

Part I: Parallel Code, ChaNGa
building, Simple test, Tipsy

Code History

• Pkdgrav (~ 1990s, Stadel 2001)
– C, KD-tree for DD, Binary Trees, Gravity only, Dark

Matter Cosmology sims

– Parallel via MDL library (MPI, threads & many more)

– Pkdgrav-Collisions SS (Richardson, Quinn & Lake 1997)
Gasoline (~ 2000s, Wadsley, Stadel & Quinn 2004)

– Density-Energy SPH, Cooling, Ionization/UV

– Star formation+Feedback (Stinson+ 2006 -- Blastwave)

• Changa (~ 2010s, Menon+ 2015)
– Charm++ (C++) for parallel, Space-filling curve, Oct Trees

– SPH, SF, Cooling etc… same as Gasoline(2)

• Gasoline2 (~ 2010s, Wadsley, Keller & Quinn 2017)
– Updated SPH, Diffusion, Superbubble Feedback

→

Charm++
⚫ C++-based parallel runtime system

− Composed of a set of globally-visible parallel objects
that interact

− The objects interact by asynchronously invoking
methods on each other (e.g. calling a function)

⚫ Charm++ runtime

− Manages the parallel objects and continuously
(re)maps them to processes to balance work

− Provides scheduling, load balancing, and a host of
other features, requiring little user intervention

Architecture: Trees & Parallel

• pkdgrav – KD-tree used for load
balancing (dividing work/data),
gravity (initially) and SPH
– moderate work to build (2x)

– hard to divide work >~ 100 cores

• ChaNGa – Oct tree, good for gravity,
build once. Divide work with space-
filling curve
– fast, single tree-build

– Scale to 100,000+ cores!

Parallel Design

• Pkdgrav/Gasoline:
C/object-oriented design: master, PST, PKD
from tree. Load balance manually every few
step. Each local domain rectangular and
executed on one core. Cache for remote data
(tree cells & particles)

• ChaNGa:
Charm++ (parallel extension of C++, Kale &
Krishnan 1993). Domains are “tree-pieces”
(Charm++ objects) of the oct-tree. Many (~
10) per core.
– Automated work migration, checkpointing, load

balance via Charm runtime. Remote data
access, remote tasks (function calls)

– Cache remote data, work overlap, GPUs

Treepiece

Changa:

Domain Decomposition Options

⚫ Space-filling curves

− Morton ordering

− Peano-Hilbert

⚫ “Oct”: fully contained
nodes

− Less communication

− Harder load balancing

⚫ ORB (orthogonal
recursive bisection)

− Poor gravity

Changa:

Tree Building

⚫ Sort on Keys: particles are in tree order

⚫ Determine count of particles in each Node

⚫ Assign NodeKey: each bit a left-right branch

⚫ Stop at “buckets”: each leaf contains a few
particles.

⚫ Construct multipole moments

− Request moments of External Nodes

⚫ Merge pieces on same address space.

Newtonian gravity interaction
− Each mass is influenced by all others: O(n²) algorithm

Barnes-Hut (1986) Tree approximation: O(n log n)
− Distant particles combined into center of mass of tree cell

Expand to hexadecapole (4th) order (Stadel 2001)
− Cells are “buckets” with up to nBucket particles O(n nbucket) part

Fast Multipole Method (e.g. Dehnen, 2000, approximation: O(n-ish)

Gravity Algorithms

Force for this cell

Overall treewalk structure
Changa:

Building the codes…

ChaNGa
https://github.com/N-BodyShop/changa/wiki/Flatiron-Quickstart

• Get charm, ChaNGa – build charm & ChaNGa

• Run ChaNGa included examples: teststep, testcosmo

https://github.com/N-BodyShop/changa/wiki/Flatiron-Quickstart

Initial Condition & Conventions

Tipsy format

#define MAXDIM 3
typedef float Real;
struct gas_particle {

Real mass;
Real pos[MAXDIM];
Real vel[MAXDIM];
Real rho;
Real temp;
Real eps;
Real metals ;
Real phi ;

} ;

struct dark_particle {
Real mass;
Real pos[MAXDIM];
Real vel[MAXDIM];
Real eps;
Real phi ;

} ;

struct star_particle {
Real mass;
Real pos[MAXDIM];
Real vel[MAXDIM];
Real metals ;
Real tform ;
Real eps;
Real phi ;

} ;

struct dump {
double time ;
int nbodies ;
int ndim ;
int nsph ;
int ndark ;
int nstar ;

} ;

tipsydefs.h Tipsy binary
“native” little endian (=Intel)
Header 28 or 32 bytes (Annoying)

Tipsy Standard
“std” big endian via xdr libraries (=Sun)
(also annoying)

Header exactly 32 bytes
e.g. cube300.000128

Data not in this format output as tipsy
arrays: just flat binaries with
an integer (4 byte) size and then data

e.g. cube300.den
cosmo16.HI
cosmo16.HeI
…

Header

Units

⚫ G = 1 => only two of mass, distance, time

specified.

⚫ Solar System: D in AU, M in Mʘ, T in years/2π

⚫ Galaxies: D in kpc, T in Gyr (.9778 km/s), M in

2.22306e5 Mʘ

Cosmology Units
⚫ Recall: H2 = (8πρc/3) and Ω = ρ/ρc

⚫ If we choose ρc = 1, then

⚫ H = (8π/3)1/2 = 2.894405

⚫ Time is 2.894405*(Hubble time)

⚫ Choose boxsize = 1 then Mbox = Ω, and velocity unit =
(Hubble velocity across box)/2.894405

⚫ Mass unit is H2 *(boxsize)3 * 3/(8πG)

Comoving → Code → Physical

physical units
rphys = a r code x kpcunit
vphys = 1/a v code + adot r code

phiphys = 1/a phi code

uphys = u code

ρphys = 1/a3 ρcode

Output (Tipsy file)
r out = r code

v out = 1/a2 vcode

phi out = phicode

T out = T(ucode=u phys)
ρ out = ρcode

Comoving
r_ com = r out = r code

v_com = v out = 1/a2 v code

Physical Units
rphys = a r out x kpcunit
vphys = a(v out + H out r out) x kmsunit
H out = H(a)/H0 x sqrt(8 π/3)

(G=1)
Ha/H0 = sqrt(ΩM (1+z)3+ ΩΛ)

phiphys = 1/a phiout x ergpergmunit
ρphys = 1/a3 ρout x gmperccunit(z=0)
mphys = mout x MsolUnit

Runtime Parameters

https://github.com/N-BodyShop/changa/wiki/ChaNGa-Options

Every run requires a parameter file to start it

• ach – characters, e.g. achInFile (Tipsy format input file)
• b – binary on/off, e.g. bPeriodic, bDoGas (do hydro/SPH forces)
• i, n – integer, e.g. nSteps (number of timesteps)
• d – real value, e.g. dESN (supernova energy, ergs)

Tend to favour dimensionless units or code units except cooling/SF which is
in CGS. Defaults are usually given. All parameter choices recorded in .log
files (always save your .log file!). All parameters described in master.c
(Gasoline) or ParallelGravity.cpp (ChaNGa) using “prmAddParam” functions.
Can also be specified on command line and saved in checkpoint files.

https://github.com/N-BodyShop/changa/wiki/ChaNGa-Options

Continuing with Tipsy…

https://github.com/N-BodyShop/changa/wiki/Flatiron-Quickstart

Part II: Hydrodynamics,
Gasoline2/ChaNGa, Parameters, Test

Problems, Python

Hydro Basic Methods
Two major flavours:
• Lagrangian = SPH (particle based), gradients for fluxes,

(e.g. Lucy 1977, Monaghan & Gingold 1977)
– 2nd order (noisy), naturally adaptive, good dynamics (orbits)

• Eulerian = Finite Volume (fixed grid based) with
approximate Riemann Solvers for fluxes: 1st order
(Godunov 1959), 2nd order (van Leer, e.g. RAMSES (Teyssier
2002)), 3rd order “PPM” (Colella & Woodward 1988, e.g.
ENZO Bryan & Norman 1997, ATHENA Stone+ 2008)
– Really good shocks/instabilities (low diffusion), diffusive for

orbits/advection, need adaptivity (AMR) for Astro/cosmology
problems (e.g. RAMSES, ENZO), dynamics bad

• Hybrid: (GIZMO, Hopkins 2015 mostly SPH, AREPO:
moving Voronoi mesh (2nd order similar to

Ramses))

SPH: Smoothed Particle Hydrodynamics

Basis: optimal density estimators for disordered points
(can use for any data, e.g. astronomical data) using
Kernel Functions
Smoothed density or any physical field, can take
gradients for terms in fluid (Euler equations)
Symmetrize force expressions for momentum, angular
momentum & energy conservation BUT adds noise

Smooth glass state still small forces (cannot model
arbitrarily small perturbations less than grid noise, very
subsonic turbulence, streaming instability SI).
Equivalent problem: SPH only approximately divides
volume among particles (unlike a grid)

see: Monaghan 1992, Springel & Hernquist 2002,
Springel 2009 (AREPO), Read+ 2010

න∇𝑃 𝑑𝑉 =ර𝑃. 𝑛 𝑑𝑆

Exact volumes+ΔS =>
if P = constant then
Integral exactly zero
(e.g. Finite Volume,
AREPO). If ΔS
approximate, integral
zero only on average

ΔS
∆𝑆 ො𝑛 = 0ො𝑛

Voronoi cell (AREPO)
Exact Volumes+Surfaces

Lagrangian Hydro History
• PM-SPH (Evrard 1988)/ TreeSPH (Hernquist & Katz 1989) – vanilla

“Traditional” SPH (see Monaghan 1992 ARAA): Energy and density
formulation

• Gadget-2 (Springel Hernquist 2002) – Entropy SPH (from a Lagrangian)
iterate for constraint: density = K mass/h3

• Problems: No diffusion → extreme metallicities, strange entropies
– Fix: Turbulent diffusion (Wadsley+ 2008, Shen+ 2010)

• Agertz 2008 “blob” test: Surface tension problems with SPH (need for
“modern” SPH)

• Modern SPH: Must have diffusion, must remove surface tension
– Fix: GIZMO (Hopkins 2015): SPH densities but forces from 2nd order Finite

Volume-like approach (still not zero in uniform density but better)
– Fix: Gasoline2: Geometric Density Forces: minimal surface tension (see

Wadsley+ 2017, K. Dolag SPH)
– Fix: AREPO: Voronoi Cells => Volume partitioned perfectly, forces zero in

uniform density
– No Fix: Gadget 2,3,4 (2022) never fixed this (yet)

• Test 3 of the Wengen comparison project, cold equal pressure
blob (10x density) in supersonic wind tunnel

• Movie shows density vs. time. Blob catches up to wind speed,
mixing fast (KH instability rate ~ Δv k) then slows

Agertz 2008 “blob” test

Gasoline2 /

SPH circa 2002

Agertz+ 2008 “Blob” test, no cooling

What is going wrong? Mixing & Surface Tension
Figure 5 from Gasoline2 paper
(Wadsley+ 2017) Blob test in
entropy. Shows mixing (or not)
clearly.

(1) Diffusion on/off
SPH has no intrinsic mixing
Small scale turbulence mixes all
quanties (entropy, velocity,
metals, etc…) at rates ~ Δv k (i.e.
faster with small scales tk ~ k-1/2

so all scales mix in finite time)
Surface tension inhibits KH
instability but absent in Astro,
must avoid numerical surface
tension!
(2) GD Force on/off
Force expressions can do poorly
at high density gradients (due to
lopsided particle numbers).
Geometric Density
(Gasoline2/ChaNGa) does well
even in high density gradients

All Gadget versions

GIZMO-like

Mixing vs. time: Open questions

Exact answer tricky – even high order
finite volume (PPM) depends on whether
blob is moving vblob = 1 (freezes out) or
wind is moving vblob = 0 (mixes
continuously)
Real physics is Galilean invariant –
moving blob or moving wind should give
same answer
Gasoline2 (green + blue lines) within
uncertainty of HR grid result

High Density gas Left vs. time

Exact behaviour depends on
cooling in mixing layers. Hot
topic for feeding gas fuel to
galaxies, e.g. Fielding+ 2022

Food dye in
water “freeze
out” of mixing

Gadget 2002-2022

Running the codes…

Hydro
https://github.com/N-BodyShop/flatiron-tests

Hydro test cases
Evrard collapse – fast

Sod shocktube – fast

cosmo16 – make your own cosmo IC and run it

blob test – slow, may want to look at outputs provided

AGORA test – slow, may want to look at outputs provided

https://github.com/N-BodyShop/flatiron-tests/blob/master/README.md

Manipulating tipsy format/ICs

• For test problems: pytipsy is great. Generate
particle data and write in std Tipsy format
– Starting with a glass IC is a good idea for tests

• Command line: printtipsy to view basic info
– https://github.com/N-BodyShop/how-to

• For cosmological ICs: MUSIC (Hahn+Abel 2011)
https://www-n.oca.eu/ohahn/MUSIC/
– Fancy Cosmo ICS: GenetIC (Stopyra, Pontzen+ 2020)

• For isolated galaxies : MAKEDISK (Springel +2005)
and others

https://github.com/N-BodyShop/how-to
https://www-n.oca.eu/ohahn/MUSIC/

• Thanks

