
MyOrder API Framework
Developer Guide

MOFramework 0.0.1

 MyOrder Framework Developer Guide - v 0.0.1 1

1. Introduction

2. Installation
Cocoapods installation
Manual installation

3. Configuration

4. Architecture
Introduction
Framework Components

Model
DAOs
Categories

5. Modules
Auth
Shop
Cart
Cinema
Events
Favorites
Parking
ThuisBezorgd
ThuisAfgehaald
Stories
Generic

APPENDIX A: Endpoints used

APPENDIX B: Code samples
MOFNetworkConnection animation handlers
MOFCartDAO checkout process
MOFExample’s AppDelegate

3

4
4
4

6

7
7
8
8
9
10

11
11
11
13
15
15
16
16
17
18
19
20

22

22
22
23
24

 MyOrder Framework Developer Guide - v 0.0.1 2

1. Introduction

MyOrder Framework (code named as MOFramework) is a public iOS framework created by
MyOrder to provide external developers with access to the vast amount of features and
functionalities delivered by MyOrder. To name a few, it provides code for accessing the whole
catalog of more than 11.000 merchants, managing parking tickets or ordering in external services
like ThuisBezorgd.nl or ThuisAfgehaald.nl among many others.

The framework has been used in the development of the MyOrder app and other white label apps
for external customers. Therefore, any functionality used in the official MyOrder app will be
available for external developers to use, giving them the opportunity to develop full apps with their
particular business requirements and UI.

It is important to mention that MOFramework depends on the MyOrder SDK used for payments,
and that it does not contain any UI but a rich set of model objects and DAOs to access the
MyOrder backends easily.

The present document is divided in several sections explaining installation and configuration
instructions, architecture, all modules provided and some extra appendixes with useful information
and code samples.

 MyOrder Framework Developer Guide - v 0.0.1 3

2. Installation
MOFramework can be installed with Cocoapods or manually in your project.

Cocoapods installation
Add the following to your Podfile:

pod 'MyOrder-MOFramework'

After running pod install you would get all required dependencies. Note that depending on the
payment methods you want to provide you will also need to install other third party libraries
(Paypal, CardIO,...). More information at http :// myorder . nl / sdk

Manual installation
If you prefer a manual installation instead of Cocoapods, then do the following:

1. Download a copy of the MOFramework

2. Drag & Drop the MOFramework.framework from Finder into your project (make sure the
copy option is selected)

3. Make sure that the following frameworks are added to your project:
○ CoreLocation
○ PassKit

 MyOrder Framework Developer Guide - v 0.0.1 4

http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk

4. Go to your project Build Settings, and in the “Header Search Paths” add “$
{SRCROOT}/MOFramework.framework” as recursive. Note that if you have changed the
location of MOFFramework.framework you need to update the previous path accordingly.

5. Install MyOrderSDK: The framework uses and requires the MyOrderSDK payments library.
Check out the official MyOrderSDK page for installation instructions on
http :// myorder . nl / sdk

6. Install the following external dependencies with instructions provided in their webpages:
○ LUKeyChainAccess
○ Reachability

A copy of all external dependencies can be found in the MOFExample project, although
downloading the code from their original repository is preferred.

 MyOrder Framework Developer Guide - v 0.0.1 5

https://github.com/tonymillion/Reachability
https://github.com/TheLevelUp/LUKeychainAccess
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk

3. Configuration

After installing the framework in your project, you still need to do a few steps before starting to
work with it. The following code is normally placed in your appDelegate -
(BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions, although other
locations are possible.

1. Set the server baseUrl. Note that different environments exist on a “per client” base.
Check with MyOrder what is the proper environment for your application. Example:

[MOFNetworkConnection setBaseUrl:@"https://production.myorder.nl/api/v1/"];

2. Optionally, set animation handlers. An example used in MyOrder app is provided in
Appendix B.

[MOFNetworkConnection setAnimationHandler:^(MOFNetworkConnection *connection,
MOFNetworkAnimationStatus status) {
 //Add custom UI feedback here for your app
}];

3. Configure the MyOrderSDK library. More info about how to do this in the official MyOrder
documentation page: http :// myorder . nl / sdk .

When finished with the previous setup, please note that all DAOs require to be instantiated before
their use. Example:

[MOFAuthDAO instantiate];

More info about the DAOs and instantiation can be found on next sections.

Check the MOFExample project’s AppDelegate or Appendix B for a complete setup example.

 MyOrder Framework Developer Guide - v 0.0.1 6

http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk

4. Architecture

Introduction
An app using the MyOrder Framework will have the following architecture:

There are 3 main components:

● 3rd party app: This box refers to the code from the external developer. It contains UI and
uses the other 2 components for communicating with the MyOrder environment.

● MOFramework: This component is the one explained in this document. It contains all code
necessary to communicate with the MyOrder services. The framework is divided into
modules (see list of them in following section). Each module provides functionality related
to one specific feature of the Framework and they are composed of up to three basic
components (Model, DAOs and Categories). All components can be imported with a
header file called “MOFXXX.h” where XXX matches the module name. It is important to
mention that the framework does not provide any UI, it only provides data. It is the
developer’s duty to create any custom UI to use the data depending on the app needs.

● MyOrderSDK: This component is an independent library also provided by MyOrder and
used to perform payments and manage your wallet. It contains UI and logic for all
operations, and it will be the component used for performing the login, starting a payment,
checking your wallet or listing your previous receipts. The SDK can be used without the
Framework, but not the other way around because the Framework depends on the SDK for
the sessions and completing payments. Check out the official MyOrder page for more
information at http :// myorder . nl / sdk

 MyOrder Framework Developer Guide - v 0.0.1 7

http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk
http://myorder.nl/sdk

Framework Components

All modules are composed by a combination of Categories, DAOs and Model
classes. Here is an overview of each:

Model
Model classes in the MOFramework are regular objects extending the MOFModelObject base
class and optionally implementing NSCoding protocol. This class provides some basic persistence
methods to keep objects in memory, cache or disk, and provides basic implementations for
mappers. You would normally not use any of the following methods, but they are provided as
a reference in case that an extension is needed:

+ (BOOL)existsObjectWithIdentifier:(id)identifier;
Returns whether an existing object of this type exists or not. Only valid in combination with
persistence.

+ (instancetype)objectWithIdentifier:(id)identifier;
Returns an object with the existing identifier or creates a new one if none exist.

+ (NSArray *)objectsWithPredicate:(NSPredicate *)predicate sortedBy:
(NSArray *)sortDescriptors;
Returns an array of objects existing in the persistence store passing the predicate provided. Note
that depending on the persistence store this method might return no results.

- (void)save;
Inserts the object into the persistence context if it is not there yet. Automatically called by all the
`objectWithIdentifier:` alike methods.

- (void)delete;
Removes the object from the persistence context. A call to persist: is still required if you want to
persist changes on disk.

+ (void)persist:(BOOL)wait;
Persists all unsaved data in the persistence store. This method only does something when used in
combination with MOFModelObjectPersistenceDisk.

Relations in MOFModelObjects are done lazily by the use of categories with primary keys. This
means that querying a relation normally results in an object search and should therefore be
minimized when possible. Anyway, unlike CoreData based frameworks, most relations live in
memory and therefore are very fast.

Finally, an important note to make is that the model objects are shared across threads, so your
code should handle thread safety properly. No context switch is required to move objects
between threads as you would normally do with CoreData based frameworks.

 MyOrder Framework Developer Guide - v 0.0.1 8

DAOs
MOFModelObjects should not be used or created directly from third party apps. Instead, the
developer should make use of the DAO components. DAOs are very different depending on the
modules, but they all extend MOFBaseDAO and provide the same basic methods:

+ (void)instantiate;
Instantiates the sharedInstance if not created already. Call this method before start using a DAO. If
Unit test, use setSharedInstance to set a mock instead.

+ (instancetype)sharedInstance;
Returns the configured shared instance. Call instantiate or setSharedInstance before
using this method.

DAOs should always be instantiated at least once before its use, normally by calling the
instantiate method. This method will create a new instance of the DAO if none exists, resulting
on the initialization of other properties, notifications or dependencies that the DAO uses. Do not
instantiate a DAO if you do not plan to use it, as it could consume extra resources in your app. If
you want to use the DAO within a Unit Test, you can make use of the setShareInstance
method to set the shared instance to the object of your choice.

Apart from the shared methods, all DAOs follow the same naming convention when fetching data
from server. An example method could look like:

- (MOFNetworkConnection *)loadProductDetail:(MOFProduct *)product
 animation:(MOFNetworkAnimation)animation
 onResult:(MOFBaseDAOResultBlock)resultBlock
 onError:(MOFBaseDAOErrorBlock)errorBlock;

The previous example method is part of the MOFShopDAO and it is used for fetching a product
detail. The parameters it receives are the product that you want to fetch, an animation to use and a
result and error block that will be called on case of success or error; it returns the connection made
(if any). Lets take a closer look to them:

● animation: This parameter allows the developer to easily indicate the animation type to
apply. Note that passing an animation type does not mean that any UI will be shown.
Instead, you need to provide a callback block on the +(void)setAnimationHandler:
(MOFNetworkAnimationHandler)animationHandler of the
MOFNetworkConnection with the proper UI to show for each case. Passing the
animation type at this point will be reflected on the animationHandler block. An example
of the code used for the MyOrder app can be found in Appendix B.

● onResult: Contains a result block that will be executed when the data is fetched from the
server. MOFBaseDAO declares two different result blocks containing either a NSArray

 MyOrder Framework Developer Guide - v 0.0.1 9

response (when multiple results are expected) or an “id” response (when a single object is
expected). Other DAOs could potentially use different block formats if required, yet they are
documented clearly on their header file. For example:

onResult:^(MOFProduct *product) {
 [self configureViewWithProduct:product];
}

● onError: Contains an error block that will be executed in case of any error. Only one of

onSuccess: or onError: will be called, but never both. The error block contains an
NSError with extended details. An example use of the error block is:

onError:^(NSError *error) {
 //Do your own error handling
}];

● Returned (MOFNetworkConnection *): Most DAO operations will return an
MOFNetworkConnection object performing a network operation. When returned, it allows
the external developer to cancel it in case the app does not need the data anymore (before
receiving the response). Check the MOFNetworkConnection documentation for more
details about available methods.

All callback blocks are always called on the main thread independently of the original thread where
the DAO call was made.

More information about the specific DAOs can be found later in this document and in the HTML
code reference included with the framework.

Categories
Besides DAOs and Model objects, some modules can also include extra categories. This
categories are normally used to extend the functionality of external objects existing out of the
boundaries of the module, but dependent on it. For example, the MOFCart module includes a
category that extends MOFProduct (a model from MOFShop) with extra properties to read the
amount of products in the actual shopping cart. Check the modules below for more information
about existing categories.

 MyOrder Framework Developer Guide - v 0.0.1 10

5. Modules
MOFramework includes a big list of modules to encapsulate all the different features of a MyOrder
based app.

Auth
Auth module is one of the most important modules, as it is required for the rest to work properly.
Auth provides methods to perform an anonymous login and transform the anonymous session into
a user session when there is a login done in the MyOrder SDK. Anonymous sessions are similar in
behaviour to HTTP sessions, they are created once at the start of the app and they are used to
track the same user across multiple different requests, even if the user is not logged in.
Note that most of the DAOs require an existing session to be created (anonymous or non
anonymous) before performing any operation so it is a good practice to always instantiate this
DAO.

Model objects provided by the module are:

● MOFSession: Contains information about an existing session (anonymous or not), with
properties like the creation date associated phone number (if any) or customer Id.

● MOFUser: Contains user information like name, email, profile image or addresses.

Operations provided by MOFAuthDAO are:

● Get current session
● Login anonymously (create session)
● Logout
● Load user information
● Update user data
● Update user addresses
● Update user profile image

No extra categories are provided by this module.

Shop
Shop is the module used for fetching the MyOrder catalog, with a few exceptions (ThuisAfgehaald,
Cinema, Events or ThuisBezorgd). It provides quite a lot of model objects and DAOs and it is used
as the base for other catalogs.

Model objects provided by the module are:

● MOFMerchant: Contains information about a particular location. A merchant can be
understood as a restaurant, a shop or any other kind of location. It contains information

 MyOrder Framework Developer Guide - v 0.0.1 11

about the type, name, address, website, phone, categories, products, medias, fulfilment
methods or schedules. It also add some extra information like the open status, a coupons
count or pre-order and post-order information.

● MOFCategory: A menu card is composed of categories. Categories can contain other
subcategories and/or products. Categories also have information about the merchant,
name, details or medias among others.

● MOFProduct: Products are the main object in the catalog. They contain information about
the parent category, merchant, name, details, medias and prices. Besides, a product can
contain product options when it can be composite. For example, a “Burguer Menu” can be
composed of 3 options for the burger, the side dish and the drink.

● MOFProductOption: As the name suggest, a product option contains information about a
specific option for a composite product like the name, minimum/maximum amount of values
to chose and a list of values. In the “Burger Menu” example, a product option would be
“Kind of Drink”.

● MOFProductOptionValue: option values contain information about a specific value for a
particular option like the name, price adjustment or medias. In the “Burguer Menu”
example, a value for option “Drinks” would be “Coca-cola”.

● MOFFulfillmentMethod: Fulfillment method is the model associated to a particular
delivery method of a merchant. It includes information about the type, label, price
adjustment (if extra cost for a delivery), and method parameters. Note that fulfillment
methods are mainly used in the shopping cart, but also included on merchant level to allow
apps to filter or display information per merchant.

● MOFFulfillmentMethodParameter: Parameters are included in the extraInfo of a
fulfillment method and are required before proceeding to checkout. They contain
information like the name, type, available values, whether it is required or not and the
selected value. Selected values must be filled in by the user with information like his name,
company, pickup time,...

● MOFCheckIn: Temporal object used when performing a checkin action in a merchant.

● MOFCheckInStatus: Object containing the status of a checkin (checkin count and checkin
on/off).

● MOFCluster: Model class used to define aggregations of data (normally merchants) based
on location to be displayed in a map. It contains the coordinate and count.

● MOFCoupon: Not available yet.

 MyOrder Framework Developer Guide - v 0.0.1 12

Apart from model classes, the Shop module also includes a MOFShopDAO with the following
operations:

● Load all merchants based on types, location, search term, post code, city or external id.
● Load merchant clusters (for use in a map) based on types and locations
● Load a merchant detail, including the menu categories and products.
● Load a merchant status (open/close)
● Load all categories based on types or merchants.
● Load a category detail
● Load all products based on types, merchants, term, categories or external ids.
● Load a product detail
● Load the checkin status for a user and merchant
● Perform a checkin from a particular location in a merchant from a user
● Perform a checkout from a particular merchant

No extra categories are provided by this module.

Cart
Cart module is used for managing a shopping basket. It is important to note that the cart is
preserved on server side, so as long as the user is logged in with same credentials he will keep the
cart synchronized across devices. Shopping cart is also preserved when an anonymous user
makes a login.
An important note to make is that a cart can only contain items from one merchant, so adding a
product from a different merchant will perform a reset first. Besides, some merchant types like
cinemas only allow 1 single product in the cart (you can check it on the MOFMerchantType
object)

Model objects provided by the module are:

● MOFOrder: Order object contains information about a cart. It contains a list of items, prices,
associated merchant and fulfillment method among others.

● MOFOrderItem: Items contain information about a specific product configuration in the
cart. It contains information about the name, quantity, prices and the product. Note that
because a product can have options associated, the same product can be multiple times in
a cart in different items, each one with different option combinations.

This module makes use of MOFProduct, MOFFulfillmentMethod and
MOFFulfillmentMethodParameter. Check the Shop module for more information. It also uses
the MyOrderSDK for Payments (more information below).

The module also contains a MOFCartDAO with the following operations:
● Reset cart
● Load cart

 MyOrder Framework Developer Guide - v 0.0.1 13

● Add a new product (with options and quantity)
● Remove a product (all existing items with the product)
● Remove an specific item
● Update an item with new options and/or quantity
● Load all possible values of a fulfillment method parameters
● Select a fulfillment method and values
● Start checkout of cart
● Cancel unfinished checkout

To perform a full checkout, a 3rd party app needs to do the following:
1. Make a login (anonymous checkout is not allowed)
2. If needed, edit cart (add at least 1 product)
3. Ask user for a fulfillment method and all required method parameters
4. Send selected fulfillment method and pass all required values.
5. Start checkout: The result of checkout is a MOOrder already configured to be sent to the

MyOrder SDK for payment. An example of a checkout would be:

[[MOFCartDAO sharedInstance] startCheckoutWithAnimation:MOFNetworkAnimationHUD
 onResult:^(MOOrder *moOrder) {
 //Pays the MOOrder with the MyOrder SDK
 UIViewController *vc = [[MyOrder shared] paymentViewControllerForOrder:moOrder];
 [self.navigationController pushViewController:vc animated:YES];
 }
 onError:^(NSError *error) {
 //Handle error if custom handling wanted
 }];

After successfully starting a checkout the order is moved to a submitted status, waiting for
payment, and do not allow any change. If the payment does not succeed, it is responsibility of the
developer to call the cancel method to revert it back into a valid shopping cart order. More
information on how to detect errors, cancellations, etc. during a payment can be found in the
MyOrderSDK documentation.

Besides, the module provides the following categories:

● MOFProduct+Cart: Adds dynamic properties to easily fetch the items associated to a
particular product.

Cinema
Cinema module is the one used for managing merchants of type “cinema”
(kMOFMerchantTypeCinema).
Note that cinemas are like any other merchant, but its catalog is specialized and they provide a few
extra operations and models. For example, in a cinema merchant the movies are represented by
categories, dates are subcategories and times are the products. This whole hierarchy is abstracted
by the MOFMovie model object. Therefore, even if you can use the Shop module for cinema, we

 MyOrder Framework Developer Guide - v 0.0.1 14

strongly recommend to use this module instead for making its use easier. Times, as any other
MOFProduct, can be added to the cart.

Model objects provided by the module are:

● MOFMovie: This model agglutinates categories, subcategories and products related to a
movie in an abstract model. It provides simple accessors for fetching the movie details,
associated merchants, dates and times.

The module also contains a MOFCinemaDAO with the following operations:

● Load all movies based on merchants
● Load a movie detail

No extra categories are provided by this module.

Events
Events module is the one used for managing merchants of type “events”
(kMOFMerchantTypeEvents).
Note that events are like any other merchant, but its catalog is specialized and they provide a few
extra operations and models. For example, in an event merchant the events are represented by
categories, and then the location, date and time is part of a the product name, while the specific
ticket seat is a product option. This whole hierarchy is abstracted by the MOFEvent model object.
Therefore, even if you can use the Shop module for events, we strongly recommend to use this
module instead for making its use easier. As any other shop product, an event together with the
specific seat (option) can be added to the cart.

Model objects provided by the module are:

● MOFEvent: This model agglutinates categories, products and options related to an event in
an abstract model. It provides simple accessors for fetching the cities, dates, times and
products associated to an event.

No extra DAOs are provided by the module.

The module provides the following extra categories:

● MOFProduct+MOFEvents: Provides accessors for fetching the name, city, date and time
of an event in a product level. Note that this category requires the use of MOFEvent before
its use on the product.

 MyOrder Framework Developer Guide - v 0.0.1 15

Favorites
Favorite module allows to save any MOFModelObject into a favorites list stored in the device’s
file system. Note that in the current version this module does not have any synchronization with
server data, but it will provide it in future releases for MOFMerchant and MOFProduct objects
under the same API available nowadays. Because of that, we strongly suggest to avoid saving any
object other than the previous two, even if the current version supports it.

Model objects provided by the module are:

● MOFFavorite: This model object is used internally by the framework to store an
associated object in disk. As a third party developer you should not use this model directly
but rely on the provided DAO methods.

The module also contains a MOFFavoritesDAO with the following operations:
● Get all loaded favorites
● Check if an object is favorite
● Set an object as favorite
● Load all favorites from server (no op in current version)
● Save all favorites on server (no op in current version)

The module also provides the following extra categories:

● MOFModelObject+Favorites: Provides an easy way to fetch all favorited objects of a
particular model type and check if an instance is favorited.

Parking
The parking module is used to perform parking operations like check an existing session, stop or
extend it or create a new session. Note that all methods from this module require the user to be
logged in as a valid MyOrder user, so make sure to be logged in before its use.

Model objects provided by the module are:

● MOFParkingSession: This model class is responsible of providing all information for an
existing (or new) parking session. It includes address, end time, license plate, price, point id
or status among some others.

● MOFParkingPoint: This model object represents a particular parking point and it is
composed of an id (parking point number shown on parkimeters) and an address.

The module also contains a MOFParkingDAO with the following operations:
● Load all parking points for a particular location
● Load existing parking session
● Create a new parking session based on location/parking id and date
● Extend an existing parking session to a new date

 MyOrder Framework Developer Guide - v 0.0.1 16

● Stop an existing parking session
● Checkout a parking session with a license plate

To perform a full checkout, the 3rd party app needs to do the following flow:
1. Make login
2. Check no session already exists (if so, then use the extend method instead of create in 3.)
3. Create a parking session by location or parking point
4. Start checkout: The result of checkout is a MOOrder already configured to be sent to the

MyOrder SDK for payment. An example of a checkout would be:

[[MOFParkingDAO sharedInstance] checkoutParkingSession:session
 licensePlate:licensePlate
 animation:MOFNetworkAnimationHUD
 onResult:^(MOOrder *order) {
 //Pays the MOOrder with the MyOrder SDK
 UIViewController *vc = [[MyOrder shared] paymentViewControllerForOrder:order];
 [self.navigationController pushViewController:vc animated:YES];
 }
 onError:^(NSError *error) {
 //Handle error if custom handling wanted
 }];

After successfully starting a checkout the order is passed to the MyOrderSDK. More information on
how to detect errors, cancellations, etc. during a payment can be found in the MyOrderSDK
documentation.

No extra categories are provided by this module.

ThuisBezorgd
ThuisBezorg module is used to query the external service http :// www . thuisbezorgd . nl / . MyOrder
provides a module abstracting the particular details of this external provider into objects equivalent
to the ones provided by the Shop module. In fact, no models are provided by the module itself
because it uses the Shop ones.

DAOs provided by this module are a bit particular, as they extend the existing MOFShopDAO and
MOFCartDAO adding additional methods and intercepting the calls appropriately when the
merchant is of type “thuisbezorgd“ (kMOFMerchantTypeThuisBezorgd). This means that when
you instantiate the MOFTBShopDAO or MOFTBCartDAO they will replace the shared instance of
MOFShopDAO and MOFCartDAO by the TB version, and will pass all operations to the original one
if it is not a TB object. All this is done transparently for the external developer when the TB DAOs
are instantiated so you can use the regular Shop and Cart DAOs or keep using the TB counterpart
with the exact same results.

Besides the commented peculiarity of TB DAOs, MOFTBShopDAO also provide extra operations not
applicable to other Shop merchants:

 MyOrder Framework Developer Guide - v 0.0.1 17

http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/
http://www.thuisbezorgd.nl/

● Load a merchant detail with a delivery location or postcode

Also, note that check-in and favorite operations are not supported by TB merchants and products.

No extra categories are provided by this module.

ThuisAfgehaald
ThuisAfgehaald module is used to query the external service http :// www . thuisafgehaald . nl / . This
module requires the user to be logged in as it tries to use the credentials previously provided to
login on TA service. If the user can not be logged in in TA automatically, and error will be returned
in all endpoints until it successfully logs in TA with the corresponding login method in the DAO. It is
responsibility of the app developer to provide UI to perform the login on this service.

TA data is very different to the existing catalog of merchants and products, and because of that a
whole new set of model classes are provided:

● MOFTAMeal: This model class represents a meal in TA. It provides information about the
category, details, image, place, price, title or cook among others.

● MOFTACook: This model represents a cook in TA. It provides information like name, details,
followers, location, meals,...

● MOFTAThank: This class represents a “thanks” given in TA to a cook (similar in practice to a
review comment). It provides the comment, date, name of commentator and image.

● MOFTAPickUp: This class contains information of how many portions, date, etc can be
pickup of a particular meal. It is mainly used during ordering.

The module also contains a MOFThuisAfgehaaldDAO with the following operations:
● Login in TA service
● Load all meals based on location
● Load a meal detail
● Load a cook detail
● Follow/unfollow cook
● Request a TA meal with a quantity, comment and date
● Pickup a TA meal with a quantity and comment

Note that checkout logic is different in TA than other modules. There is no payment involved and
the user can either request a new meal or ask for pickup and existing portion (if available portions
exist).

 MyOrder Framework Developer Guide - v 0.0.1 18

http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/
http://www.thuisafgehaald.nl/

TA service will notify updates back to the app by the use of a push notification with the following
information (it is your responsibility as developer to handle the TA notifications properly if desired):

{
 "S", "TA",
 "T", "CON",
 "I": "123452"
}

Where:

● "S" is the source, this is "TA" for Home picked
● "T" is the type, this is for home picked: "REM", "CON" or "NEW"
● "I" is the ID of a Meal or Order depending on the type push message.

 REM = REMINDER, show voucher with order Id received
 CON = CONFIRMATION, show voucher with order Id received
 NEW = NEW meal, show meal detail screen with meal Id received

No extra categories are provided by this module.

Stories
The Stories module is meant to be used with user data like tickets, custom offers,... In current
version, the only functionality provided is for Tickets, but more will come in future releases. This
module requires a logged in user as it serves custom data per user.

Model objects provided by the module are:

● MOFTicket: Contains information about a ticket purchased by the user. When a user buys
an item in MyOrder, some merchants like cinemas or events will prefer to provide a ticket
besides the standard receipt. This class has properties for the date, merchant, summary,
time, code and barcode.

The module also contains a MOFTicketsDAO with the following operations:
● Load all tickets
● Load a ticket detail
● Mark a ticket as used

No extra categories are provided by this module.

 MyOrder Framework Developer Guide - v 0.0.1 19

Generic
Generic is a special module that agglutinates other cross app models and DAOs that do not belong
to any of the other defined modules and that have not enough entity to constitute a new module by
themselves.

Model objects provided by the module are:

● MOFMerchantType: This class represents a section in the app. There are several
merchant types provided, all of them corresponding a particular feature in MOFramework.
List of current types are “shop”, “cinema”, “events”, “offers”, “parking”, “thuisafgehaald” and
“thuisbezorgd”. New types might be added in future. Besides the type, this class also
contains some extra useful information like the name, icon image, sorting order, associated
disclaimer title and body, count of merchants around or unique tag among others.

● MOFAddress: This class is used by other entities in other modules and contains
information about an address, like name, city, street, house number, postcode or location.

● MOFMedia: Model object containing information about a media element (photo or image),
normally attached to merchants, categories, products and cart items.

● MOFSchedule: Model containing information about an opening schedule. This information
is normally used with a merchant, but other future uses might be added. It contains a title,
start time, end time, week day and open/close status.

● MOFBanner: Model class used to define a banner. A banner can contain some amounts,
dates, credits, image and are normally associated to a merchant or products.

The module also contains a few DAOS:

MOFCoreDAO: This DAO contains core operations like:
● Load all merchant types based on a location.
● Load all available cities based on merchant types and term.
● Make a version check to force/suggest users to update or show them some message

MOFNotificationsDAO: This DAO contains operations for configuring APNS:
● Register for APNS with a APNS token
● Unregister from APNS

MOFPassbookDAO: This DAO contains operations for dealing with Passbook:
● Load a Passbook associated to a MOFTicket
● Load a Passbook associated to a MOFOrder

MOFBannersDAO: This DAO contains operations for loading banners.

No extra categories are provided by this module.

 MyOrder Framework Developer Guide - v 0.0.1 20

 MyOrder Framework Developer Guide - v 0.0.1 21

APPENDIX A: Endpoints used

All endpoints used for the Framework are documented in an online page at:

http :// docs . myorderplaygroundrestapi . apiary . io /

APPENDIX B: Code samples

MOFNetworkConnection animation handlers

The following code is used on MyOrder app for setting the animation handler of the
MOFNetworkConnection. The code assumes the existence of a “toast” UI component called
MOAToastView and makes use of MOProgressHUD, provided by the MyOrder SDK, for the HUD
indicator. You could of course make use of different UI components depending on your app
requirements.

[MOFNetworkConnection setAnimationHandler:^(MOFNetworkConnection *connection,
MOFNetworkAnimationStatus status) {
 if (connection.animation == MOFNetworkAnimationToast) {
 switch (status) {
 case MOFNetworkAnimationStatusStart:
 [MOAToastView toastMessage:NSLocalizedString(@"downloading-
information",nil) duration:MOAToastViewDurationInfinite style:MOAToastViewStyleLoading
tag:-20];
 break;
 case MOFNetworkAnimationStatusError:
 [MOAToastView toastMessage:[connection.mapperError
localizedDescription] duration:MOAToastViewDurationLong style:MOAToastViewStyleError
tag:-21];
 case MOFNetworkAnimationStatusSuccess:
 [MOAToastView hideToastWithTag:-20];
 break;
 }
 }
 else {
 switch (status) {
 case MOFNetworkAnimationStatusStart:
 if (connection.animation == MOFNetworkAnimationHUD ||
connection.animation == MOFNetworkAnimationHUDWithConfirmation) {
 [MOProgressHUD show];
 }
 break;

 MyOrder Framework Developer Guide - v 0.0.1 22

http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/
http://docs.myorderplaygroundrestapi.apiary.io/

 case MOFNetworkAnimationStatusError:
 [MOProgressHUD showError:connection.mapperError];
 break;

 case MOFNetworkAnimationStatusSuccess:
 if (connection.animation == MOFNetworkAnimationHUDWithConfirmation
{
 [MOProgressHUD
showSuccessWithStatus:connection.successMessage];
 }
 else {
 [MOProgressHUD dismiss];
 }
 break;
 }
 }
 }];

MOFCartDAO checkout process

The following code shows how to make a checkout and pay for an order. It assumes that the cart is
already filled in with some products and that the user has been requested to select a fulfillment
method and fill in all its extra info values.

1. Select fulfillment method

//Set the selected fulfillment options
[[MOFCartDAO sharedInstance] selectFulfillmentMethod:fulfillmentMethod
 animation:MOFNetworkAnimationHUD
 onResult:^(MOFOrder *order) {
 //Continue to checkout
 [self checkoutWithPaymentMethod:@"MiniTix"];
} onError:^(NSError *error) {
 //Custom error handling if desired
}];

The previous code selects the fulfilment method and sends all values to the server. All fulfillment
values should be already filled in in the fulfillmentMethod.extraInfo options, by the use of
the selectedValue property. Note that some MOFFulfillmentMethodParameter might be
optional, and types kMOFFulfillmentMethodParameterTypeTimeBlock and
kMOFFulfillmentMethodParameterTypeBlockcan can only contain a preset list of values
(available in the values property after call to loadFulfillmentMethodValues:). Dates are
converted into strings of format HH:MM using the dateToValue: method of the
MOFFulfillmentMethodParameter.

 MyOrder Framework Developer Guide - v 0.0.1 23

When fulfillment has been selected, the order might be updated with a new price under very
unusual circumstances (for example in delivery if postalcode is very far away). On success, you
can proceed to checkout.

2. Start checkout

[[MOFCartDAO sharedInstance] startCheckoutWithAnimation:MOFNetworkAnimationHUD
 onResult:^(MOOrder *moOrder) {
 //MOOrder is a MyOrderSDK order ready for payment
 UIViewController *vc = [[MyOrder shared] paymentViewControllerForOrder:moOrder];
 [self.navigationController pushViewController:vc animated:YES];
} onError:^(NSError *error) {
 //Custom error handling if desired
}];

The previous code shows how to start a checkout. Note that the result of the checkout call is a
MOOrder, not a MOFOrder. The difference is that MOOrder is a MyOrder payment SDK version
ready to be sent to the payment SDK for checkout. In the previous example the payment is using
the simple method paymentViewControllerForOrder:, but a most advanced one with the
use of transactionViewControllerForProvider: could be used (providing callbacks for
error, cancellation, success,...). Check the MyOrder Payment SDK documentation for more
information.

When the user completes the payment, the fulfillment will automatically start, so no extra
communication is required from the app. Also note that starting the checkout moves the cart to a
submitted state, thus not allowing any further change. If you want to change it back to a cart, you
need to call the cancelCheckoutOfOrder: method, but only if the order has not been paid yet.

MOFExample’s AppDelegate

The following code shows an example configuration of MOFramework and MyOrder SDK used in
the MOFExample project. It configures the SDK and MOFramework to use the Playground
environment. You might use it as template but please check the Configuration section for more
details.

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions
{
 // MyOrder SDK setup
 MyOrder *myOrder = [MyOrder shared];
 myOrder.apiKey = @"36bd8913-bf56-4aa0-9492-49a3240597ea";
 myOrder.apiSecret = @"12H@c9kT$At";
 myOrder.URLScheme = @"mof-example";
 myOrder.environment = MyOrderEnvironmentPlayground;

 //MOFramework setup
 [MOFNetworkConnection setBaseUrl:@"http://playground-java.myorder.nl/api/v1/"];

 MyOrder Framework Developer Guide - v 0.0.1 24

 [MOFNetworkConnection setAnimationHandler:^(MOFNetworkConnection *connection,
MOFNetworkAnimationStatus status) {
 switch (status) {
 case MOFNetworkAnimationStatusStart:
 if (connection.animation == MOFNetworkAnimationHUD ||
connection.animation == MOFNetworkAnimationHUDWithConfirmation) {
 [MOProgressHUD show];
 }
 break;

 case MOFNetworkAnimationStatusError:
 [MOProgressHUD showError:connection.mapperError];
 break;

 case MOFNetworkAnimationStatusSuccess:
 if (connection.animation == MOFNetworkAnimationHUDWithConfirmation) {
 [MOProgressHUD showSuccessWithStatus:connection.successMessage];
 }
 else {
 [MOProgressHUD dismiss];
 }
 break;
 }
 }];

 //Instantiate desired modules. For this demo only the following:
 [MOFAuthDAO instantiate];
 [MOFShopDAO instantiate];

 return YES;
}

// Handle the iDeal redirects
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {
 return [[MyOrder shared] handleURL:url];
}

 MyOrder Framework Developer Guide - v 0.0.1 25

	1. Introduction
	2. Installation
	Cocoapods installation
	pod 'MyOrder-MOFramework'
	Manual installation
	3. Configuration
	4. Architecture
	Introduction
	Framework Components
	Model
	DAOs
	Categories
	5. Modules
	Auth
	Shop
	Cart
	Cinema
	Events
	Favorites
	Parking
	ThuisBezorgd
	ThuisAfgehaald
	Stories
	Generic
	APPENDIX A: Endpoints used
	APPENDIX B: Code samples
	MOFNetworkConnection animation handlers
	MOFCartDAO checkout process
	MOFExample’s AppDelegate

