Skip to content
Permalink
dev
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
executable file 100 lines (81 sloc) 3.32 KB
#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run a model on microphone audio input
:model str
Either Keras (.net) or TensorFlow (.pb) model to run
:-c --chunk-size int 2048
Samples between inferences
:-l --trigger-level int 3
Number of activated chunks to cause an activation
:-s --sensitivity float 0.5
Network output required to be considered activated
:-b --basic-mode
Report using . or ! rather than a visual representation
:-d --save-dir str -
Folder to save false positives
:-p --save-prefix str -
Prefix for saved filenames
"""
import numpy as np
from os.path import join
from precise_runner import PreciseRunner
from precise_runner.runner import ListenerEngine
from prettyparse import Usage
from random import randint
from shutil import get_terminal_size
from threading import Event
from precise.network_runner import Listener
from precise.scripts.base_script import BaseScript
from precise.util import save_audio, buffer_to_audio, activate_notify
class ListenScript(BaseScript):
usage = Usage(__doc__)
def __init__(self, args):
super().__init__(args)
self.listener = Listener(args.model, args.chunk_size)
self.audio_buffer = np.zeros(self.listener.pr.buffer_samples, dtype=float)
self.engine = ListenerEngine(self.listener, args.chunk_size)
self.engine.get_prediction = self.get_prediction
self.runner = PreciseRunner(self.engine, args.trigger_level, sensitivity=args.sensitivity,
on_activation=self.on_activation, on_prediction=self.on_prediction)
self.session_id, self.chunk_num = '%09d' % randint(0, 999999999), 0
def on_activation(self):
activate_notify()
if self.args.save_dir:
nm = join(self.args.save_dir, self.args.save_prefix + self.session_id + '.' + str(self.chunk_num) + '.wav')
save_audio(nm, self.audio_buffer)
print()
print('Saved to ' + nm + '.')
self.chunk_num += 1
def on_prediction(self, conf):
if self.args.basic_mode:
print('!' if conf > 0.7 else '.', end='', flush=True)
else:
max_width = 80
width = min(get_terminal_size()[0], max_width)
units = int(round(conf * width))
bar = 'X' * units + '-' * (width - units)
cutoff = round((1.0 - self.args.sensitivity) * width)
print(bar[:cutoff] + bar[cutoff:].replace('X', 'x'))
def get_prediction(self, chunk):
audio = buffer_to_audio(chunk)
self.audio_buffer = np.concatenate((self.audio_buffer[len(audio):], audio))
return self.listener.update(chunk)
def run(self):
self.runner.start()
Event().wait() # Wait forever
main = ListenScript.run_main
if __name__ == '__main__':
main()