The nonsingularity of γi has been

shown in Proposition 1. The design of control law (25) is inspired
by the consensus protocols for tracking time-varying references
in [11] and [12].

The stability of control law (25) is analyzed below.
Theorem 8 (Time-varying leader accelerations): Under As-

sumptions 1–3, if the leader acceleration v̇∗
� (t) is time varying
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and continuous, then the tracking error δpf
(t) under the action

of control law (25) converges to zero globally and exponentially
fast.

Proof: Multiplying γi on both sides of (25) gives∑
j∈Ni

ωij (v̇i − v̇j ) =
∑
j∈Ni

ωij [−kp(pi − pj ) − kv (vi − vj )]

whose matrix-vector form is

Ω̄f f v̇f + Ω̄f � v̇
∗
�

= −kp(Ω̄f f pf + Ω̄f �p
∗
�) − kv (Ω̄f f vf + Ω̄f �v

∗
� )

= −kp Ω̄f f δpf
− kv Ω̄f f δvf

.

It follows that v̇f = −kpδpf
− kv δvf

− Ω̄−1
f f Ω̄f � v̇

∗
� . Conse-

quently, δ̇vf
= v̇f + Ω̄−1

f f Ω̄f � v̇
∗
� = −kpδpf

− kv δvf
. Then, the

error dynamics can be expressed as[
δ̇pf

δ̇vf

]
=

[
0 I

−kpI −kv I

][
δpf

δvf

]
. (26)

The eigenvalue of the state matrix is λ = (−kv ±√
k2

v − 4kp)/2, which always has negative real part for any
kp , kv > 0. The global and exponential convergence follows. �

As can be seen from the error dynamics (26), the role of the
absolute acceleration measurement is to eliminate the term con-
taining v̇∗

� . In practice, the acceleration can be transmitted via
wireless communication from agent j to agent i or calculated us-
ing differentiation of the velocity. In either case, the acceleration
measurement will be corrupted by errors. If the measurement
error is bounded (or sufficiently small), the tracking error would
be bounded (or sufficiently small). Note that control law (25)
cannot be implemented in each agent’s local reference frame
due to the requirement of the absolute velocity measurement.

VI. AFFINE FORMATION CONTROL SUBJECT TO

CONSTRAINTS

This section studies affine formation control subject to non-
holonomic motion and velocity saturation constraints. Here, we
only consider the case where the leaders are stationary. The case
of moving leaders will be studied in the future.

A. Unicycle Agents in the Plane

Consider a group of unicycle agents moving in the plane. Let
pi = [xi, yi ]T ∈ R2 and θi ∈ R be the position coordinate and
heading angle of agent i, respectively. The motion of robot i is
governed by the unicycle model

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi (27)

where vi ∈ R and wi ∈ R are the linear and angular velocities to
be designed. Here, vi > 0 means the agent moves forward, and
vi < 0 backward, and wi > 0 means the agent turns its heading
vector to the left (i.e., counterclockwise), and wi < 0 to the right

(i.e., clockwise). Suppose that vi and wi are constrained by

−vb
i ≤ vi ≤ vf

i

−wr
i ≤ wi ≤ wl

i

where vf
i , vb

i > 0 are the maximum forward and backward lin-
ear speeds, respectively. The constants wr

i , w
l
i > 0 are the max-

imum left-turn and right-turn angular speeds, respectively. De-
fine the saturation functions for the linear and angular speeds
for agent i as

satvi
(x) =

⎧⎪⎨
⎪⎩

−vb
i , x ∈ (−∞,−vb

i )

x, x ∈ [−vb
i , v

f
i ]

vf
i , x ∈ (vf

i ,+∞)

satwi
(x) =

⎧⎪⎨
⎪⎩

−wr
i , x ∈ (−∞,−wr

i )
x, x ∈ [−wr

i , w
l
i ]

wl
i, x ∈ (wl

i,+∞).
(28)

Note that the saturation bounds vf
i , vb

i , w
r
i , w

l
i may differ for

different agents.
1) Case Without Saturation Constraints: First consider

the case without velocity saturation constraints. Inspired by
[30], the affine formation control law for the unicycle model
is designed as

vi = [cos θi, sin θi ]
∑
j∈Ni

ωij (pj − pi)

wi = [− sin θi, cos θi ]
∑
j∈Ni

ωij (pj − pi), i ∈ Vf . (29)

Let hi = [cos θi, sin θi ]T , h⊥
i = [− sin θi, cos θi ]T , and fi =∑

j∈Ni
ωij (pj − pi), where hi represents the heading vector

of the unicycle and h⊥
i is orthogonal to hi . Note that fi is the

control law for the single-integrator model in (11). With these
notations, control law (29) can be written as vi = hT

i fi and
wi = (h⊥

i )T fi . Substituting the control law into the unicycle
model in (27) yields

ṗi = hih
T
i fi

ḣi = h⊥
i (h⊥

i )T fi. (30)

The geometric interpretation of (30) is that the linear and angular
velocities are the orthogonal projections of fi onto hi and h⊥

i ,
respectively. The angular velocity aims to turn the heading of
the unicycle to align with fi .

Control law (29) can be implemented in each agent’s local ref-
erence frame. To see that, let pji = pj − pi and Ri = [hi, h

⊥
i ]T .

Then, Ri is the rotational transformation from the global ref-
erence frame to agent i’s local reference frame. As a result,
p

(i)
j i = Ripji is the relative position of agent j measured in

agent i’s local frame. Consider the following control law:

ṗ
(i)
i = e1e

T
1

∑
j∈Vi

ωij p
(i)
ji

ḣ
(i)
i = e2e

T
2

∑
j∈Vi

ωij p
(i)
ji
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where ṗ
(i)
i , ḣ

(i)
i ∈ R2 are the linear and angular velocities ex-

pressed agent’s local reference frame, and e1 , e2 ∈ R2 are the
first and second columns of the identity matrix, respectively.
Note that the above control law merely requires locally measured
relative positions, and it is equivalent to (30) due to ṗ

(i)
i = Riṗi ,

ḣ
(i)
i = Riḣi , RT

i e1 = hi , and RT
i e2 = h⊥

i .
The stability of control law (29) can be analyzed similar

to [30]. However, since the leader–follower affine formation
control law was not specifically analyzed in [30], we present a
proof here by fully considering the specific properties of this
control law.

Theorem 9 (Unicycles without saturation constraints): Un-
der Assumptions 1–3, if the leader velocity ṗ∗� is constantly zero,
then the tracking error δpf

(t) under the action of control law
(29) converges to zero globally and asymptotically.

Proof: Consider the Lyapunov function

V =
1
2
δT
pf

Ω̄f f δpf
.

Note that f = −Ω̄f f δpf
, where f = [· · · fT

i · · · ]T ∈ Rdnf . The
time derivative of V is

V̇ = δT
pf

Ω̄f f δ̇pf
= −fT δ̇pf

= −
∑
i∈Vf

fT
i hih

T
i fi ≤ 0.

Since V̇ ≤ 0, V is nonincreasing and bounded from below. As
a result, V converges as t → ∞. Moreover, since V (t) ≤ V (0),
‖δpf

‖ is bounded from above for all t.
We next show that V̇ is uniformly continuous1 in t by showing

that hi and fi are both uniformly continuous in t. First, since
f = −Ω̄f f δpf

and ‖δpf
‖ is always bounded, we know ‖f‖

is always bounded. Second, since ḣi = h⊥
i (h⊥

i )T fi , we have
‖ḣi‖ ≤ ‖fi‖ and hence ḣi is always bounded. It then follows
that hi is uniformly continuous in t. Third, since f = −Ω̄f f δpf

,
we have ḟ = −Ω̄f f δ̇pf

= −Ω̄f f ṗf = Ω̄f f DΩ̄f f δpf
, where

D = diag(hn� +1h
T
n� +1 , . . . , hnhT

n ) ∈ R(2nf )×(2nf ) . As a re-
sult, ‖ḟ‖ ≤ ‖Ω̄f f ‖2‖D‖‖δpf

‖, and hence, ḟ is always bounded.
It then follows that f is uniformly continuous.

The uniform continuity of hi and fi implies that V̇ is uni-
formly continuous in t. It then follows from the Barbalat’s
Lemma [31, Lemma 8.2] that V̇ → 0 as t → ∞. Note that
V̇ → 0 implies hT

i fi → 0 for all i ∈ Vf . It is further implied
that the system converges to either fi = 0 or hi ⊥ fi but fi �= 0.
In the first case, it follows that f = −Ω̄f f δpf

= 0 ⇒ δpf
= 0.

The second case is impossible. To see that, assume hi ⊥ fi but
fi �= 0 for certain i. Since ṗi = hih

T
i fi = 0 for all i ∈ Vf , all

the agents are stationary and hence fi is time invariant. However,
when hi ⊥ fi , we have ‖ḣi‖ = ‖h⊥

i (h⊥
i )T fi‖ = ‖fi‖ �= 0, vec-

tor hi keeps rotating. It is impossible to maintain hi ⊥ fi if fi

is time invariant, whereas hi is rotating. �

1A function f (x) is uniformly continuous in x if for any ε > 0, there exists
δ > 0 such that ‖f (x1 ) − f (x2 )‖ < ε for every pair of x1 and x2 satisfying
‖x1 − x2‖ < δ. A useful sufficient (yet not necessary) condition for uniform
continuity is that if a function is differentiable and its derivative is bounded,
then the function is uniformly continuous. This sufficient condition is frequently
used in the proof of Theorems 9 and 10.

The initial heading angles {θi(0)}i∈Vf
do not affect the global

convergence. The final heading angles of {θi(∞)}i∈Vf
are not

specified.
2) Case With Saturation Constraints: We now consider

the case with velocity saturation constraints. The proposed affine
formation control law for unicycle i ∈ Vf is

vi = satvi

⎧⎨
⎩[cos θi, sin θi ]

∑
j∈Ni

ωij (pj − pi)

⎫⎬
⎭

wi = satwi

⎧⎨
⎩[− sin θi, cos θi ]

∑
j∈Ni

ωij (pj − pi)

⎫⎬
⎭ . (31)

Control law (31) can be rewritten as vi = satvi
(hT

i fi) and wi =
satwi

((h⊥
i )T fi). Substituting into the unicycle model in (27)

yields

ṗi = hisatvi
(hT

i fi)

ḣi = h⊥
i satwi

((h⊥
i )T fi). (32)

The global stability of the control law is proved in the following.
Theorem 10 (Unicycles subject to saturation constraints):

Under Assumptions 1–3, if the leader velocity ṗ∗� is constantly
zero, then the tracking error δpf

(t) under the action of control
law (31) converges to zero globally and asymptotically.

Proof: First of all, rewrite the saturation function as

satvi
(hT

i fi) = κih
T
i fi

where

κi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vb
i

−hT
i fi

, hT
i fi ∈ (−∞,−vb

i )

1, hT
i fi ∈ [−vb

i , v
f
i ]

vf
i

hT
i fi

, hT
i fi ∈ (vf

i ,+∞).

(33)

It is easy to see that 0 < κi ≤ 1. Then, control law (32) can be
rewritten as

ṗi = κihih
T
i fi.

The time derivative of the Lyapunov function V =
δT
pf

Ω̄f f δpf
/2 is

V̇ = −
∑
i∈Vf

κif
T
i hih

T
i fi ≤ 0.

Since V̇ ≤ 0, V is nonincreasing and bounded from below. As
a result, V converges as t → ∞. Moreover, since V (t) ≤ V (0),
‖δpf

‖ is bounded from above for all t. Since f = −Ω̄f f δpf
,

‖f‖ is bounded from above and so is ‖hT
i fi‖. As a result, there

exists a lower bound κmin ∈ (0, 1) such that κmin ≤ κi ≤ 1 for
all t.

We next show that V̇ is uniformly continuous in t by showing
that hi , fi , and κi are all uniformly continuous in t. First, since
‖ḣi‖ = ‖h⊥

i satwi
[(h⊥

i )T fi ]‖ ≤ max{wl
i, w

r
i }, hi is uniformly

continuous in t for all i ∈ Vf . Second, since f = −Ω̄f f δpf
,

we have ḟ = −Ω̄f f δ̇pf
= −Ω̄f f ṗf = Ω̄f f DΩ̄f f δpf

, where
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D = diag(κn� +1hn� +1h
T
n� +1 , . . . , κnhnhT

n ) ∈ R(2nf )×(2nf ) .
As a result, ‖ḟ‖ ≤ ‖Ω̄f f ‖2‖D‖‖δpf

‖. Since ‖D‖ =
maxi∈Vf

‖κihih
T
i ‖ = 1, ‖ḟ‖ is always bounded, and hence, f

is uniformly continuous. Third, it can be easily verified that κi

is uniformly continuous in (hT
i fi) by the definition of uniform

continuity (though κi is not differentiable). Since both hi and fi

are uniformly continuous in t as proved above, κi is uniformly
continuous in t.

The uniform continuity of hi, fi , κi implies that V̇ is uni-
formly continuous in t. It then follows from the Barbalat’s
Lemma [31, Lemma 8.2] that V̇ → 0 as t → ∞. Since κi ≥
κmin for all t, V̇ → 0 implies hT

i fi → 0 for all i ∈ Vf . The rest
of the proof is similar to the proof of Theorem 9. �

Control law (32) can be further generalized to incorporate
obstacle avoidance by replacing the variable fi in ḣi with an-
other velocity vector. See [30, Th. 3 and Sec. V-A] for more
information.

B. Nonholonomic Agents in Three Dimensions

Consider a group of nonholonomic agents moving in R3 . Let
pi = [xi, yi , zi ]T ∈ R3 be the position of agent i. The velocity
direction of agent i is characterized by the yaw and pitch angles
αi and βi , respectively. The motion of agent i is governed by
the 3-D nonholonomic model

ẋi = vi cos βi cos αi

ẏi = vi cos βi sin αi

żi = vi sin βi

α̇i = wαi

β̇i = wβi
(34)

where vi, wαi
, wβi

∈ R are the linear and angular velocities
to be designed. Suppose that vi , wαi

, and wβi
are constrained

by−vmin
i ≤ vi ≤ vmax

i ,−wmin
αi

≤ wαi
≤ wmax

αi
, and−wmin

βi
≤

wβi
≤ wmax

βi
, where the bounds are constant. Let satvi

, satwα i
,

and satwβ i
be the saturation functions for vi , wαi

, and wβi
,

respectively. Their definitions are similar to (28).
1) Case Without Saturation Constraints: We first address

the case without saturation constraints. The proposed affine for-
mation control law for agent i ∈ Vf is

vi = [cos βi cos αi, cos βi sin αi, sin βi ]fi

wαi
=
[
− sin αi

cos βi
,
cos αi

cos βi
, 0
]
fi

wβi
= [− sin βi cos αi,− sin βi sin αi, cos βi ]fi (35)

where fi = −∑j∈Vi
ωij (pi − pj ). The global stability of the

control law is proved in the following.
Theorem 11 (3-D nonholonomic agents without saturation

constraints): Under Assumptions 1–3, if the leader velocity ṗ∗�
is constantly zero, the tracking error δpf

(t) under the action of
control law (35) converges to zero globally and asymptotically.

Proof: The unit heading vector of agent i is

hi =

⎡
⎢⎣

cos βi cos αi

cos βi sin αi

sin βi

⎤
⎥⎦ .

Then, the 3-D nonholonomic model in (34) can be rewritten as

ṗi = vihi

ḣi =

⎡
⎢⎣
− cos βi sin αi − sin βi cos αi

cos βi cos αi − sin βi sin αi

0 cos βi

⎤
⎥⎦
[

α̇i

β̇i

]
.

Substituting control law (35) into the above equations yields

ṗi = hih
T
i fi

ḣi =

⎡
⎢⎣
− cos βi sin αi − sin βi cos αi

cos βi cos αi − sin βi sin αi

0 cos βi

⎤
⎥⎦

⎡
⎣ − sin αi

cos βi

cos αi

cos βi
0

− sin βi cos αi − sin βi sin αi cos βi

⎤
⎦ fi

= (I3 − hih
T
i )fi.

Consider the Lyapunov function V = 1/2δT
pf

Ω̄f f δpf
. The time

derivative is V̇ = −∑i∈Vf
fT

i hih
T
i fi ≤ 0. The rest of the proof

is similar to the proof of Theorem 9. �
The initial values of the angles, {αi(0), βi(0)}i∈Vf

, do not
affect the global convergence. The final values of the angles,
{αi(∞), βi(∞)}i∈Vf

, are not specified.
2) Case With Saturation Constraints: We now consider

the saturation constraints and propose the following control law:

vi = satvi
{[cos βi cos αi, cos βi sin αi, sin βi ]fi}

wαi
= satwα i

{[
− sin αi

cos βi
,
cos αi

cos βi
, 0
]

fi

}

wβi
= satwβ i

{[− sin βi cos αi,− sin βi sin αi, cos βi ]fi}
(36)

where fi = −∑j∈Vi
ωij (pi − pj ). The global stability of the

control law is proved in the following.
Theorem 12 (3-D nonholonomic agents with saturation con-

straints): Under Assumptions 1–3, if the leader velocity ṗ∗� is
constantly zero, then the tracking error δpf

(t) under the action of
control law (36) converges to zero globally and asymptotically.

Proof: The unit heading vector of agent i is hi =
[cos βi cos αi, cos βi sin αi, sin βi ]T . Under control law (36),
we have ṗi = hisatvi

(hT
i fi) = κihih

T
i fi , where κi is given

in (33). The time derivative of the Lyapunov function V =
1/2δpf

Ω̄f f δpf
is V̇ = −∑i∈Vf

κif
T
i hih

T
i fi ≤ 0. The rest of

the proof is similar to Theorem 10. �
Note that the 3-D nonholonomic model in (34) is valid only

if βi �= ±π/2 because the yaw angle αi is undefined when βi =
±π/2. This singularity corresponds to the special case where the
agent’s heading is parallel to the z-axis of the global reference
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frame. In this section, we simply assume that βi �= ±π/2 for
all t. If this assumption is invalid, this model and the proposed
control laws would become invalid. In order to eliminate the
singularity, one may use a unit vector to represent the heading
instead of parameterizing it by the yaw and pitch angles.

VII. IMPLEMENTATION AND SIMULATION

To implement the proposed control laws, the first step is to
design a nominal formation satisfying Assumptions 1–3. To
satisfy Assumption 1, the nominal configuration must affinely
span Rd . To satisfy Assumption 2, the nominal formation may
be designed to be generically universally rigid. To satisfy As-
sumption 3, at least d + 1 agents that affinely span Rd in the
nominal configuration must be selected as leaders. Once the
nominal formation has been designed, the next step is to calcu-
late the stress matrix. Calculating the stress matrix is nontrivial.
It has been shown in [22] that this problem can be formulated
as a dynamic programming problem. Here, we present an alter-
native formulation.

A. Calculation of Equilibrium Stresses

Let ω be the stress vector of the nominal formation. Consider
an arbitrary orientation of the undirected graph G and let H ∈
Rm×n be the incidence matrix. Let hi ∈ Rm be the ith column
of H , and hence, H = [h1 , . . . , hn ]. Define

E =

⎡
⎢⎢⎣

P̄ T (r)HT diag(h1)
...

P̄ T (r)HT diag(hn )

⎤
⎥⎥⎦ ∈ Rn(d+1)×m . (37)

Let z1 , . . . , zq ∈ Rm be a basis of Null(E). In practice, an
orthogonal basis of Null(E) can be obtained by calculating
the singular value decomposition (SVD) of E. On the other
hand, suppose the SVD of P̄ (r) is P̄ (r) = UΣV T . Let U =
[U1 , U2 ] where U1 consists of the first d + 1 columns of U .
Define Mi = UT

2 HT diag(zi)HU2 for i = 1, . . . , q. Then, the
equilibrium stress can be calculated as follows.

Proposition 2 (Calculation of the stress matrix): The equi-
librium stress of the nominal formation is

ω =
q∑

i=1

cizi

where c1 , . . . , cq satisfy the linear matrix inequality (LMI)

q∑
i=1

ciMi > 0. (38)

Proof: Since Ω = HT diag(w)H and ΩP̄ (r) = 0, we have
P̄ T (r)HT diag(ω)H = P̄ T (r)HT diag(ω)[h1 , . . . , hn ] = 0.
Since diag(ω)hi = diag(hi)ω, we obtain P̄ T (r)HT diag(hi)
ω = 0 for all i, and consequently, Eω = 0 where E is given
in (37). As a result, ω ∈ Null(E) and ω can be expressed
as ω =

∑q
i=1 cizi , where c1 , . . . , cq ∈ R are the coefficients

to be determined. According to [22, Th. 3.3], rank(Ω) =
n − d − 1 if and only if UT

2 ΩU2 = UT
2 HT diag(ω)HU2 > 0.

Substituting ω =
∑q

i=1 cizi , into UT
2 HT diag(ω)HU2 gives

Fig. 3. Nominal formation in the simulation example. The equilibrium
stress is plotted on each edge. Here, the stress is normalized so that its
norm is one. The stress matrix is positive semidefinite and the eigenval-
ues are {1.4432, 1.3218, 0.5967, 0.3383, 0, 0, 0}. Note that the configura-
tion of the nominal formation is not generic because there exist collinear
agents.

∑q
i=1 ciU

T
2 HT diag(zi)HU2 =

∑q
i=1 ciMi > 0. In order to

calculate the coefficients, we only need to find c1 , . . . , cq that
satisfies the LMI in (38). �

The LMI problem in Proposition 2 is a feasibility problem
that can be numerically solved using the Matlab LMI Toolbox.

B. Simulation Examples

We next present two simulation examples. The nominal for-
mation for the two simulation examples is given in Fig. 3, where
the first three agents are selected as leaders and the rest as fol-
lowers. Since the three leaders in the nominal formation are
not collinear, they affinely span the plane. By using the method
proposed in Proposition 2, we calculate an equilibrium stress,
which has been depicted in Fig. 3. The equilibrium stress is nor-
malized so that its norm is unit. The corresponding stress matrix
is positive semidefinite and satisfies rank(Ω) = n − d − 1 = 4.

The first simulation example shown in Fig. 4 demonstrates
the control law in (25) for double-integrator agent dynamics.
As can be seen, the formation keeps maneuvering to change
its centroid, orientation, scale, and geometric pattern to avoid
obstacles such as passing through narrow passages. The tracking
error remains zero when the formation maneuvers.

In the simulation, the trajectories of the three leaders are gen-
erated in advance. In practical applications, the leaders may
generate proper trajectories in real time based on the task re-
quirement and obstacles in the environment. In addition, it must
be noted that the affine span condition of the leaders in Theo-
rem 1 is for the nominal formation. The leaders do not need to
satisfy this condition when the formation maneuvers. For exam-
ple, as shown in the simulation result, the leaders may become
collinear and, hence, do not affinely span R2 . Finally, in the
simulation, the acceleration feedback is delayed by 0.001 s. It
is observed in the simulation that larger delays would result
in larger tracking errors, though the tracking errors are always
bounded.

The second simulation example as shown in Fig. 5 demon-
strates the control law in (31) for unicycle agents subject to
velocity saturation constraints. In this example, the leaders
are stationary. The Lyapunov function converges monotoni-
cally to zero. Note that the relative positions of the leaders are
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Fig. 4. Simulation example to illustrate control law (25) for the double-integrator agent dynamics. The control gains are chosen as kp = 0.5 and
kv = 2. The simulation animation can be found at https://youtu.be/HyCn8r7LBZw.
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Fig. 5. Simulation example to illustrate control law (31) for the unicycle
model with velocity saturation constraints.

different from those in the nominal formation. As a result, the
final formation is an affine transformation of the nominal for-
mation. It is shown that the collinearity and parallel lines are
preserved in the final formation though the shape of the final
formation is distorted.

For the sake of simplicity, undirected lines are used to repre-
sent the interactions among the agents in the above simulation
results. However, it must be noted that the interaction between

a follower and a leader is directional instead of bidirectional
(or undirected) because the leaders do not need to receive the
followers’ information.

VIII. CONCLUSION

This paper proposed a new approach based on stress matrices
to achieve formation maneuver control in arbitrary dimensions.
Distributed control laws for single-integrator, double-integrator,
and unicycle agent models have been proposed and proved to
be globally stable. The proposed control laws can track any
target formation that is a time-varying affine transformation
of a nominal formation. As a result, the centroid, orientation,
scales in different directions, and other geometric parameters
of the formation can all be changed continuously. The control
laws do not require a common global orientation if the relative
measurements can be measured in each agent’s local reference
frame.

Stress matrices can be viewed as generalized graph Lapla-
cian matrices with negative or zero edge weights. The linear
affine formation control laws proposed in this paper have sim-
ilar expressions as consensus protocols or containment control
laws (i.e., consensus protocols with multiple leaders) [32], [33].
The work presented in this paper demonstrated that with nega-
tive edge weights, the consensus-type control laws may exhibit
many new interesting features. Consensus problems over net-
works with negative weights have received growing research
attention in recent years [34], [35]. There are several important
topics for future research. For example, the results presented in
this paper may be generalized by considering more complicated
agent dynamics, motion constraints, and directed underlying
graphs.
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