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Abstract

The capacitated vehicle routing problem is a much studied combinatorial optimization

problem, re�ecting its practical importance within areas such as logistics. The problem is

computationally intractable, and heuristics are commonly applied for solving large instances.

Among the best heuristics available is a hybrid genetic search that consists of mechanisms

from evolutionary algorithms and a range of local search operators. This heuristic applies an

order crossover operator that takes as input two existing solutions and produces as output

a new solution for the search to explore. An open-source implementation of the heuristic

is available, in which the order crossover operator represents 1.4% of the code. This work

discusses potential short-comings of the traditional order crossover operator and proposes

an adjusted operator. The new operator is evaluated on standard benchmark test instances,

and is shown to reduce the gaps to best-known solutions by 4.2%.

Keywords: vehicle routing problem; genetic algorithm; open source; genetic operator.

Introduction

capacitated vehicle routing problem (CVRP) is a well-known optimization problem that i

to describe and hard to solve. We are given a depot where a �eet of identical vehicles i

ed, each vehicle with a given capacity. A set of customers is also given, where each custome

given location and a given demand. The task is to design routes such that each custome

ited by exactly one vehicle and such that the sum of demands of customers visited by a

le does not exceed the capacity of the vehicle. Using the locations of the customers and th

t, travel distances can be calculated, and the goal is to design routes that minimizes th

distance travelled.
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CVRP is computationally intractable (Lenstra and Kan, 1981), and is frequently solved

heuristic algorithms. Some heuristics for the CVRP are based on genetic algorithms, a

heuristic that has proven e�ective for dealing with a wide range of optimization problem

ves, 2010). However, for a long time no e�ective genetic algorithm was known for solving th

P, and Gendreau et al. (2002) concluded that, based on scarce results, genetic algorithm

not competitive for solving CVRPs. Prins (2004) changed this perspective by creating

cessful method. In his implementation, solutions are represented as permutations of th

mers visited, without including information about trip delimiters in the encoding. Decoding

mutation involves inserting optimal trip delimiters, thereby reaching a feasible solution o

VRP. By representing solutions as a giant tour without trip delimiters, it is possible to

crossovers known from the literature for solving the traveling salesman problem (TSP)

r et al. (1987) had compared three permutation crossover operators for the TSP. One o

was found to be superior to the others when solving the TSP with a genetic algorithm

superior crossover, a generalization of an earlier �modi�ed crossover� proposed by David

), is known as the order crossover, or OX crossover. Prins (2004) chose to apply the orde

over for solving CVRPs, �nding it superior to an alternative linear order crossover.

ng the most successful heuristics for various routing problems, we currently �nd a hybrid

ic search that incorporates many of the ideas put forth by Prins (2004). The �rst version

nted by Vidal et al. (2012), combined population-based evolutionary search, neighborhood

search, and advanced population-diversity management schemes to solve vehicle routing

ems with multiple depots and multiple periods. Next, Vidal et al. (2013) focused on th

enges of duration and time-window constraints, after which Vidal et al. (2014) tackled th

nce of an even wider range of possible problem attributes. Later, Vidal (2022) published an

-source implementation of the hybrid genetic search that speci�cally targeted the CVRP.

andle multiple periods and depots, Vidal et al. (2012) developed a specialized crossove

tor called the periodic crossover with insertions. Vidal et al. (2013) also used this when

g periodic problems, but for non-periodic problems the OX crossover was applied. Similarly

l et al. (2014) developed another new crossover, the assignment and insertion crossover, bu

sed the OX crossover, except when the problem solved included a speci�c type of attribute

n addressing the CVRP, Vidal (2022) applied the OX crossover exclusively.

the work of Prins (2004), the OX crossover has been used in many successful application

netic algorithms to solve vehicle routing problems. However, it seems that no critica

sment has been published regarding the operator's suitability for solving the CVRP. Th

of this paper is to point out some potentially undesirable behaviors of the OX crossover

2
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this we propose an adjustment of the OX operator, which we hypothesize may avoid som

e undesirable behavior and thereby lead to an improved performance of the overall heuristic

ly, we empirically test this hypothesis on standard benchmark test instances of the CVRP

research would not be feasible to execute without access to an open-source implementation

e hybrid genetic search. While this implementation is simple, it is still extremely power

nd Vidal (2022) argued that performance gains through additional operators and method

dizations are inexorably connected to the reduction of conceptual simplicity. We suppor

laim, and therefore try to improve the existing method by making minimal changes to th

base: it is an interesting challenge to improve the performance by making as few change

ssible, while simultaneously trying to create a deeper understanding of what makes th

od so powerful. Vidal (2022) stated this eloquently in his concluding remarks: �the goal o

stic design should be to identify methodological concepts that are as simple and e�ectiv

ssible, and to properly understand the role of each component.�

remainder of this paper is structured as follows. In Section 2 we summarize the state-of

rt of heuristics for the CVRP. Section 3 provides a short summary of the hybrid geneti

h and its open-source implementation. Next, Section 4 discusses the OX crossover and

rates some of its potential shortcomings. Following this, two new variants of the crossove

resented: one that aims to improve the performance of the operator, and one that function

additional benchmark. Then, Section 5 presents a computational study to empirically

ate the three di�erent variants of the OX operator. Finally, conclusions are drawn in

on 6.

Heuristics for the capacitated vehicle routing problem

the CVRP was introduced by Dantzig and Ramser (1959), much research has gone into

g the problem e�ciently. For solving the problem to proven optimality, the current bes

algorithms are based on combining multiple mechanisms such as cut generation and column

ation, as discussed by Pecin et al. (2017) and Pessoa et al. (2020). However, given the thes

ods require prohibitively long computation times for instances with many customers, a

cant amount of research has been focusing on the development of heuristic algorithms.

e following, the focus is on the currently best performing heuristics. For an overview of olde

ibutions to the literature on heuristics for the CVRP, we recommend the book chapter by

reau et al. (2002) and the paper by Laporte (2009). When presenting the hybrid geneti

3
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h for CVRP, Vidal (2022) evaluated the results by comparing to six other heuristics and

riginal hybrid genetic search by Vidal et al. (2012). The four best performing heuristics ou

ese are discussed below, in addition to a �fth, more recent heuristic.

amanian et al. (2013) proposed a hybrid iterated local search for several variants of routing

ems, including the CVRP. The method is matheuristic that combines iterated local search

he use of a mathematical programming solver to �nd a combination of routes based on a

artitioning model. Arnold and Sörensen (2019) presented a method called the knowledge

d local search. The method combines three local search techniques and uses problem-speci�

ledge to guide the search towards promising solutions. The authors also show that th

stic, in addition to performing well on the CVRP, can be applied to problem variants with

iple depots or multiple trips. Following this, Arnold et al. (2019) used the knowledge-guided

search framework to solve very large-scale instances of the CVRP.

tiaens and Vanden Berghe (2020) developed a large neighborhood search with specialized

tors for removing customers from a solution and then inserting them back. The method i

slack induction by string removals, and also considered a hierarchical objective including

inimization of vehicles used as a primary target. This contrasts most research on the CVRP

typically only minimizes the total distance travelled. Accorsi and Vigo (2021) created a

terative localized optimization algorithm to solve large-scale instances of the CVRP. Th

od is based on iterated local search, but includes novel strategies to localize and control th

h. Together with the paper, the authors made their source codes openly available.

wing the publication of the aforementioned heuristics, Vidal (2022) presented the hybrid

ic search as adapted to the CVRP. By measuring the performance using the gaps to best

n solutions after a given time limit, the hybrid genetic search was found to perform bette

all the other methods tested. Only very early in the search, and on certain subsets o

nces, the hybrid genetic search had a slightly worse performance than the fast iterativ

ized optimization algorithm of Accorsi and Vigo (2021).

recently, Simensen et al. (2022) reimplemented the hybrid genetic search while adding th

tors from slack induction by string removals (Christiaens and Vanden Berghe, 2020) as a

ate improvement method. The performance was measured in two ways: looking at the gap

st-known solutions after a given time limit and also looking at the average gaps to th

known solutions when sampled during several points in time during the run. Two di�eren

eter settings were proposed by the authors, both of which led to gaps after a given tim

that were better than the corresponding gaps for the hybrid genetic search. Evaluated

4
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A) Initial solutions B) Population

C) Selection

D) OX Crossover E) Split

F) Local search

G) Population management

Figure 1: An overview of the hybrid genetic search for solving the CVRP.

the average gaps during several points in time, one of the parameter settings was bette

the hybrid genetic search and one was worse.

Hybrid genetic search

ailed exposition of the hybrid genetic search specialized to the CVRP was provided by Vida

). This section gives a brief overview, so as to understand the role that the OX crossove

tor has within the method. Figure 1 labels seven algorithmic components and shows thei

actions. This involves entering a loop that continues until a time limit has been reached.

�rst search component (A) creates a set of initial solutions. These are simply random

ions that are improved by local search. The set of solutions is stored, and is referred to a

ulation (B). The population has two parts, consisting of feasible solutions and infeasibl

ions, respectively. When storing solutions, they are expressed in an encoded form. Thi

ing is illustrated in Figure 2 for two solutions that di�er only in the direction of trave

me of the vehicle routes. The solutions are represented by considering the sequence o

, but without including any delimiters between routes. That is, solutions are stored as a

utation of the customers only.

eration of the hybrid genetic search beings by selecting two solutions from the population

selection (3) is made using two binary tournaments. In each binary tournament, two

ions are selected at random, and the best solution is taken as the winner and is thu

ed. Using this technique, it can happen that the same solution is selected as the winner in

binary tournaments.

two solutions have been selected, they are combined using the OX crossover (D). Thi

tor is discussed in more detail in Section 4. Its application produces a new permutation o

mers. However, a given permutation of customers can represent several di�erent solutions

5
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e 2: Two solutions to a CVRP instance with eight customers, each with a possible encoded

sentation.

nding on where the routes start and end. The split algorithm (E) is able to determine th

al way to form routes from a given permutation in linear time (Vidal, 2016), and is thu

to decode the permutation into an actual solution.

the method has obtained a new solution, it applies local search operators (F) to improv

olution. Several di�erent neighborhoods are used. As the search allows the exploration o

sible solutions, there is also a probability of applying a repair operation aiming to recover a

le solution. The population management (G) handles the feasible and infeasible solution

ately. Once a subpopulation reaches a certain size, it is trimmed down by removing any

ted solutions, or by removing solutions with a worse evaluation. The evaluation is based

th the solution quality and on a diversity measure.

The order crossover

OX crossover operator constitutes only one of seven components in the hybrid geneti

h, as depicted in Figure 1. However, it is potentially an important operator, as it dictate

solutions are combined in order to generate new solutions. In the hybrid genetic search, th

rossover is used to create one new solution from a given pair of existing solutions. Figure 3

rates the procedure when applied on the encoded solutions from Figure 2.

6
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2 3 4 5 6 7 8

7 3 2 1 4 5 6

7 2 3 4 1 5 6 8

e 3: Example of the OX crossover applied to two permutation vectors (on the left), providing

permutation vector (on the right).

rossover starts by randomly selecting two cutting points that split the encoded solution into

egments, as indicated by two di�erent background colors in Figure 3. It is possible that th

ng points are selected so that the segment between them will loop around the permutation

r, but this is not the case in the example illustrated. The crossover then continues by

ng the segment between the cutting points from the �rst of the two combined solution

a new permutation vector. In the example, this corresponds to the segment consisting o

mers 3 and 4. This leaves six open spaces in the permutation vector that is going to b

for the new solution generated.

omplete the new solution, the second solution combined is processed. Starting from th

nt corresponding to the position directly after the copied segment (from the �rst solution)

econd solution is read and the missing elements from in the new solution are added on

e in the order provided by the second solution. Hence, customers 5 and 6 are copied to

ew solution �rst, then the processing of elements from the second solution wraps around

ontinues with 8 and 7. Then, we loop around also in the new solution. At this point, th

customer read in the second solution is 3, but since this was already present in the copied

ent, it is skipped. Thus, next follows customer 2, and then �nally customer 1.

s been claimed that the OX crossover leads to new solutions where the relative order o

nts are similar to the orders in the combined solutions (Gendreau et al., 2002). This i

ntrast to other crossovers that tend to preserve the position of elements or the edges o

mplied routes. In the illustrating example, the solutions that are combined are essentially

ical, as shown in Figure 2. When we inspect the giant tour implied by the new permutation

r obtained in our example, as shown to the left in Figure 4, it becomes apparent that severa

edges are introduced in the process.

ne hand, this suggests that the OX crossover may be integral in diversifying the search

7
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e 4: Giant tours resulting from applying the original OX crossover (to the left) and an

ted OX crossover (to the right) when combining the solutions shown in Figure 2.

ss: it can introduce new edges, even though these edges do not immediately appear to b

ntageous. On the other hand, scrambling solutions in this manner may waste resources a

esulting solution must be improved using expensive local search operators afterwards.

example illustrates one type of behavior that we hereby question: when �lling in element

the second solution, the process starts immediately after the cutting point used to identify

egment copied from the �rst solution. However, given that the order of routes in a permu

n is arbitrary, it does not follow that this location in the permutation vector of solution two

ated to the same location in the permutation vector of solution one. In the example, even

h the beginning of the copied segment contains part of the same route (in fact the sam

mer), the end of the segment contains customers from di�erent routes.

it really make sense to continue �lling in the new solution from the location of the cutting

? We will argue here that it makes more sense to continue �lling in the new solution from

cation of the last customer that was copied, not from the location that was last copied. In

words, we should continue �lling in starting from customer 4 in the second solution, no

the location in the second solution where customer 4 was located in the �rst solution. A

ematic behavior can occur according to the original OX crossover because the customer tha

8
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7 3 2 1 4 5 6

2 1 3 4 5 6 8 7

e 5: Example of the adjusted OX crossover applied to two permutation vectors (on th

providing a new permutation vector (on the right).

ated just after the original cutting point in the second permutation vector is likely unrelated

e customer that is located just before the original cutting point in the �rst permutation

r.

immediately brings us to an adjusted OX crossover, which is illustrated for the same exampl

gure 5. Filling in the remainder of the new solution from the described location in the second

ion provides a very di�erent new solution. Its giant tour, shown to the right in Figure 4 ha

ntroduced many long edges. It is, however, quite similar to the solutions combined. Thi

t unreasonable, however, given that the combined solutions were originally identical excep

e direction of travel. In addition, the new solution is not entirely identical, and allows th

ration of a di�erent route for visiting customers 1, 2, and 3.

e are other situations where both the original OX crossover and the proposed adjustment ar

ter-productive. When two relatively similar solutions are combined, and when the segmen

py is relatively small, the segment that is copied from the �rst solution may be identical to

ment in the second solution (albeit at a di�erent location in the permutation vector). When

opied segment is relatively large, the non-copied segment in the �rst solution may be identica

corresponding segment in the second solution. In these cases, the adjusted OX crossove

d not create new permutations, but rather end up recreating one of the permutations of th

ined solutions.

eal with these situations, an additional adjustment is made. In the adjusted OX crossove

eck if the segment copied from the �rst solution is found in an identical form in the second

ion. If that is the case, for example when the combined solutions are identical, we instead

e a crossover point in the second solution at random, while avoiding crossover points tha

side the identical segment.

9
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efer to the new variant as the adjusted order crossover (AOX). As a third variant, to b

dered as a benchmark, we de�ne a random order crossover by always taking the cutting

in the second solution as a completely random point. We label this as a random orde

over (ROX).

d on the discussion above, we would expect the ROX crossover to perform worse, as i

not exploit any structural information from the combined solutions when deciding on th

ant cutting point for the second solution. Furthermore, as the AOX crossover avoids wha

esumably an unwanted behavior in the OX crossover, we believe that the AOX crossove

be able to improve the performance of the heuristic due to improving the intensi�cation

e search. Although the illustrating example could suggest that the AOX leads to les

si�cation in the search, the occasional inclusion of a randomized cutting points will help th

h to diversify whenever the combined solutions become relatively similar.

e appendix to this paper, Table 2 shows the code, written in C++, of the original imple

ation of the OX crossover. The entire open-source code of Vidal (2022) encompasses 2073

mpty lines of code (including comments) across 15 �les. The OX crossover only takes 29

of code (also including comments), which is about 1.4% of the entire code base. The new

mentation of the AOX crossover takes 43 lines of code, many of which are identical to th

al implementation. The new code is provided in Table 3 of the appendix.

Computational study

aluate whether the AOX crossover leads to a better performance of the hybrid genetic search

the OX crossover, we design a computational experiment. In the experiment we test th

rmance across 100 benchmark test instances created by Uchoa et al. (2017). The instances

n as the X-set, have between 100 to 1,000 customers, and are commonly used to evaluat

erformance of both heuristic and exact algorithms for the CVRP. Best-known solution

e instances were retrieved from CVRPLIB, using the link http://vrp.atd-lab.inf.puc-

br/index.php/en/ accessed on April 26, 2022.

code is compiled using Microsoft Visual C++ 2019 for a 64-bit architecture, and the experi

s are conducted on a standard desktop computer with an Intel i9-9900 CPU at 3.1GHz and

32 GB of RAM. For each instance, a time limit is set to 2.4 seconds times the number o

mers. Since there are several random elements in the heuristic, each instance is solved 10

using di�erent random seeds. Three versions of the code are executed, corresponding to

10
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the OX crossover, the AOX crossover, or the ROX crossover.

ext compare the performances of the alternative crossovers from three di�erent perspectives

rst consider the method's ability to �nd solutions such that the average gaps to the best

n solutions are smaller. Then, we consider the ability to actually �nd the best-known

ions for each instance. Finally, we consider direct comparisons between the crossovers, and

her each crossover leads to a method that is more or less likely to �nd a better solution than

er crossover operator.

Primal gaps

aluate the results, we �rst consider the gaps to best-known solutions as calculated at th

f the runs. For the CVRP and the given instances, this corresponds to the primal gaps a

ed by Berthold (2013). In Figure 6 we plot these primal gaps as a function of the running

after normalizing the running times to the interval [0, 1].

0.00 0.25 0.50 0.75 1.00

0.10

0.20

0.30

0.40

0.50

Running time (normalized)

P
ri
m
a
l
g
a
p
(%

)

OX
AOX
ROX

Figure 6: Primal gaps as a function of time when considering all 100 instances.

�gure gives a visual indication of how the new AOX performs better than both OX and

for most of the running time. At the end of the runs, the primal gaps are 0.110% for OX

% for AOX, and 0.115% for ROX. This means that the primal gap when using AOX is 4.2%

11
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than the primal gap when using OX. The relative improvement for AOX is slightly large

lower running times are considered. For example, after a normalized running time of 0.2

provement is 7%, lowering the average gaps from 0.218% to 0.203%.

gure 7 we show the primal gaps for the runs of the 50 smallest instances in the test set

n, AOX is the best performing crossover, but on these smaller instances the randomized

over gives a slightly smaller average gap than the original crossover. The �nal primal gap

X, AOX, and ROX are, respectively, 0.026%, 0.021%, and 0.025% when considering th

est instances.

0.00 0.25 0.50 0.75 1.00

0.05

0.10
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0.20

Running time (normalized)

P
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)

OX
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igure 7: Primal gaps as a function of time when considering the 50 smallest instances.

, in Figure 8 the primal gaps are shown for the 50 largest instances. This time the OX

over performs better than the randomized crossover, but nevertheless, the new adjusted

crossover provides the best average gaps also for the largest instances. The �nal prima

for OX, AOX, and ROX are here 0.194%, 0.190%, and 0.205%.

Best-known solutions

, we consider the ability of the hybrid genetic search to �nd the best-known solutions using

variants of the crossover operator. This measures a di�erent aspect of the performanc

12
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Figure 8: Primal gaps as a function of time when considering the 50 largest instances.

simply measuring the average primal gaps: it is possible to have very small gaps withou

actually �nding the best possible solution, and it is possible to have a large gap on average

te �nding many optimal solutions. Figure 9 shows the number of best-known solution

, out of 1,000 runs for each search variant considered.

OX crossover, where the entry point for the second solution combined is totally randomized

ars to be better than the original OX crossover in terms of �nding the best-known solutions

andomness of the ROX likely leads to more varied performances, and it is thus more likely to

ptimal solutions, at the expense of having a worse average performance. However, the AOX

method that �nds the most best-known solutions, with 371 runs successfully identifying

est solution, compared to 362 successful runs for ROX and 347 successful runs for OX. Fo

ethods, the number of best-known solutions found is steadily increasing, even as we ge

r to the full running time allotted, which is an indication that even better results should b

ted if the running time is increased.
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e 9: Number of best-known solutions identi�ed as a function of time, out of 1,000 tota

Pair-wise comparisons

ly, we evaluate the performance of the methods using a non-parametric sign test (Derra

., 2011). Here, for a given pair of methods, we count the number of runs where a given

od performs better than another method. A method is then considered to perform bette

another if either it obtains a better solution at the end of the run, or if it obtains the sam

ty solution but �nds it after spending less computational time. The output of the sign test

-values that indicate how likely we are to observe the actual result, or a more skewed result

two methods compared are in reality equally likely to produce the best outcome. A low

ue then indicates that the better performing method is statistically better than the wors

rming method. This type of comparison is facilitated by using the same random seeds fo

method, so that runs are directly comparable: we start from the same initial set of solutions

he runs only diverge once a crossover operator is applied.

1 summarizes the pair-wise comparisons, where each pair of methods is evaluated on th

et of instances. The P-values are su�ciently small in all three tests to conclude that on

e methods is more likely to produce a better result than the other. That is, if we solve an

nce using both AOX and OX, it is more likely that the AOX-run performs better than th

14
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un. Similarly, both AOX and OX are more likely to produce a better run than ROX.

1: Pairwise comparisons of runs and P-values from a two-sided sign-test (Derrac et al.

.

Wins Losses P-value

AOX vs. OX 554 446 0.0007

AOX vs. ROX 559 441 0.0002

OX vs. ROX 535 465 0.0291

lso performed similar tests when considering only the largest instances and only the smalles

nces. Focusing on a subset of instances like this does change the results somewhat. Fo

mallest instances, AOX is signi�cantly better than both OX and ROX, but OX is no longe

cantly better than ROX from a statistical point of view. The latter seems consistent with

rimal gaps shown in Figure 7. When it comes to the largest instances, AOX is signi�cantly

r than ROX, whereas the di�erence between AOX and OX and the di�erence between OX

OX are not signi�cant.

Concluding remarks

hybrid genetic search proposed by Vidal (2022) is one of the best available heuristics fo

g the capacitated vehicle routing problem. The method uses many di�erent operators to

pulate solutions during a local search phase, but relies solely on an order crossover (OX

tor when combining pairs of solutions. After arguing that the OX crossover has certain

backs when used in the setting of a vehicle routing problem, we proposed an adjusted orde

over (AOX) operator and, as a benchmark, a random order crossover (ROX) operator.

computational study, using standard benchmark test instances, it is shown that the AOX i

ior in three di�erent aspects: 1) using the AOX operator provides a smaller average gap to

est-known solutions, reducing the gap obtained by using the OX operator by an additiona

; 2) using the AOX operator is more likely to result in �nding the best-known solution fo

est instances examined; and 3) for a given run, the AOX operator is more likely to eithe

a better solution or to �nd the same solution in less computational time, when comparing

e OX operator.
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Code for crossover operators

cilitate reproduction, this appendix provides both the original code for the order crossover in

plementation by Vidal (2022) and the new code suggested for the adjusted order crossover

original code in Table 2 has 29 lines, whereas the new code in Table 3 has 43 lines. Th

indicated with black line numbers are new, whereas the lines with red line numbers hav

modi�ed, due to renaming some variables. The randomized crossover used as a benchmark

ntical to the original code except that two new lines are added; these are shown in Table 4

Table 2: Original C++ code for the order crossover (OX).

void Genetic::crossoverOX(Individual * result, const Individual * parent1,

const Individual * parent2)

{

// Frequency table to track customers already inserted

std::vector <bool> freqClient = std::vector <bool> (params->nbClients + 1, false);

// Picking the beginning and end of the crossover zone

int start = std::rand() % params->nbClients;

int end = std::rand() % params->nbClients;

while (end == start) end = std::rand() % params->nbClients;

// Copy in place the elements from start to end

int j = start;

while (j % params->nbClients != (end + 1) % params->nbClients)

{

result->chromT[j % params->nbClients] = parent1->chromT[j % params->nbClients];

freqClient[result->chromT[j % params->nbClients]] = true;

j++;

}

// Fill the remaining elements in the order given by the second parent

for (int i = 1; i <= params->nbClients; i++)

{

int temp = parent2->chromT[(end + i) % params->nbClients];

if (freqClient[temp] == false)

{

result->chromT[j % params->nbClients] = temp;

j++;

}

}

// Completing the individual with the Split algorithm

split->generalSplit(result, parent1->myCostSol.nbRoutes);

}
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Table 3: New C++ code for the adjusted order crossover (AOX).

void Genetic::crossoverOX(Individual * result, const Individual * p1,

const Individual * p2)

{

// Frequency table to track customers already inserted

std::vector <bool> freqClient = std::vector <bool> (params->nbClients + 1, false);

// Picking the beginning and end of the crossover zone

int start1 = std::rand() % params->nbClients;

int end1 = std::rand() % params->nbClients;

while (end1 == start1) end = std::rand() % params->nbClients;

// Shift zone in p2 to match final customer of zone in p1

int start2 = start1, end2 = end1;

while (p2->chromT[end2 % params->nbClients] !=

p1->chromT[(end1) % params->nbClients]) start2++; end2++;

// Test if zone in p1 is different to zone in p2

bool same = true;

int size = (start1 < end1 ? end1 - start1 : params->nbClients - start1 + end1);

for (int j = 0; j < size && same; j++)

{

if (p1->chromT[(start1 + j) % params->nbClients] !=

p2->chromT[(start2 + j) % params->nbClients])

same = false;

}

// If same, randomize point in p2

if (same)

end2 = end2 + rand() % (params->nbClients - size);

// Copy in place the elements from start to end

int j = start1;

while (j % params->nbClients != (end1 + 1) % params->nbClients)

{

result->chromT[j % params->nbClients] = p1->chromT[j % params->nbClients];

freqClient[result->chromT[j % params->nbClients]] = true;

j++;

}

// Fill the remaining elements in the order given by p2

for (int i = 1; i <= params->nbClients; i++)

{

int temp = p2->chromT[(end2 + i) % params->nbClients];

if (freqClient[temp] == false)

{

result->chromT[j % params->nbClients] = temp;

j++;

}
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}

// Completing the individual with the Split algorithm

split->generalSplit(result, p1->myCostSol.nbRoutes);

}

Table 4: Changes to original C++ code for the randomized crossover (ROX).

16 (...)

N // randomize end, giving the start point for second parent

N end = std::rand() % params->nbClients;

17 (...)

20


