diff --git a/docs/tutorials/neurocog/hodgkin_huxley_cell.md b/docs/tutorials/neurocog/hodgkin_huxley_cell.md index 44e3b0a7..d47f23bf 100755 --- a/docs/tutorials/neurocog/hodgkin_huxley_cell.md +++ b/docs/tutorials/neurocog/hodgkin_huxley_cell.md @@ -82,7 +82,7 @@ neurons and muscle cells. It is a continuous-time dynamical system. Formally, the core dynamics of the H-H cell can be written out as follows: $$ -\tau_v \frac{\partial \mathbf{v}_t}{\partial t} &= \mathbf{j}_t - g_Na * \mathbf{m}^3_t * \mathbf{h}_t * (\mathbf{v}_t - v_Na) - g_K * \mathbf{n}^4_t * (\mathbf{v}_t - v_K) - g_L * (\mathbf{v}_t - v_L) \\ +\tau_v \frac{\partial \mathbf{v}_t}{\partial t} &= \mathbf{j}_t - g_{Na} * \mathbf{m}^3_t * \mathbf{h}_t * (\mathbf{v}_t - v_{Na}) - g_K * \mathbf{n}^4_t * (\mathbf{v}_t - v_K) - g_L * (\mathbf{v}_t - v_L) \\ \frac{\partial \mathbf{n}_t}{\partial t} &= \alpha_n(\mathbf{v}_t) * (1 - \mathbf{n}_t) - \beta_n(\mathbf{v}_t) * \mathbf{n}_t \\ \frac{\partial \mathbf{m}_t}{\partial t} &= \alpha_m(\mathbf{v}_t) * (1 - \mathbf{m}_t) - \beta_m(\mathbf{v}_t) * \mathbf{m}_t \\ \frac{\partial \mathbf{h}_t}{\partial t} &= \alpha_h(\mathbf{v}_t) * (1 - \mathbf{h}_t) - \beta_h(\mathbf{v}_t) * \mathbf{h}_t