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Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

v



1 Introduction

A single column model (SCM) can be a valuable tool for diagnosing the performance of a
physics suite, from validating that schemes have been integrated into a suite correctly to
deep dives into how physical processes are being represented by the approximating code.
This SCM has the advantage of working with the Common Community Physics Package
(CCPP), a library of physical parameterizations for atmospheric numerical models and
the associated framework for connecting potentially any atmospheric model to physics
suites constructed from its member parameterizations. In fact, this SCM serves as per-
haps the simplest example for using the CCPP and its framework in an atmospheric
model. This version contains all parameterizations of NOAA’s evolved operational GFS
v16 suite (implemented in 2021), plus additional developmental schemes. The schemes
are grouped in six supported suites described in detail in the CCPP Scientific Documen-
tation (GFS_v16, GFS_v17p8, RAP, HRRR, and RRFS_v1beta, and WoFS_v0).

This document serves as both the User and Technical Guides for this model. It contains
a Quick Start Guide with instructions for obtaining the code, compiling, and running
a sample test case, an explanation for what is included in the repository, a brief de-
scription of the operation of the model, a description of how cases are set up and run,
and finally, an explanation for how the model interfaces with physics through the CCPP
infrastructure.

Please refer to the release web page for further documentation and user notes:
https://dtcenter.org/community-code/common-community-physics-package-ccpp/
download

1.1 Version Notes

The CCPP SCM v6.0.0 contains the following major and minor changes since v5.0.

Major

• Inclusion of regression testing functionality
• Combine single- and multi-run capabilities into one script

Minor

• Add RUC LSM support

1
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1 Introduction

• Add the GFS_v17p8, HRRR, RRFS_v1beta, and WoFS_v0 suites
• Update the vertical coordinate code to better match latest FV3 vertical coordinate

code
• Simplify the case configuration namelists
• Add greater flexibility for output location (outside of bin directory)

1.1.1 Limitations

This release bundle has some known limitations:

• In the output file, temperature tendency variables all mistakenly have the same
description, although their variable names are correct. This has been fixed in the
development code.

• Using the RRFS_v1beta, HRRR, and WoFS_v0 suites for cases where deep con-
vection is expected to be active will likely produce strange/unreliable results, unless
the forcing has been modified to account for the deep convection. This is because
forcing for existing cases assumes a horizontal scale for which deep convection is
subgrid-scale and is expected to be parameterized. The suites without convec-
tion are intended for use with regional UFS simulations with horizontal scale small
enough not to need a deep convection parameterization active, and it does not
contain a deep convective scheme. Nevertheless, these suites are included with the
SCM as-is for research purposes.

• The provided cases over land points cannot use an LSM at this time due to the
lack of initialization data for the LSMs. Therefore, for the provided cases over land
points (ARM_SGP_summer_1997_* and LASSO_*, where sfc_type = 1 is set
in the case configuration file), prescribed surface fluxes must be used:

– surface sensible and latent heat fluxes must be provided in the case data file
– sfc_flux_spec must be set to true in the case configuration file
– the surface roughness length in cm must be set in the case configuration file
– the suite defintion file used (physics_suite variable in the case configuration

file) must have been modified to use prescribed surface fluxes rather than an
LSM.

– NOTE: If one can develop appropriate initial conditions for the LSMs for the
supplied cases over land points, there should be no technical reason why they
cannot be used with LSMs, however.

• As of this release, using the SCM over a land point with an LSM is possible through
the use of UFS initial conditions (see section ??). However, advective forcing terms
are unavailable as of this release, so only short integrations using this configuration
should be employed. Using dynamical tendencies (advective forcing terms) from
the UFS will be part of a future release.

• There are several capabilities of the developmental code that have not been tested
sufficiently to be considered part of the supported release. Those include additional
parameterizations. Users that want to use experimental capabilities should refer to
Subsection 2.1.2.
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2 Quick Start Guide

This chapter provides instructions for obtaining and compiling the CCPP SCM. The
SCM code calls CCPP-compliant physics schemes through the CCPP framework code.
As such, it requires the CCPP framework code and physics code, both of which are
included as submodules within the SCM code. This package can be considered a simple
example for an atmospheric model to interact with physics through the CCPP.

Alternatively, if one doesn’t have access or care to set up a machine with the appropriate
system requirements but has a working Docker installation, it is possible to create and
use a Docker container with a pre-configured computing environment with a pre-compiled
model. This is also an avenue for running this software with a Windows PC. See section
2.5 for more information.

2.1 Obtaining Code

The source code for the CCPP and SCM is provided through GitHub.com. This release
branch contains the tested and supported version for general use, while a development
branch is less stable, yet contains the latest developer code. Instructions for using either
option are discussed here.

2.1.1 Release Code

Clone the source using
git clone --recursive -b v6 .0.0 https :// github .com/NCAR/ccpp -scm

Recall that the recursive option in this command clones the main ccpp-scm repository
and all subrepositories (ccpp-physics and ccpp-framework). Using this option, there is
no need to execute git submodule init and git submodule update.

The CCPP framework can be found in the ccpp/framework subdirectory at this level.
The CCPP physics parameterizations can be found in the ccpp/physics subdirectory.

3



2 Quick Start Guide

2.1.2 Development Code

If you would like to contribute as a developer to this project, please see (in addition to the
rest of this guide) the scientific and technical documentation included with this release:

https://dtcenter.org/community-code/common-community-physics-package-ccpp/
documentation

There you will find links to all of the documentation pertinent to developers.

For working with the development branches (stability not guaranteed), check out the
main branch of the repository:
git clone --recursive -b main https :// github .com/NCAR/ccpp -scm

By using the recursive option, it guarantees that you are checking out the commits of
ccpp-physics and ccpp-framework that were tested with the latest commit of the SCM
main branch. You can always retrieve the commits of the submodules that were intended
to be used with a given commit of the SCM by doing the following from the top level
SCM directory:
git submodule update --init --recursive

You can try to use the latest commits of the ccpp-physics and ccpp-framework submodules
if you wish, but this may not have been tested (i.e. SCM development may lag ccpp-
physics and/or ccpp-framework development). To do so:

1. Navigate to the ccpp-physics directory.
cd ccpp -scm/ccpp/ physics

2. Check out main.
git checkout main

3. Pull down the latest changes just to be sure.
git pull

4. Do the same for ccpp-framework
cd ../ framework
git checkout main
git pull

5. Change back to the main directory for following the instructions in section 2.3
assuming system requirements in section 2.2 are met.
cd ../..

2.2 System Requirements, Libraries, and Tools

The source code for the SCM and CCPP components is in the form of programs written in
FORTRAN, FORTRAN 90, and C. In addition, the I/O relies on the NetCDF libraries.

4
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2 Quick Start Guide

Beyond the standard scripts, the build system relies on use of the Python scripting
language, along with cmake, GNU make and date.

The following software stacks have been tested with this code. Other versions of various
components will likely still work, however.

• gfortran 12.1.0, gcc 12.1.0, cmake 3.23.2, NetCDF 4.7.4, Python 3.9.12
• GNU compilers 10.1.0, cmake 3.16.4, NetCDF 4.8.1, Python 3.7.12
• GNU compilers 11.1.0, cmake 3.18.2, NetCDF 4.8.1, Python 3.8.5
• Intel compilers 2022.0.2, cmake 3.20.1, NetCDF 4.7.4, Python 3.7.11
• Intel compilers 2022.1.0, cmake 3.22.0, NetCDF 4.8.1, Python 3.7.12

Because these tools are typically the purview of system administrators to install and
maintain, they are considered part of the basic system requirements. The Unified Forecast
System (UFS) Short-Range Weather Application release v1.0.0 of March 2021 provides
software packages and detailed instructions to install these prerequisites and the hpc-stack
on supported platforms (see section 2.2.3).

Further, there are several utility libraries as part of the hpc-stack package that must
be installed with environment variables pointing to their locations prior to building the
SCM.

• bacio - Binary I/O Library
• sp - Spectral Transformation Library
• w3emc - GRIB decoder and encoder library

The following environment variables are used by the build system to properly link these
libraries: bacio_ROOT, sp_ROOT, and w3emc_ROOT. Computational platforms in which these
libraries are prebuilt and installed in a central location are referred to as preconfigured
platforms. Examples of preconfigured platforms are most NOAA high-performance com-
puting machines (using the Intel compiler) and the NCAR Cheyenne system (using the
Intel and GNU compilers). The machine setup scripts mentioned in section 2.3 load
these libraries (which are identical to those used by the UFS Short and Medium Range
Weather Applications on those machines) and set these environment variables for the user
automatically. For installing the libraries and its prerequisites on supported platforms,
existing UFS packages can be used (see section 2.2.3).

2.2.1 Compilers

The CCPP and SCM have been tested on a variety of computing platforms. Cur-
rently the CCPP system is actively supported on Linux and MacOS computing plat-
forms using the Intel or GNU Fortran compilers. Windows users have a path to
use this software through a Docker container that uses Linux internally (see section
2.5). Please use compiler versions listed in the previous section as unforeseen build
issues may occur when using older versions. Typically the best results come from
using the most recent version of a compiler. If you have problems with compilers,

5



2 Quick Start Guide

please check the “Known Issues” section of the release website (https://dtcenter.org/
community-code/common-community-physics-package-ccpp/download).

2.2.2 Using Existing Libraries on Preconfigured Platforms

Because the SCM can be built using the so-called "spack-stack" libraries maintained
for the UFS Weather Model effort, there are many platforms where the SCM can be
built using those existing libraries. This can be done by loading provided modules in
the scm/etc/modules directory (must be done from the top-level "ccpp-scm" directory;
otherwise the module use command should point to the corresponding absolute path):
module purge
module use scm/etc/ modules
module load [ machine ]_[ compiler ]

View the contents of the scm/etc/modules directory to see if your machine/compiler
combination is supported. As of this writing, modulefiles are provided for Intel and GNU
compilers on the NCAR machine Derecho, the NOAA machines Hera and Jet, and the
NOAA/MSU machine Orion. Loading these modules will set up all the needed compilers,
libraries, and other programs needed for building, as well as the python libraries needed
for both building and running the SCM.

2.2.3 Installing Libraries on Non-preconfigured Platforms

For users on supported platforms such as generic Linux or macOS systems that have
not been preconfigured, the hpc-stack project is suggested for installing prerequisite li-
braries. Visit https://github.com/NOAA-EMC/hpc-stack for instructions for installing
prerequisite libraries via hpc-stack in their docs directory. UFS users who already in-
stalled libraries via the hpc-stack package only need to set the compiler (CC, CXX, FC),
NetCDF (NetCDF_ROOT), and bacio, sp and w3emc (bacio_ROOT, sp_ROOT, w3emc_ROOT) en-
vironment variables to point to their installation paths in order to compile the SCM.

The SCM uses only a small part of the UFS hpc-stack package and has fewer prerequisites
(i.e. no ESMF or wgrib2 needed). Users who are not planning to use the UFS can install
only NetCDF/NetCDF-Fortran manually or using the software package manager (apt,
yum, brew).

The Python environment must provide the f90nml module for the SCM scripts to function.
Users can test if f90nml is installed using this command in the shell:
python -c " import f90nml "

If f90nml is installed, this command will succeed silently, otherwise an ImportError: No
module named f90nml will be printed to screen. To install the f90nml (v0.19) Python
module, use the install method preferred for your Python environment (one of the fol-
lowing):

6

https://dtcenter.org/community-code/common-community-physics-package-ccpp/download
https://dtcenter.org/community-code/common-community-physics-package-ccpp/download
https://ufs-weather-model.readthedocs.io/en/latest/Glossary.html#term-spack-stack
https://github.com/NOAA-EMC/hpc-stack
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• easy_install f90nml ==0.19

• pip install f90nml ==0.19

• conda install f90nml =0.19

or perform the following steps to install it manually from source:
cd / directory /with/write/ priveleges
git clone -b v0 .19 https :// github .com/ marshallward / f90nml
cd f90nml
python setup.py install [-- prefix =/my/ install / directory or --user]

The directory /my/install/directory must exist and its subdirectory
/my/install/directory/lib/python[version]/site-packages (or lib64 instead of
lib, depending on the system) must be in the PYTHONPATH environment variable.

2.3 Compiling SCM with CCPP

The first step in compiling the CCPP and SCM is to properly setup your user environment
as described in sections 2.2.2 and 2.2.3. The second step is to download the lookup tables
and other large datasets (large binaries, <1 GB) needed by the physics schemes and place
them in the correct directory: From the top-level code directory (ccpp-scm by default),
execute the following scripts:
./ contrib / get_all_static_data .sh
./ contrib / get_thompson_tables .sh

If the download step fails, make sure that your system’s firewall does not
block access to GitHub. If it does, download the files comparison_data.tar.gz,
phyiscs_input_data.tar.gz, processed_case_input.tar.gz, raw_case_input.tar.gz
from the GitHub release website using your browser and manually extract its con-
tents in the directory scm/data. Similarly, do the same for thompson_tables.tar.gz
and MG_INCCN_data.tar.gz and extract to scm/data/physics_input_data/.

Following this step, the top level build system will use cmake to query system parameters,
execute the CCPP prebuild script to match the physics variables (between what the host
model – SCM – can provide and what is needed by physics schemes in the CCPP for the
chosen suites), and build the physics caps needed to use them. Finally, make is used to
compile the components.

1. From the top-level code directory (ccpp-scm by default), change directory to the
top-level SCM directory.
cd scm

2. Make a build directory and change into it.
7



2 Quick Start Guide

mkdir bin && cd bin

3. Invoke cmake on the source code to build using one of the options below. This step
is used to identify for which suites the ccpp-framework will build caps and which
suites can be run in the SCM without recompiling.

• Default mode
cmake ../ src

By default, this option uses all supported suites. The list of supported suites
is controlled by scm/src/suite_info.py.

• All suites mode
cmake -DCCPP_SUITES =ALL ../ src

All suites in scm/src/suite_info.py, regardless of whether they’re supported,
will be used. This list is typically longer for the development version of the
code than for releases.

• Selected suites mode
cmake -DCCPP_SUITES = SCM_GFS_v16 , SCM_RAP ../ src

This only compiles the listed subset of suites (which should still have a corre-
sponding entry in scm/src/suite_info.py

• The statements above can be modified with the following options (put before
../src):

– Use threading with openmp (not for macOS with clang+gfortran)
-DOPENMP =ON

– Debug mode
-DCMAKE_BUILD_TYPE =Debug

• One can also save the output of this step to a log file:
cmake [- DCMAKE_BUILD_TYPE ...] ../ src 2>&1 | tee log.cmake

CMake automatically runs the CCPP prebuild script to match required physics
variables with those available from the dycore (SCM) and to generate physics caps
and makefile segments. It generates software caps for each physics group defined
in the supplied Suite Definition Files (SDFs) and generates a static library that
becomes part of the SCM executable.
If necessary, the CCPP prebuild script can be executed manually from the top level
directory (ccpp-scm). The basic syntax is
./ ccpp/ framework / scripts / ccpp_prebuild .py --config =./ ccpp/ config /

ccpp_prebuild_config .py --suites = SCM_GFS_v16 , SCM_RAP [...] --
builddir =./ scm/bin [--debug]

where the argument supplied via the --suites variable is a comma-separated list
of suite names that exist in the ./ccpp/suites directory. Note that suite names are
the suite definition filenames minus the suite_ prefix and .xml suffix.

4. Compile. Add VERBOSE=1 to obtain more information on the build process.
make

• One may also use more threads for compilation and/or save the output of the
compilation to a log file:
make -j4 2>&1 | tee log.make

8
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The resulting executable may be found at ./scm (Full path of ccpp-scm/scm/bin/scm).

Although make clean is not currently implemented, an out-of-source build is used, so all
that is required to clean the build directory is (from the bin directory)
pwd # confirm that you are in the ccpp -scm/scm/bin directory before

deleting files
rm -rfd *

Note: This command can be dangerous (deletes files without confirming), so make sure
that you’re in the right directory before executing!

If you encounter errors, please capture a log file from all of the steps, and start a
thread on the support forum at: https://dtcenter.org/forum/ccpp-user-support/
ccpp-single-column-model

2.4 Run the SCM with a supplied case

There are several test cases provided with this version of the SCM. For all cases, the
SCM will go through the time steps, applying forcing and calling the physics defined
in the chosen suite definition file using physics configuration options from an associated
namelist. The model is executed through a Python run script that is pre-staged into the
bin directory: run_scm.py. It can be used to run one integration or several integrations
serially, depending on the command line arguments supplied.

2.4.1 Run Script Usage

Running a case requires four pieces of information: the case to run (consisting of initial
conditions, geolocation, forcing data, etc.), the physics suite to use (through a CCPP
suite definition file), a physics namelist (that specifies configurable physics options to
use), and a tracer configuration file. As discussed in chapter 5, cases are set up via
their own namelists in ../etc/case_config. A default physics suite is provided as a
user-editable variable in the script and default namelists and tracer configurations are
associated with each physics suite (through ../src/suite_info.py), so, technically, one
must only specify a case to run with the SCM when running just one integration. For
running multiple integrations at once, one need only specify one argument (-m) which
runs through all permutations of supported suites from ../src/suite_info.py and cases
from ../src/supported_cases.py. The run script’s options are described below where
option abbreviations are included in brackets.

• --case [-c]
– This or the --multirun option are the minimum required arguments.

The case should correspond to the name of a case in ../etc/case_config
(without the .nml extension).
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• --suite [-s]
– The suite should correspond to the name of a suite in ../ccpp/suites (without

the .xml) extension that was supplied in the cmake or ccpp_prebuild step.
• --namelist [-n]

– The namelist should correspond to the name of a file in
../ccpp/physics_namelists (WITH the .nml extension). If this argument is
omitted, the default namelist for the given suite in ../src/suite_info.py will
be used.

• --tracers [-t]
– The tracers file should correspond to the name of a file in

../etc/tracer_config (WITH the .txt extension). If this argu-
ment is omitted, the default tracer configuration for the given suite in
../src/suite_info.py will be used.

• --multirun [-m]
– This or the --case option are the minimum required arguments.

When used alone, this option runs through all permutations of supported suites
from ../src/suite_info.py and cases from ../src/supported_cases.py.
When used in conjunction with the -- file option, only the runs configured
in the file will be run.

• --file [-f]
– This option may be used in conjunction with the --multirun argument. It

specifies a path and filename to a python file where multiple runs are config-
ured.

• --gdb [-g]
– Use this to run the executable through the gdb debugger (if it is installed on

the system).
• --docker [-d]

– Use this argument when running in a docker container in order to successfully
mount a volume between the host machine and the Docker container instance
and to share the output and plots with the host machine.

• --runtime
– Use this to override the runtime provided in the case configuration namelist.

• --runtime_mult
– Use this to override the runtime provided in the case configuration namelist

by multiplying the runtime by the given value. This is used, for example, in
regression testing to reduce total runtimes.

• --levels [-l]
– Use this to change the number of vertical levels.

• --npz_type
– Use this to change the type of FV3 vertical grid to produce (see

src/scm_vgrid.F90 for valid values).
• --vert_coord_file

– Use this to specify the path/filename of a file containing the a_k and b_k
coefficients for the vertical grid generation code to use.

• --bin_dir
– Use this to specify the path to the build directory.

• --run_dir
– Use this to specify the path to the run directory.
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• --case_data_dir
– Use this to specify the path to the directory containing the case data file (useful

for using the DEPHY case repository).
• --n_itt_out

– Use this to specify the period of writing instantaneous output in timesteps (if
different than the default specified in the script).

• --n_itt_diag
– Use this to specify the period of writing instantaneous and time-averaged diag-

nostic output in timesteps (if different than the default specified in the script).
• --timestep [-dt]

– Use this to specify the timestep to use (if different than the default specified
in ../src/suite_info.py).

• --verbose [-v]
– Use this option to see additional debugging output from the run script and

screen output from the executable.

When invoking the run script, the only required argument is the name of the case to
run. The case name used must match one of the case configuration files located in
../etc/case_config (without the .nml extension!). If specifying a suite other than the
default, the suite name used must match the value of the suite name in one of the suite
definition files located in ../../ccpp/suites (Note: not the filename of the suite definition
file). As part of the sixth CCPP release, the following suite names are valid:

1. SCM_GFS_v16
2. SCM_GFS_v17p8
3. SCM_RAP
4. SCM_HRRR
5. SCM_RRFS_v1beta
6. SCM_WoFS_v0

Note that using the Thompson microphysics scheme requires the computation of look-up
tables during its initialization phase. As of the release, this process has been prohibitively
slow with this model, so it is HIGHLY suggested that these look-up tables are downloaded
and staged to use this scheme as described in section 2.3. The issue appears to be
machine/compiler-specific, so you may be able to produce the tables with the SCM,
especially when invoking cmake with the -DOPENMP=ON option.

Also note that some cases require specified surface fluxes. Special suite definition files that
correspond to the suites listed above have been created and use the *_prescribed_surface
decoration. It is not necessary to specify this filename decoration when specifying the
suite name. If the spec_sfc_flux variable in the configuration file of the case being run
is set to .true., the run script will automatically use the special suite definition file that
corresponds to the chosen suite from the list above.

If specifying a namelist other than the default, the value must be an entire filename that
exists in ../../ccpp/physics_namelists. Caution should be exercised when modifying
physics namelists since some redundancy between flags to control some physics parame-
terizations and scheme entries in the CCPP suite definition files currently exists. Values
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of numerical parameters are typically OK to change without fear of inconsistencies. If
specifying a tracer configuration other than the default, the value must be an entire
filename that exists in ../../scm/etc/tracer_config. The tracers that are used should
match what the physics suite expects, lest a runtime error will result. Most of the tracers
are dependent on the microphysics scheme used within the suite. The tracer names that
are supported as of this release are given by the following list. Note that running without
sphum, o3mr, and liq_wat may result in a runtime error in all supported suites.

1. sphum
2. o3mr
3. liq_wat
4. ice_wat
5. rainwat
6. snowwat
7. graupel
8. hailwat
9. cld_amt

10. water_nc
11. ice_nc
12. rain_nc
13. snow_nc
14. graupel_nc
15. hail_nc
16. graupel_vol
17. hail_vol
18. ccn_nc
19. sgs_tke
20. liq_aero
21. ice_aero
22. q_rimef

A NetCDF output file is generated in an output directory located named with the case
and suite within the run directory. If using a Docker container, all output is copied to the
/home directory in container space for volume-mounting purposes. Any standard NetCDF
file viewing or analysis tools may be used to examine the output file (ncdump, ncview,
NCL, etc).

2.4.2 Batch Run Script

If using the model on HPC resources and significant amounts of processor time is
anticipated for the experiments, it will likely be necessary to submit a job through
the HPC’s batch system. An example script has been included in the reposi-
tory for running the model on Hera’s batch system (SLURM). It is located in
ccpp-scm/scm/etc/scm_slurm_example.py. Edit the job_name, account, etc. to suit your
needs and copy to the bin directory. The case name to be run is included in the command
variable. To use, invoke
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./ scm_slurm_example .py

from the bin directory.

Additional details regarding the SCM may be found in the remainder of this guide. More
information on the CCPP can be found in the CCPP Technical Documentation available
at https://ccpp-techdoc.readthedocs.io/en/v6.0.0/.

2.5 Creating and Using a Docker Container with SCM
and CCPP

In order to run a precompiled version of the CCPP SCM in a container, Docker will need
to be available on your machine. Please visit https://www.docker.com to download
and install the version compatible with your system. Docker frequently releases updates
to the software; it is recommended to apply all available updates. NOTE: In order
to install Docker on your machine, you will be required to have root access privileges.
More information about getting started can be found at https://docs.docker.com/
get-started

The following tips were acquired during a recent installation of Docker on a machine
with Windows 10 Home Edition. Further help should be obtained from your system
administrator or, lacking other resources, an internet search.

• Windows 10 Home Edition does not support Docker Desktop due to lack of “Hyper-
V” support, but does work with Docker Toolbox. See the installation guide (https:
//docs.docker.com/toolbox/toolbox_install_windows/).

• You may need to turn on your CPU’s hardware virtualization capability through
your system’s BIOS.

• After a successful installation of Docker Toolbox, starting with Docker Quick-
start may result in the following error even with virtualization correctly en-
abled: This computer doesn’t have VT-X/AMD-v enabled. Enabling it in the
BIOS is mandatory. We were able to bypass this error by opening a bash terminal
installed with Docker Toolbox, navigating to the directory where it was installed,
and executing the following command:
docker - machine create default --virtualbox -no -vtx -check

2.5.1 Building the Docker image

The Dockerfile builds CCPP SCM v6.0.0 from source using the GNU compiler. A number
of required codes are built and installed via the DTC-supported common community
container. For reference, the common community container repository can be accessed
here: https://github.com/NCAR/Common-Community-Container.
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The CCPP SCM has a number of system requirements and necessary libraries and tools.
Below is a list, including versions, used to create the the GNU-based Docker image:

• gfortran - 9.3
• gcc - 9.3
• cmake - 3.16.5
• NetCDF - 4.6.2
• HDF5 - 1.10.4
• ZLIB - 1.2.7
• SZIP - 2.1.1
• Python - 3
• NCEPLIBS subset: bacio v2.4.1_4, sp v2.3.3_d, w3emc v2.9.2_d

A Docker image containing the SCM, CCPP, and its software prerequisites can be gen-
erated from the code in the software repository obtained by following section 2.1 by
executing the following steps:

NOTE: Windows users can execute these steps in the terminal application that was
installed as part of Docker Toolbox.

1. Navigate to the ccpp-scm/docker directory.
2. Run the docker build command to generate the Docker image, using the supplied

Dockerfile.
docker build -t ccpp -scm .

Inspect the Dockerfile if you would like to see details for how the image is built.
The image will contain SCM prerequisite software from DTC, the SCM and CCPP
code, and a pre-compiled executable for the SCM with the 6 supported suites for
the SCM. A successful build will show two images: dtcenter/common-community-
container, and ccpp-scm. To list images, type:
docker images

2.5.2 Using a prebuilt Docker image from Dockerhub

A prebuilt Docker image for this release is available on Dockerhub if it is not desired to
build from source. In order to use this, execute the following from the terminal where
Docker is run:
docker pull dtcenter /ccpp -scm:v6 .0.0

To verify that it exists afterward, run
docker images
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2.5.3 Running the Docker image

NOTE: Windows users can execute these steps through the Docker Quickstart application
installed with Docker Toolbox.

1. Set up a directory that will be shared between the host machine and the Docker
container. When set up correctly, it will contain output generated by the SCM
within the container for manipulation by the host machine. For Mac/Linux,
mkdir -p /path/to/ output

For Windows, you can try to create a directory of your choice to mount to the
container, but it may not work or require more configuration, depending on your
particular Docker installation. We have found that Docker volume mounting in
Windows can be difficult to set up correctly. One method that worked for us was
to create a new directory under our local user space, and specifying the volume
mount as below. In addition, with Docker Toolbox, double check that the mounted
directory has correct permissions. For example, open VirtualBox, right click on the
running virtual machine, and choose “Settings”. In the dialog that appears, make
sure that the directory you’re trying to share shows up in “Shared Folders" (and
add it if it does not) and make sure that the “auto-mount" and “permanent" options
are checked.

2. Set an environment variable to use for your SCM output directory. For t/csh shells,
setenv OUT_DIR /path/to/ output

For bourne/bash shells,
export OUT_DIR =/ path/to/ output

For Windows, the format that worked for us followed this example: /c/Users/my
username/path/to/directory/to/mount

3. To run the SCM, you can run the Docker container that was just created and give
it the same run commands as discussed in section 2.4.1. Be sure to remember
to include the -d option for all run commands. For example,
docker run --rm -it -v ${ OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm ./ run_scm .py -c twpice -d

will run through the TWPICE case using the default suite and namelist and put
the output in the shared directory. NOTE: Windows users may need to omit the
curly braces around environment variables: use $OUT_DIR instead of ${OUT_DIR}.
For running through all supported cases and suites, use
docker run --rm -it -v ${ OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm ./ run_scm .py -m -d

The options included in the above run commands are the following:
• −−rm removes the container when it exits
• -it interactive mode with terminal access
• -v specifies the volume mount from host directory (outside container) to inside

the container. Using volumes allows you to share data between the host ma-
chine and container. For running the SCM, the output is being mounted from
/home inside the container to the OUT_DIR on the host machine. Upon exiting
the container, data mounted to the host machine will still be accessible.
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• −−name names the container. If no name is provided, the daemon will auto-
generate a random string name.

NOTE: If you are using a prebuilt image from Dockerhub, substitute the name of
the image that was pulled from Dockerhub in the commands above; i.e. instead of
ccpp-scm above, one would have dtcenter/ccpp-scm:v6.0.0.

4. To use the SCM interactively, run non-default configurations, create plots, or even
develop code, issue the following command:
docker run --rm -it -v ${ OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm /bin/bash

You will be placed within the container space and within the bin directory of the
SCM with a pre-compiled executable. At this point, one could use the run scripts as
described in previous sections (remembering to include the -d option on run scripts
if output is to be shared with the host machine). NOTE: If developing, since the
container is ephemeral, one should push their changes to a remote git repository to
save them (i.e. a fork on GitHub.com).
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3.1 What is included in the repository?

The repository contains all code required to build the CCPP SCM and scripts that
can be used to obtain data to run it (e.g. downloading large initialization tables for
the Thompson microphysics schemes discussed in subsection 2.4.1 and processed case
data). It is functionally separated into 3 subdirectories representing the SCM model
infrastructure (scm directory), the CCPP infrastructure (ccpp/framework directory), and
the CCPP physics schemes (ccpp/physics directory). The entire ccpp-scm repository
resides on Github’s NCAR space, and the ccpp/framework and ccpp/physics directories
are git submodules that point to repositories ccpp-framework and ccpp-physics on the
same space. The structure of the entire repository is represented below. Note that the
ccpp-physics repository also contains files needed for using the CCPP with the UFS
Atmosphere host model that uses the Finite-Volume Cubed-Sphere (FV3) dynamical
core.

ccpp-scm/
ccpp/

config/............................contains the CCPP prebuild configuration file
framework/

See https://github.com/NCAR/ccpp-framework for contents
physics/............................................contains all physics schemes

See https://github.com/NCAR/ccpp-physics for contents
physics_namelists .......... contains physics namelist files associated with suites
suites/ ............................................ contains suite definition files

CMakeModules/.......................contains code to help cmake find other software
See https://github.com/noaa-emc/CMakeModules for contents

CODEOWNERS............................list of GitHub users with permission to merge
contrib/

get_all_static_data.sh....script for downloading/extracting the processed SCM
case data
get_thompson_tables.sh.script for downloading/extracting the Thompson lookup
tables
get_mg_inccn_data.sh.script for downloading/extracting the Morrison-Gettelman
data

docker/
Dockerfile.......contains Docker instructions for building the CCPP SCM image

README.md
scm/
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data/.........................build directory (most data directories populated by
contrib/get_all_static_data.sh)

vert_coord_data/ ........ contains data to calculate vertical coordinates (from
GSM-based GFS only)

doc/........................................contains this User’s/Technical Guide
TechGuide/ ............................. contains LaTeX for this User’s Guide

etc/........contains case configuration, machine setup scripts, and plotting scripts
case_config/.................................contains case configuration files
CENTOS_docker_setup.sh.........contains machine setup for Docker container
Desktop_setup_gfortran.csh.......setup script for Mac Desktop for csh, tcsh
Desktop_setup_gfortran.sh ........ setup script for Mac Desktop for sh, bash
modules/...Directory containing modulefiles for building on HPC environments
(see section 2.2.2)
scm_qsub_example.py..............................example QSUB run script
scm_slurm_example.py...........................example SLURM run script
scripts/......................Python scripts for setting up cases and plotting

plot_configs/.....................................plot configuration files
tracer_config ...................................... tracer configuration files

LICENSE.txt
src/ source code for SCM infrastructure, Python run script, CMakeLists.txt for the
SCM, example multirun setup files, suite_info.py
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4.1 Algorithm Overview

Like most SCMs, the algorithm for the CCPP SCM is quite simple. In a nutshell, the
SCM code performs the following:

• Read in an initial profile and the forcing data.
• Create a vertical grid and interpolate the initial profile and forcing data to it.
• Initialize the physics suite.
• Perform the time integration, applying forcing and calling the physics suite each

time step.
• Output the state and physics data.

In this chapter, it will briefly be described how each of these tasks is performed.

4.2 Reading input

The following steps are performed at the beginning of program execution:

1. Call get_config_nml() in the scm_input module to read in the case_config and
physics_config namelists. This subroutine also sets some variables within the
scm_state derived type from the data that was read.

2. Call get_case_init() (or get_case_init_DEPHY() if using the DEPHY format) in
the scm_input module to read in the case input data file. This subroutine also sets
some variables within the scm_input derived type from the data that was read.

3. Call get_reference_profile() in the scm_input module to read in the reference
profile data. This subroutine also sets some variables within the scm_reference
derived type from the data that was read. At this time, there is no “standard”
format for the reference profile data file. There is a select case statement within
the get_reference_profile() subroutine that reads in differently-formatted data.
If adding a new reference profile, it will be required to add a section that reads its
data in this subroutine.
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4.3 Setting up vertical grid and interpolating input data

The CCPP SCM uses pressure for the vertical coordinate (lowest index is the surface).
The pressure levels are calculated using the surface pressure and coefficients (ak and bk),
which are taken directly from FV3 code (fv_eta.h). For vertical grid options, inspect
scm/src/scm_vgrid.F90 for valid values of npz_type. The default vertical coordinate uses
127 levels and sets npz_type to the empty string. Alternatively, one can specify the
(ak and bk) coefficients via an external file in the scm/data/vert_coord_data directory
and pass it in to the SCM via the --vert_coord_file argument of the run script. If
changing the number of vertical levels or the algorithm via the --levels or --npz_type
run script arguments, be sure to check src/scm/scm_vgrid.F90 and fv_eta.h that the
vertical coordinate is as inteneded.

After the vertical grid has been set up, the state variable profiles stored in the scm_state
derived data type are interpolated from the input and reference profiles in the set_state
subroutine of the scm_setup module.

4.4 Physics suite initialization

With the CCPP framework, initializing a physics suite is a 3-step process:

1. Initialize variables needed for the suite initialization routine. For suites originating
from the GFS model, this involves setting some values in a derived data type used
in the initialization subroutine. Call the suite initialization subroutine to perform
suite initialization tasks that are not already performed in the init routines of the
CCPP-compliant schemes (or associated initialization stages for groups or suites
listed in the suite definition file). Note: As of this release, this step will require
another suite intialization subroutine to be coded for a non-GFS-based suite to
handle any initialization that is not already performed within CCPP-compliant
scheme initialization routines.

2. Associate the scm_state variables with the appropriate pointers in the physics
derived data type.

3. Call ccpp_physics_init with the cdata derived data type as input. This call exe-
cutes the initialization stages of all schemes, groups, and suites that are defined in
the suite definition file.

4.5 Time integration

The CCPP SCM uses the simple forward Euler scheme for time-stepping.

During each step of the time integration, the following sequence occurs:
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1. Update the elapsed model time.
2. Calculate the current date and time given the initial date and time and the elapsed

time.
3. Call the interpolate_forcing() subroutine in the scm_forcing module to interpo-

late the forcing data in space and time.
4. Recalculate the pressure variables (pressure, Exner function, geopotential) in case

the surface pressure has changed.
5. Call do_time_step() in the scm_time_integration module. Within this subroutine:

• Call the appropriate apply_forcing_* subroutine from the scm_forcing mod-
ule.

• For each column, call ccpp_physics_run() to call all physics schemes within
the suite (this assumes that all suite parts are called sequentially without
intervening code execution)

6. Check to see if output should be written during the current time step and call
output_append() in the scm_output module if necessary.

4.6 Writing output

Output is accomplished via writing to a NetCDF file. If not in the initial spin-up period,
a subroutine is called to determine whether data needs to be added to the output file
during every timestep. Variables can be written out as instantaneous or time-averaged
and there are 5 output periods:

1. one associated with how often instantaneous variables should be written out (con-
trolled by the -- n_itt_out run script variable).

2. one associated with how often diagnostic (either instantaneous or time-averaged)
should be written out (controlled by the -- n_itt_diag run script variable)

3. one associated with the shortwave radiation period (controlled by fhswr variable in
the physics namelist)

4. one associated with the longwave radiation period (controlled by the fhlwr variable
in the physics namelist)

5. one associated with the minimum of the shortwave and longwave radiation intervals
(for writing output if any radiation is called)

Further, which variables are output and on each interval are controlled via the
scm/src/scm_output.F90 source file. Of course, any changes to this file must result in a
recompilation to take effect. There are several subroutines for initializing the output file
(output_init_*) and for appending to it (output_append_*) that are organized accord-
ing to their membership in physics derived data types. See the scm/src/scm_output.F90
source file to understand how to change output variables.
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5.1 How to run cases

Only two files are needed to set up and run a case with the SCM. The first is a config-
uration namelist file found in ccpp-scm/scm/etc/case_config that contains parameters
for the SCM infrastructure. The second necessary file is a NetCDF file containing data
to initialize the column state and time-dependent data to force the column state. The
two files are described below.

5.1.1 Case configuration namelist parameters

The case_config namelist expects the following parameters:

• case_name
– Identifier for which dataset (initialization and forcing) to load.

This string must correspond to a dataset included in the directory
ccpp-scm/scm/data/processed_case_input/ (without the file extension).

• runtime
– Specify the model runtime in seconds (integer). This should correspond with

the forcing dataset used. If a runtime is specified that is longer than the
supplied forcing, the forcing is held constant at the last specified values.

• thermo_forcing_type
– An integer representing how forcing for temperature and moisture state vari-

ables is applied (1 = total advective tendencies, 2 = horizontal advective ten-
dencies with prescribed vertical motion, 3 = relaxation to observed profiles
with vertical motion prescribed)

• mom_forcing_type
– An integer representing how forcing for horizontal momentum state variables

is applied (1 = total advective tendencies; not implemented yet, 2 = hori-
zontal advective tendencies with prescribed vertical motion, 3 = relaxation to
observed profiles with vertical motion prescribed)

• relax_time
– A floating point number representing the timescale in seconds for the relaxation

forcing (only used if thermo_forcing_type = 3 or mom_forcing_type = 3)
• sfc_flux_spec

– A boolean set to .true. if surface flux are specified from the forcing data
(there is no need to have surface schemes in a suite definition file if so)
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• sfc_roughness_length_cm
– Surface roughness length in cm for calculating surface-related fields from spec-

ified surface fluxes (only used if sfc_flux_spec is True).
• sfc_type

– An integer representing the character of the surface (0 = sea surface, 1 = land
surface, 2 = sea-ice surface)

• reference_profile_choice
– An integer representing the choice of reference profile to use above the supplied

initialization and forcing data (1 = “McClatchey” profile, 2 = mid-latitude
summer standard atmosphere)

• year
– An integer representing the year of the initialization time

• month
– An integer representing the month of the initialization time

• day
– An integer representing the day of the initialization time

• hour
– An integer representing the hour of the initialization time

• column_area
– A list of floating point values representing the characteristic horizontal domain

area of each atmospheric column in square meters (this could be analogous
to a 3D model’s horizontal grid size or the characteristic horizontal scale of
an observation array; these values are used in scale-aware schemes; if using
multiple columns, you may specify an equal number of column areas)

• model_ics
– A boolean set to .true. if UFS atmosphere initial conditions are used rather

than field campaign-based initial conditions
• C_RES

– An integer representing the grid size of the UFS atmosphere initial conditions;
the integer represents the number of grid points in each horizontal direction
of each cube tile

• input_type
– 0 => original DTC format, 1 => DEPHY-SCM format.

Optional variables (that may be overridden via run script command line arguments)
are:

• vert_coord_file
– File containing FV3 vertical grid coefficients.

• n_levels
– Specify the integer number of vertical levels.

5.1.2 Case input data file (CCPP-SCM format)

The initialization and forcing data for each case is stored in a NetCDF (version 4) file
within the ccpp-scm/scm/data/processed_case_input directory. Each file has at least
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two dimensions (time and levels, potentially with additions for vertical snow and soil
levels) and is organized into 3 groups: scalars, initial, and forcing. Not all fields are
required for all cases. For example the fields sh_flux_sfc and lh_flux_sfc are only
needed if the variable sfc_flx_spec = .true. in the case configuration file and state
nudging variables are only required if thermo_forcing_type = 3 or mom_forcing_type
= 3. Using an active LSM (Noah, NoahMP, RUC) requires many more variables than
are listed here. Example files for using with Noah and NoahMP LSMs are included in
ccpp-scm/scm/data/processed_case_input/fv3_model_point_noah[mp].nc.

Listing 5.1: example NetCDF file (CCPP-SCM format) header for case initialization and
forcing data

netcdf arm_sgp_summer_1997 {
dimensions :

time = UNLIMITED ; // (233 currently )
levels = UNLIMITED ; // (35 currently )

variables :
float time(time) ;

time: units = "s" ;
time: description = " elapsed time since the beginning of the simulation " ;

float levels ( levels ) ;
levels : units = "Pa" ;
levels : description = " pressure levels " ;

// global attributes :
: description = "CCPP SCM forcing file for the ARM SGP Summer of 1997 case" ;

group : scalars {
} // group scalars

group : initial {
variables :

float height ( levels ) ;
height : units = "m" ;
height : description = " physical height at pressure levels " ;

float thetail ( levels ) ;
thetail : units = "K" ;
thetail : description = " initial profile of ice - liquid water potential temperature " ;

float qt( levels ) ;
qt: units = "kg kg ^ -1" ;
qt: description = " initial profile of total water specific humidity " ;

float ql( levels ) ;
ql: units = "kg kg ^ -1" ;
ql: description = " initial profile of liquid water specific humidity " ;

float qi( levels ) ;
qi: units = "kg kg ^ -1" ;
qi: description = " initial profile of ice water specific humidity " ;

float u( levels ) ;
u: units = "m s^ -1" ;
u: description = " initial profile of E-W horizontal wind" ;

float v( levels ) ;
v: units = "m s^ -1" ;
v: description = " initial profile of N-S horizontal wind" ;

float tke( levels ) ;
tke: units = "m^2 s^ -2" ;
tke: description = " initial profile of turbulence kinetic energy " ;

float ozone ( levels ) ;
ozone : units = "kg kg ^ -1" ;
ozone : description = " initial profile of ozone mass mixing ratio " ;

} // group initial

group : forcing {
variables :

float lat(time) ;
lat: units = " degrees N" ;
lat: description = " latitude of column " ;

float lon(time) ;
lon: units = " degrees E" ;
lon: description = " longitude of column " ;
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float p_surf (time) ;
p_surf : units = "Pa" ;
p_surf : description = " surface pressure " ;

float T_surf (time) ;
T_surf : units = "K" ;
T_surf : description = " surface absolute temperature " ;

float sh_flux_sfc (time) ;
sh_flux_sfc : units = "K m s^ -1" ;
sh_flux_sfc : description = " surface sensible heat flux" ;

float lh_flux_sfc (time) ;
lh_flux_sfc : units = "kg kg^-1 m s^ -1" ;
lh_flux_sfc : description = " surface latent heat flux" ;

float w_ls(levels , time) ;
w_ls: units = "m s^ -1" ;
w_ls: description = " large scale vertical velocity " ;

float omega (levels , time) ;
omega : units = "Pa s^ -1" ;
omega : description = " large scale pressure vertical velocity " ;

float u_g(levels , time) ;
u_g: units = "m s^ -1" ;
u_g: description = " large scale geostrophic E-W wind" ;

float v_g(levels , time) ;
v_g: units = "m s^ -1" ;
v_g: description = " large scale geostrophic N-S wind" ;

float u_nudge (levels , time) ;
u_nudge : units = "m s^ -1" ;
u_nudge : description = "E-W wind to nudge toward " ;

float v_nudge (levels , time) ;
v_nudge : units = "m s^ -1" ;
v_nudge : description = "N-S wind to nudge toward " ;

float T_nudge (levels , time) ;
T_nudge : units = "K" ;
T_nudge : description = " absolute temperature to nudge toward " ;

float thil_nudge (levels , time) ;
thil_nudge : units = "K" ;
thil_nudge : description = " potential temperature to nudge toward " ;

float qt_nudge (levels , time) ;
qt_nudge : units = "kg kg ^ -1" ;
qt_nudge : description = "q_t to nudge toward " ;

float dT_dt_rad (levels , time) ;
dT_dt_rad : units = "K s^ -1" ;
dT_dt_rad : description = " prescribed radiative heating rate" ;

float h_advec_thetail (levels , time) ;
h_advec_thetail : units = "K s^ -1" ;
h_advec_thetail : description = " prescribed theta_il tendency due to horizontal

advection " ;
float v_advec_thetail (levels , time) ;

v_advec_thetail : units = "K s^ -1" ;
v_advec_thetail : description = " prescribed theta_il tendency due to vertical

advection " ;
float h_advec_qt (levels , time) ;

h_advec_qt : units = "kg kg^-1 s^ -1" ;
h_advec_qt : description = " prescribed q_t tendency due to horizontal advection " ;

float v_advec_qt (levels , time) ;
v_advec_qt : units = "kg kg^-1 s^ -1" ;
v_advec_qt : description = " prescribed q_t tendency due to vertical advection " ;

} // group forcing
}

5.1.3 Case input data file (DEPHY format)

The Development and Evaluation of Physics in atmospheric models (DEPHY) format
is an internationally-adopted data format intended for use by SCM and LESs. The
initialization and forcing data for each case is stored in a NetCDF (version 4) file, although
these files are not by default included in the CCPP SCM repository. To access these
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cases you need to clone the DEPHY-SCM repository, and provide the DEPHY-SCM file
location to the SCM. For example:
cd [...]/ ccpp -scm/scm/data
git clone https :// github .com/GdR -DEPHY/DEPHY -SCM DEPHY -SCM
cd [...]/ ccpp -scm/scm/bin
./ run_scm .py -c MAGIC_LEG04A --case_data_dir [...]/ ccpp -scm/scm/data/

DEPHY -SCM/MAGIC/ LEG04A -v

Each DEPHY file has three dimensions (time, t0, levels) and contains the initial condi-
tions (t0, levels) and forcing data (time, levels). Just as when using the CCPP-SCM
formatted inputs, 5.1.2, not all fields are required for all cases. More information on the
DEPHY format requirements can be found at DEPHY.

Listing 5.2: example NetCDF file (DEPHY format) header for case initialization and
forcing data

netcdf MAGIC_LEG04A_SCM_driver {
dimensions :

t0 = 1 ;
time = 214 ;
lev = 2001 ;

variables :
double t0(t0) ;

t0: standard_name = " initial_time " ;
t0: units = " seconds since 2012 -10 -20 18:00:00" ;
t0: calendar = " gregorian " ;

double time(time) ;
time: standard_name = " forcing_time " ;
time: units = " seconds since 2012 -10 -20 18:00:00" ;
time: calendar = " gregorian " ;

double lev(lev) ;
lev: standard_name = " height " ;
lev: units = "m" ;

float zh(t0 , lev) ;
zh: standard_name = " height " ;
zh: units = "m" ;
zh: coordinates = "t0 zh lat lon" ;

float pa(t0 , lev) ;
pa: standard_name = " air_pressure " ;
pa: units = "Pa" ;
pa: coordinates = "t0 zh lat lon" ;
ta: coordinates = "t0 zh lat lon" ;

float theta (t0 , lev) ;
theta : standard_name = " air_potential_temperature " ;
theta : units = "K" ;
theta : coordinates = "t0 zh lat lon" ;

float thetal (t0 , lev) ;
thetal : standard_name = " air_liquid_potential_temperature " ;
thetal : units = "K" ;
thetal : coordinates = "t0 zh lat lon" ;

float qv(t0 , lev) ;
qv: standard_name = " specific_humidity " ;
qv: units = "1" ;
qv: coordinates = "t0 zh lat lon" ;

float qt(t0 , lev) ;
qt: standard_name = " mass_fraction_of_water_in_air " ;
qt: units = "1" ;
qt: coordinates = "t0 zh lat lon" ;

float ps_forc (time) ;
ps_forc : standard_name = " forcing_surface_air_pressure " ;
ps_forc : units = "Pa" ;
ps_forc : coordinates = "time lat lon" ;

float ug(time , lev) ;
ug: standard_name = " geostrophic_eastward_wind " ;
ug: units = "m s -1" ;
ug: coordinates = "time zh_forc lat lon" ;

float vg(time , lev) ;
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vg: standard_name = " geostrophic_northward_wind " ;
vg: units = "m s -1" ;
vg: coordinates = "time zh_forc lat lon" ;

float tnta_adv (time , lev) ;
tnta_adv : standard_name = " tendency_of_air_temperature_due_to_advection " ;
tnta_adv : units = "K s -1" ;
tnta_adv : coordinates = "time zh_forc lat lon" ;

// global attributes :
:case = " MAGIC / LEG04A " ;
: title = " Forcing and initial conditions for MAGIC Leg04A case - SCM - enabled version "

;
: reference = "J. McGibbon , C. Bretherton ( JAMES 2017) " ;
: author = "M. Ahlgrimm " ;
: version = " Created on Wed Jan 11 20:24:24 2023" ;
: format_version = " DEPHY SCM format version 1" ;
: modifications = "" ;
: script = "DEPHY -SCM/ MAGIC / LEG04A / driver_SCM .py" ;
: comment = "" ;
: start_date = "2012 -10 -20 18:00:00" ;
: end_date = "2012 -10 -25 05:00:00" ;
: forcing_scale = -1 ;
: adv_ta = 1 ;
: adv_theta = 1 ;
: adv_thetal = 1 ;
: radiation = "on" ;
: adv_qv = 1 ;
: adv_qt = 1 ;
: adv_rv = 1 ;
: adv_rt = 1 ;
: forc_wa = 1 ;
: forc_wap = 0 ;
: forc_geo = 1 ;
: surface_type = " ocean " ;
: surface_forcing_temp = "ts" ;
: surface_forcing_moisture = "none" ;
: surface_forcing_wind = "none" ;

}

5.2 Included Cases

Several cases are included in the repository to serve as examples for users to create their
own and for basic research. All case configuration namelist files for included cases can be
found in ccpp-scm/scm/etc/case_config and represent the following observational field
campaigns:

• Tropical Warm Pool – International Cloud Experiment (TWP-ICE) maritime deep
convection

• Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Sum-
mer 1997 continental deep convection

• Atlantic Stratocumulus Transition EXperiment (ASTEX) maritime stratocumulus-
to-cumulus transition

• Barbados Oceanographic and Meteorological EXperiment (BOMEX) maritime shal-
low convection

• Large eddy simulation ARM Symbiotic Simulation and Observation (LASSO) for
May 18, 2016 (with capability to run all LASSO dates - see 5.4) continental shallow
convection
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For the ARM SGP case, several case configuration files representing different time periods
of the observational dataset are included, denoted by a trailing letter. The LASSO case
may be run with different forcing applied, so three case configuration files corresponding
to these different forcing are included. In addition, two example cases are included for
using UFS Atmosphere initial conditions:

• UFS initial conditions for 38.1 N, 98.5 W (central Kansas) for 00Z on Oct. 3, 2016
with Noah variables on the C96 FV3 grid (fv3_model_point_noah.nc)

• UFS initial conditions for 38.1 N, 98.5 W (central Kansas) for 00Z on Oct. 3, 2016
with NoahMP variables on the C96 FV3 grid (fv3_model_point_noahmp.nc)

See 5.5 for information on how to generate these files for other locations and dates, given
appropriate UFS Atmosphere initial conditions and output.

5.3 How to set up new cases

Setting up a new case involves preparing the two types of files listed above. For the
case initialization and forcing data file, this typically involves writing a custom script
or program to parse the data from its original format to the format that the SCM ex-
pects, listed above. An example of this type of script written in Python is included
in /ccpp-scm/scm/etc/scripts/twpice_forcing_file_generator.py. The script reads in
the data as supplied from its source, converts any necessary variables, and writes a
NetCDF (version 4) file in the format described in subsections 5.1.2 and 5.1.3. For refer-
ence, the following formulas are used:

θil = θ − θ

T

(
Lv

cp

ql + Ls

cp

qi

)
(5.1)

qt = qv + ql + qi (5.2)
where θil is the ice-liquid water potential temperature, θ is the potential temperature, Lv

is the latent heat of vaporization, Ls is the latent heat of sublimation cp is the specific
heat capacity of air at constant pressure, T is absolute temperature, qt is the total water
specific humidity, qv is the water vapor specific humidity, ql is the suspended liquid water
specific humidity, and qi is the suspended ice water specific humidity.

As shown in the example NetCDF header, the SCM expects that the vertical dimension
is pressure levels (index 1 is the surface) and the time dimension is in seconds. The
initial conditions expected are the height of the pressure levels in meters, and arrays
representing vertical columns of θil in K, qt, ql, and qi in kg kg−1, u and v in m s−1,
turbulence kinetic energy in m2 s−2 and ozone mass mixing ratio in kg kg−1.

For forcing data, the SCM expects a time series of the following variables: latitude and
longitude in decimal degrees [in case the column(s) is moving in time (e.g., Lagrangian
column)], the surface pressure (Pa) and surface temperature (K). If surface fluxes are
specified for the new case, one must also include a time series of the kinematic surface
sensible heat flux (K m s−1) and kinematic surface latent heat flux (kg kg−1 m s−1).
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The following variables are expected as 2-dimensional arrays (vertical levels first, time
second): the geostrophic u (E-W) and v (N-S) winds (m s−1), and the horizontal and
vertical advective tendencies of θil (K s−1) and qt (kg kg−1 s−1), the large scale vertical
velocity (m s−1), large scale pressure vertical velocity (Pa s−1), the prescribed radiative
heating rate (K s−1), and profiles of u, v, T, θil and qt to use for nudging.

Although it is expected that all variables are in the NetCDF file, only those that
are used with the chosen forcing method are required to be nonzero. For example,
the following variables are required depending on the values of mom_forcing_type and
thermo_forcing_type specified in the case configuration file:

• mom_forcing_type = 1
– Not implemented yet

• mom_forcing_type = 2
– geostrophic winds and large scale vertical velocity

• mom_forcing_type = 3
– u and v nudging profiles

• thermo_forcing_type = 1
– horizontal and vertical advective tendencies of θil and qt and prescribed radia-

tive heating (can be zero if radiation scheme is active)
• thermo_forcing_type = 2

– horizontal advective tendencies of θil and qt, prescribed radiative heating (can
be zero if radiation scheme is active), and the large scale vertical pressure
velocity

• thermo_forcing_type = 3
– θil and qt nudging profiles and the large scale vertical pressure velocity

For the case configuration file, it is most efficient to copy an existing file in
ccpp-scm/scm/etc/case_config and edit it to suit one’s case. Recall from subsection
5.1.1 that this file is used to configure the SCM framework parameters for a given case.
Be sure to check that model timing parameters such as the time step and output fre-
quency are appropriate for the physics suite being used. There is likely some stability
criterion that governs the maximum time step based on the chosen parameterizations
and number of vertical levels (grid spacing). The case_name parameter should match the
name of the case input data file that was configured for the case (without the file exten-
sion). The runtime parameter should be less than or equal to the length of the forcing
data unless the desired behavior of the simulation is to proceed with the last specified
forcing values after the length of the forcing data has been surpassed. The initial date
and time should fall within the forcing period specified in the case input data file. If the
case input data is specified to a lower altitude than the vertical domain, the remainder of
the column will be filled in with values from a reference profile. There is a tropical profile
and mid-latitude summer profile provided, although one may add more choices by adding
a data file to ccpp-scm/scm/data/processed_case_input and adding a parser section to
the subroutine get_reference_profile in -scm/scm/src/scm_input.f90. Surface fluxes
can either be specified in the case input data file or calculated using a surface scheme
using surface properties. If surface fluxes are specified from data, set sfc_flux_spec to
.true. and specify sfc_roughness_length_cm for the surface over which the column re-
sides. Otherwise, specify a sfc_type. In addition, one must specify a column_area for
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each column.

To control the forcing method, one must choose how the momentum and scalar variable
forcing are applied. The three methods of Randall and Cripe (1999, JGR) have been
implemented: “revealed forcing” where total (horizontal + vertical) advective tendencies
are applied (type 1), “horizontal advective forcing” where horizontal advective tendencies
are applied and vertical advective tendencies are calculated from a prescribed vertical
velocity and the calculated (modeled) profiles (type 2), and “relaxation forcing” where
nudging to observed profiles replaces horizontal advective forcing combined with vertical
advective forcing from prescribed vertical velocity (type 3). If relaxation forcing is chosen,
a relax_time that represents the timescale over which the profile would return to the
nudging profiles must be specified.

5.4 Using other LASSO cases

In order to use other LASSO cases than the one provided, perform the following steps:

1. Access http://archive.arm.gov/lassobrowser and use the navigation on the
left to choose the dates for which you would like to run a SCM simulation. Pay
attention to the “Large Scale Forcing” tab where you can choose how the large
scale forcing was generated, with options for ECMWF, MSDA, and VARANAL.
All are potentially valid, and it is likely worth exploring the differences among
forcing methods. Click on Submit to view a list of simulations for the selected
criteria. Choose from the simulations (higher skill scores are preferred) and check
the “Config Obs Model Tar” box to download the data. Once the desired simulations
have been checked, order the data (you may need to create an ARM account to do
so).

2. Once the data is downloaded, decompress it. From the config directory, copy the
files input_ls_forcing.nc, input_sfc_forcing.nc, and wrfinput_d01.nc into their
own directory under ccpp-scm/scm/data/raw_case_input/.

3. Modify ccpp-scm/scm/etc/scripts/lasso1_forcing_file_generator_gjf.py to
point to the input files listed above. Execute the script in order to generate a case
input file for the SCM (to be put in ccpp-scm/scm/data/processed_case_input/):
./ lasso1_forcing_file_generator_gjf .py

4. Create a new case configuration file (or copy and modify an existing one) in
ccpp-scm/scm/etc/case_config. Be sure that the case_name variable points to the
newly created/processed case input file from above.
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5.5 Using UFS Output to Create SCM Cases:
UFS-Replay

5.5.1 Python Dependencies

The scripts here require a few python packages that may not be found by default in
all python installations. There is a YAML file with the python environment needed
to run the script in ccpp-scm/environment-ufsreplay.yml. To create and activate this
environment using conda:

Create environment (only once):

> conda env create -f environment-ufsreplay.yml

This will create the conda environment env_ufsreplay

Activate environment:

> conda activate env_ufsreplay

5.5.2 UFS_IC_generator.py

A script exists in scm/etc/scripts/UFS_IC_generator.py to read in UFS history (output)
files and their initial conditions to generate a SCM case input data file, in DEPHY
format.
./ UFS_IC_generator .py [-h] (-l LOCATION LOCATION | -ij INDEX INDEX) -d
DATE -i IN_DIR -g GRID_DIR -f FORCING_DIR -n
CASE_NAME [-t {1 ,2 ,3 ,4 ,5 ,6 ,7}] [-a AREA] [-oc]
[-lam] [-sc] [-near]

Mandatory arguments:

1. --location (-l) OR --index (-ij): Either longitude and latitude in decimal de-
grees east and north of a location OR the UFS grid index with the tile number

• -l 261.51 38.2 (two floating point values separated by a space)
• -ij 8 49 (two integer values separated by a space; this option must also use the

--tile (-t) argument to specify the tile number)
2. --date (-d) YYYYMMDDHHMMSS: date corresponding to the UFS initial con-

ditions
3. --in_dir (-i): path to the directory containing the UFS initial conditions
4. --grid_dir (-g): path to the directory containing the UFS supergrid files (AKA

"fix" directory)
5. --forcing_dir (-f): path to the directory containing the UFS history files
6. --case_name (-n): name of case
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Optional arguments:

1. --tile (-t): if one already knows the correct tile for the given longitude and
latitude OR one is specifying the UFS grid index (--index argument)

2. --area (-a): area of grid cell in m2 (if known or different than the value calculated
from the supergrid file)

3. --old_chgres (-oc): flag if UFS initial conditions were generated using older ver-
sion of chgres (global_chgres); might be the case for pre-2018 data

4. --lam (-lam): flag to signal that the ICs and forcing is from a limited-area model
run

5. --save_comp (-sc): flag to create UFS reference file for comparison
6. --use_nearest (-near): flag to indicate using the nearest UFS history file gridpoint

5.5.3 UFS_forcing_ensemble_generator.py

There is an additional script in scm/etc/scripts/UFS_forcing_ensemble_generator.py
to create UFS-replay case(s) starting with output from UFS Weather Model (UWM)
Regression Tests (RTs).
UFS_forcing_ensemble_generator .py [-h] -d DIR -n CASE_NAME
(-lonl LON_1 LON_2 -latl LAT_1 LAT_2 -nens NENSMEMBERS |
-lons [ LON_LIST ] -lats [ LAT_LIST ])
[-dt TIMESTEP ] [-cres C_RES] [-sdf SUITE] [-sc] [-near]

Mandatory arguments:

1. --dir (-d): path to UFS Regression Test output
2. --case_name (-n): name of cases
3. Either: (see examples below)

• --lon_limits (-lonl) AND --lat_limits (-latl) AND --nensmembers
(-nens): longitude range, latitude range, and number of cases to create

• --lon_list (-lons) AND --lat_list (-lats): longitude and latitude of
cases

Optional arguments:

1. --timestep (-dt): SCM timestep, in seconds
2. --C_res (-cres): UFS spatial resolution
3. --suite (-sdf): CCPP suite definition file to use for ensemble
4. --save_comp (-sc): flag to create UFS reference file for comparison
5. --use_nearest (-near): flag to indicate using the nearest UFS history file gridpoint

Examples to run from within the scm/etc/scripts directory to create SCM cases starting
with the output from a UFS Weather Model regression test(s):

On the supported platforms Cheyenne (NCAR) and Hera (NOAA), there are staged
UWM RTs located at:
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• Cheyenne /glade/scratch/epicufsrt/GMTB/CCPP-SCM/UFS_RTs
• Hera /scratch1/BMC/gmtb/CCPP-SCM/UFS_RTs

5.5.4 Example 1: UFS-replay for single point

UFS regression test, control_c192, for single point.
./ UFS_forcing_ensemble_generator .py -d /glade/ scratch / epicufsrt /GMTB/

CCPP -SCM/ UFS_RTs / control_c192 / -sc --C_RES 192 -dt 360 -n
control_c192 -lons 300 -lats 34

Upon successful completion of the script, the command to run the case(s) will print to
the screen. For example,
./ run_scm .py --npz_type gfs --file scm_ufsens_control_c192 .py --

timestep 360

The file scm_ufsens_control_c192.py is created in ccpp-scm/scm/bin/, where the SCM
run script is to be exectued.

5.5.5 Example 2: UFS-replay for list of points

UFS regression test, control_c384, for multiple points.
./ UFS_forcing_ensemble_generator .py -d /glade/ scratch / epicufsrt /GMTB/

CCPP -SCM/ UFS_RTs / control_c384 / -sc --C_RES 384 -dt 225 -n
control_c384 -lons 300 300 300 300 -lats 34 35 35 37

Upon successful completion of the script, the command to run the case(s) will print to
the screen. For example,
./ run_scm .py --npz_type gfs --file scm_ufsens_control_c384 .py --

timestep 225

The file scm_ufsens_control_c384.py contains ALL of the cases created. Each case created
will have the naming convention case_name_nXXX, where the suffix XXX is the case number
from 0 to the number of points provided. The contents of the file should look like:
run_list = [{"case": " control_c384_n000 ", " suite": " SCM_GFS_v16 "},

{"case": " control_c384_n001 ", "suite": " SCM_GFS_v16 "},
{"case": " control_c384_n002 ", "suite": " SCM_GFS_v16 "},
{"case": " control_c384_n003 ", "suite": " SCM_GFS_v16 "}]

5.5.6 Example 3: UFS-replay for an ensemble of points

UFS regression test, control_p8, for an ensemble (10) of randomly selected points over
a specified longitude (300 − 320oW ) and latitude (40 − 50oN) range
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But first, to use the control_p8 test we need to rerun the regression test to gen-
erate UFS history files with a denser and constant output interval. First, in
control_p8/model_configure, change --output_fh to "interval -1", where interval is
the UFS history file output frequency (in hours), see UFS Weather Model Users Guide
for more details.

For the purposes of this example the control_p8 test has already been rerun, but if
starting from your own UWM RTs, you can rerun the UWM regression test, on Cheyenne
for example, by running the following command in the RT directory: qsub job_card

Now the cases can be generated with the following command:
./ UFS_forcing_ensemble_generator .py -d /glade/ scratch / epicufsrt /GMTB/

CCPP -SCM/ UFS_RTs / control_p8 / -sc --C_RES 96 -dt 720 -n control_p8 -
lonl 300 320 -latl 40 50 -nens 10 -sdf SCM_GFS_v17_p8

Upon successful completion of the script, the command to run the case(s) will print to
the screen. For example,
./ run_scm .py --npz_type gfs --file scm_ufsens_control_p8 .py --timestep

720

The file scm_ufsens_control_p8.py contains ten cases (n000-n009) to be run. The con-
tents of the file should look like:
run_list = [{"case": " control_p8_n000 ", "suite": " SCM_GFS_v17_p8 "},

{"case": " control_p8_n001 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n002 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n003 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n004 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n005 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n006 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n007 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n008 ", "suite": " SCM_GFS_v17_p8 "},
{"case": " control_p8_n009 ", "suite": " SCM_GFS_v17_p8 "}]
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6 CCPP Interface

Chapter 6 of the CCPP v6 Technical Documentation (https://ccpp-techdoc.
readthedocs.io/en/v6.0.0/) provides a wealth of information on the overall process of
connecting a host model to the CCPP framework for calling physics. This chapter de-
scribes the particular implementation within this SCM, including how to set up, initialize,
call, and change a physics suite using the CCPP framework.

6.1 Setting up a suite

Setting up a physics suite for use in the CCPP SCM with the CCPP framework involves
three steps: preparing data to be made available to physics through the CCPP, running
the ccpp_prebuild.py script to reconcile SCM-provided variables with physics-required
variables, and preparing a suite definition file.

6.1.1 Preparing data from the SCM

As described in sections 6.1 and 6.2 of the CCPP Technical Documentation a host model
must allocate memory and provide metadata for variables that are passed into and out
of the schemes within the physics suite. As of this release, in practice this means that
a host model must do this for all variables needed by all physics schemes that are ex-
pected to be used with the host model. For this SCM, all variables needed by the physics
schemes are allocated and documented in the file ccpp-scm/scm/src/scm_type_defs.f90
and are contained within the physics derived data type. This derived data type ini-
tializes its component variables in a create type-bound procedure. As mentioned
in section 6.2 of the CCPP Technical Documentation, files containing all required
metadata was constructed for describing all variables in the physics derived data
type. These files are scm/src/GFS_typedefs.meta, scm/src/CCPP_typedefs.meta and
scm_physical_constants.meta. Further, scm_type_defs.meta exists to provide meta-
data for derived data type definitions and their instances, which is needed by the
ccpp-framework to properly reference the data. The standard names of all vari-
ables in this table must match with a corresponding variable within one or more
of the physics schemes. A list of all standard names used can be found in
ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_SCM.pdf.
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6.1.2 Editing and running ccpp_prebuild.py

General instructions for configuring and running the ccpp_prebuild.py script can
be found in chapter 8 of the CCPP Technical Documentation. The script ex-
pects to be run with a host-model-dependent configuration file, passed as argument
–config=path_to_config_file. Within this configuration file are variables that hold
paths to the variable definition files (where metadata tables can be found on the host
model side), the scheme files (a list of paths to all source files containing scheme entry
points), the auto-generated physics schemes makefile snippet, the auto-generated physics
scheme caps makefile snippet, and the directory where the auto-generated physics caps
should be written out to. As mentioned in section 2.3, this script must be run to reconcile
data provided by the SCM with data required by the physics schemes before compilation
– this is done automatically by cmake.

6.1.3 Preparing a suite definition file

The suite definition file is a text file read by the model at compile time. It is used to
specify the physical parameterization suite, and includes information about the number of
parameterization groupings, which parameterizations that are part of each of the groups,
the order in which the parameterizations should be run, and whether subcycling will be
used to run any of the parameterizations with shorter timesteps.

In addition to the six or so major parameterization categories (such as radiation, boundary
layer, deep convection, resolved moist physics, etc.), the suite definition file can also have
an arbitrary number of additional interstitial schemes in between the parameterizations
to prepare or postprocess data. In many models, this interstitial code is not known to
the model user but with the suite definition file, both the physical parameterizations and
the interstitial processing are listed explicitly.

For this release, supported suite definition files used with this SCM are found in
ccpp-scm/ccpp/suites and have default namelist, tracer configuration, and timesteps at-
tached in ccpp-scm/scm/src/suite_info.py. For all of these suites, the physics schemes
have been organized into 3 groupings following how the physics are called in the UFS
Atmosphere model, although no code is executed in the SCM time loop between exe-
cution of the grouped schemes. Several “interstitial” schemes are included in the suite
definition file to execute code that previously was part of a hard-coded physics driver.
Some of these schemes may eventually be rolled into the schemes themselves, improving
portability.

6.2 Initializing/running a suite

The process for initializing and running a suite in this SCM is described in sections
4.4 and 4.5, respectively. A more general description of the process for performing suite
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initialization and running can also be found in sections 6.4 and 6.5 of the CCPP Technical
Documentation.

6.3 Changing a suite

6.3.1 Replacing a scheme with another

Prior to being able to swap a scheme within a suite, one must first add a CCPP-compliant
scheme to the pool of available schemes in the CCPP physics repository. This process is
described in chapter 2 of the CCPP Technical Documentation.

Once a CCPP-compliant scheme has been added to the CCPP physics repository, the
process for modifying an existing suite should take the following steps into account:

• Examine and compare the arguments of the scheme being replaced and the replace-
ment scheme.

– Are there any new variables that the replacement scheme needs from the host
application? If so, these new variables must be added to the host model
cap. For the SCM, this involves adding a component variable to the physics
derived data type and a corresponding entry in the metadata table. The new
variables must also be allocated and initialized in the physics%create type-
bound procedure.

– Do any of the new variables need to be calculated in an interstitial scheme?
If so, one must be written and made CCPP-compliant itself. The CCPP
Technical Documentation will help in this endeavor, and the process outlined
in its chapter 2 should be followed.

– Do other schemes in the suite rely on output variables from the scheme being
replaced that are no longer being supplied by the replacement scheme? Do
these output variables need to be derived/calculated in an interstitial scheme?
If so, see the previous bullet about adding one.

• Examine existing interstitial schemes related to the scheme being replaced.
– There may be scheme-specific interstitial schemes (needed for one specific

scheme) and/or type-generic interstitial schemes (those that are called for all
schemes of a given type, i.e. all PBL schemes). Does one need to write analo-
gous scheme-specific interstitial schemes for the replacement?

– Are the type-generic interstitial schemes relevant or do they need to be modi-
fied?

• Depending on the answers to the above considerations, edit the suite definition file
as necessary. Typically, this would involve finding the <scheme> elements associated
with the scheme to be replaced and its associated interstitial <scheme> elements and
simply replacing the scheme names to reflect their replacements. See chapter 4 of
the CCPP Technical Documentation for further details.
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6.3.2 Modifying “groups” of parameterizations

The concept of grouping physics in the suite definition file (currently reflected in the
<group name=“XYZ”> elements) enables “groups” of parameterizations to be called with
other computation (perhaps related to the dycore, I/O, etc.) in between. In the suite
definition file included in this release, three groups are specified, but currently no compu-
tation happens between ccpp_physics_run calls for these groups. However, one can edit
the groups to suit the needs of the host application. For example, if a subset of physics
schemes needs to be more tightly connected with the dynamics and called more fre-
quently, one could create a group consisting of that subset and place a ccpp_physics_run
call in the appropriate place in the host application. The remainder of the parameteriza-
tions groups could be called using ccpp_physics_run calls in a different part of the host
application code.

6.3.3 Subcycling parameterizations

The suite definition file allows subcycling of schemes, or calling a subset of schemes at a
smaller time step than others. The <subcycle loop = n> element in the suite definition
file controls this function. All schemes within such an element are called n times during
one ccpp_physics_run call. An example of this is found in the suite_SCM_GFS_v16.xml
suite definition file, where the surface schemes are executed twice for each timestep (imple-
menting a predictor/corrector paradigm). Note that no time step information is included
in the suite definition file. If subcycling is used for a set of parameterizations,
the smaller time step must be an input argument for those schemes. This is
not handled automatically by the ccpp-framework yet.

6.4 Adding variables

6.4.1 Adding a physics-only variable

Suppose that one wants to add the variable foo to a scheme that spans the depth of the
column and that this variable is internal to physics, not part of the SCM state or subject
to external forcing. Here is how one would do so:

1. First, add the new variable to the physics derived data type definition in
ccpp-scm/scm/src/scm_type_defs.f90. Within the definition, you’ll notice that
there are nested derived data types (which contain most of the variables needed by
the physics and are used for mainly legacy reasons) and several other integers/real-
s/logicals. One could add the new variable to one of the nested GFS derived data
types if the variable neatly fits inside one of them, but it is suggested to bypass the
GFS derived data types and add a variable directly to the physics type definition:
real(kind= kind_phys ), allocatable :: foo (: ,:)
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2. Second, within the physics_create subroutine, add an allocate and initialization
statement.
allocate (foo(n_columns , n_levels ))
physics %foo = 0.0

Note that even though foo only needs to have the vertical dimension, it is also
allocated with the n_columns dimension as the first dimension since this model is
intended to be used with multiple independent columns. Also, the initialization in
this creation subroutine can be overwritten by an initialization subroutine associ-
ated with a particular scheme.

3. At this point, these changes are enough to allocate the new variable (physics%create
is called in the main subroutine of scm.F90), although this variable cannot be used
in a physics scheme yet. For that, you’ll need to add an entry in the corresponding
metadata file. See section 2.2 of the CCPP Technical Documentation for more
information regarding the format.

4. On the physics scheme side, there will also be a metadata file entry for foo. For
example, say that scheme bar uses foo. If foo is further initialized in bar’s _init
subroutine, a metadata entry for foo must be found in the corresponding section
in the metadata file. If it is used in bar’s run subroutine, a metadata entry for
foo must also appear in the metadata file section for bar_run. The metadata entry
on the physics scheme side has the same format as the one on the host model side
described above. The standard name, rank, type, and kind must match the entry
from the host model table. Others attributes (local name, units (assuming that an
automatic conversion exists in the ccpp-framework), long_name, intent) can differ.
The local name corresponds to the name of the variable used within the scheme
subroutine, and the intent attribute should reflect how the variable is actually used
within the scheme.
Note: In addition to the metadata file, the argument list for the scheme subroutine
must include the new variable (i.e., foo must actually be in the argument list for
bar_run and be declared appropriately in regular Fortran).

If a variable is declared following these steps, it can be used in any CCPP-compliant
physics scheme and it will retain its value from timestep to timestep. A variable will
ONLY be zeroed out (either every timestep or periodically) if it is in the GFS_interstitial
or GFS_diag data types. So, if one needs the new variable to be ‘prognostic’, one would
need to handle updating its value within the scheme, something like:

foot+1 = foot + ∆t ∗ foo_tendency (6.1)

Technically, the host model can “see” foo between calls to physics (since the host model
allocated its memory at initialization), but it will not be touching it.

6.4.2 Adding a prognostic SCM variable

The following instructions are valid for adding a passive, prognostic tracer to the SCM.
Throughout these instructions, the new tracer is called ‘smoke’.
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1. Add a new tracer to the SCM state. In ccpp-scm/scm/src/scm_type_defs.f90 do
the following:

• Add an index for the new tracer in the scm_state_type definition.
• Do the following in the scm_state_create subroutine:

– Increment scm_state%n_tracers
– Set scm_state%smoke_index = (next available integer)
– Set scm_state%tracer_names(scm_state%smoke_index) = ‘smoke’
– Note: scm_state%state_tracer is initialized to zero in this subroutine

already, so there is no need to do so again.
2. Initialize the new tracer to something other than zero (from an input file).

• Edit an existing input file (in ccpp-scm/scm/data/processed_case_input): add
a field in the ‘initial’ group of the NetCDF file(s) (with vertical dimension in
pressure coordinates) with an appropriate name in one (or all) of the input
NetCDF files and populate with whatever values are necessary to initialize the
new tracer.

• Create a new input variable to read in the initialized values. In
ccpp-scm/scm/src/scm_type_defs.f90:

– Add a new input variable in scm_input_type

real(kind=dp), allocatable :: input_smoke (:)

– In scm_input_create, allocate and initialize the new variable to 0.
• Read in the input values to initialize the new tracer. In

ccpp-scm/scm/src/scm_input.f90/get_case_init:
– Add a variable under the initial profile section:

real(kind=dp), allocatable :: input_smoke (:) !< smoke
profile ( fraction )

– Add the new input variable to the allocate statement.
– Read the values in from the file:

call check( NF90_INQ_VARID (grp_ncid ,"smoke",varID))
call check( NF90_GET_VAR (grp_ncid ,varID , input_smoke ))

– set scm_input%input_smoke = input_smoke
• Interpolate the input values to the model grid. Edit scm_setup.f90/set_state:

– Add a loop over the columns to call interpolate_to_grid_centers that
puts input_smoke on grid levels in scm_state%state_tracer

do i=1, scm_state % n_cols
call interpolate_to_grid_centers ( scm_input %

input_nlev , scm_input %input_pres , scm_input %
input_smoke , scm_state % pres_l (i ,1 ,:) , &
scm_state %n_levels , scm_state % state_tracer (i

,1,:, scm_state % smoke_index ,1) ,
last_index_init , 1)

end do

• At this point, you have a new tracer initialized to values specified in the input
file on the model vertical grid, but it is not connected to any physics or changed
by any forcing.

3. For these instructions, we’ll assume that the tracer is not subject to any external
forcing (e.g., horizontal advective forcing, sources, sinks). If it is, further work is
required to:
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• One needs to provide data on how tracer is forced in the input file, similar to
specifying its initial state, as above.

• Create, allocate, and read in the new variable for forcing (similar to above).
• Add to interpolate_forcing (similar to above, but interpolates the forcing to

the model grid and model time).
• Add statements to time loop to handle the first time step and time-advancing.
• Edit apply_forcing_forward_Euler in ccpp-scm/scm/src/scm_forcing.f90.

4. In order to connect the new tracer to the CCPP physics, perform steps 1-4 in
section 6.4.1 for adding a physics variable. In addition, do the following in order
to associate the scm_state variable with variables used in the physics through a
pointer:

• Point the new physics variable to scm_state%state_tracer(:,:,:,scm_state%smoke_index)
in ccpp-scm/scm/src/scm_type_defs.f90/physics_associate.

5. There may be additional steps depending on how the tracer is used
in the physics and how the physics scheme is integrated with the
current GFS physics suite. For example, the GFS physics has two
tracer arrays, one for holding tracer values before the physics timestep
(ccpp-scm/scm/src/GFS_typedefs.F90/GFS_statein_type/qgrs) and one
for holding tracer values that are updated during/after the physics
(ccpp-scm/scm/src/GFS_typedefs.F90/GFS_stateout_type/gq0). If the tracer
needs to be part of these arrays, there are a few additional steps to
take. If you need help, please post on the support forum at: https:
//dtcenter.org/forum/ccpp-user-support/ccpp-single-column-model.
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7 Hierarchical Physics Development

Chapter 7 of the CCPP v6 Technical Documentation (https://ccpp-techdoc.
readthedocs.io/en/v6.0.0/) provides an overview of the tools supported by the Single
Column Model (SCM) to faciliate hierarchical system development (HSD)

7.1 Background

Developing and implementing a new physics parameterization for use in an operational
setting requires extensive testing and evaluation. This is to ensure that new develop-
ments aren’t yielding unexpected results and that all computational considerations are
being met. From a scientific perspective, this process should be incremental and hierar-
chical, i.e. using HSD which follows a systems-engineering approach, i.e. initial testing
of simple idealized cases that focus on small elements (e.g., physics schemes) of an Earth
System Model (ESM) first in isolation, then progressively connecting elements with in-
creased coupling between ESM components at the different HSD steps. HSD includes
SCMs (including individual elements within the SCM), Small-Domain, Limited-Area and
Regional Models, all the way up to complex fully-coupled ESMs with components for at-
mosphere/chemistry/aerosols, ocean/waves/sea-ice, land-hydrology/snow/land-ice, and
biogeochemical cycles/ecosystems, a subset of which (i.e. atmosphere+land and speci-
fied ocean conditions) has traditionally addressed Numerical Weather Prediction (NWP)
needs. HSD is end-to-end in that it includes data ingest and quality control, data assimi-
lation, modeling, post-processing, and verification. The requirements for advancing from
one HSD step to the next are appropriate metrics/benchmarks for ESM (or ESM compo-
nents or elements) performance, many of which are at the physical process level, plus the
necessary forcing data sets to drive and validate models. Datasets for use in different HSD
steps are obtained from measurements (e.g. field programs and observational networks),
ESM output, or idealized conditions (often used to “stress-test” schemes/elements/system
components, among many other options). It is important to note that the HSD process
is concurrent and iterative, i.e. more complex HSD steps can provide information to be
used at simpler HSD steps, and vice versa. This also includes understanding spatial and
temporal dependencies in model physics, and the need for consistency in those solutions in
models between higher-resolution/regional short-range, global medium/extended-range,
and subseasonal-to-seasonal time scales.

The CCPP-SCM provides developers working within CCPP-compliant host models the
ability to test their physics innovations without having to worry about the coupling to
the dynamical core. This is a critical step in the model development hierarchy, providing
insight on how an introduced physics change can modify the evolution of the internal
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physics state. However, there are still challenges, most notably the interactions between
introduced changes and the other physics schemes in the suite.

7.2 CCPP Suite Simulator

7.2.1 Overview

The CCPP Suite Simulator is a CCPP-compliant physics scheme that provides the ability
to turn on/off physical processes in a Suite Definition File (SDF), using namelist options.
This simulator ‘piggybacks’ on an existing SDF, replacing physics tendencies with data-
driven tendencies (7.1).

Figure 7.1: Equation for internal physics state evolution for process-split physics suite,
where S is the prognostic state and D are simulated data tendencies. Top)
Standard Suite Definition File; Middle) Active PBL physics with simulated
tendencies for other schemes; Bottom) Active PBL and radiation, with simu-
lated tendencies for other schemes.

7.2.2 Process-split vs. Time-split Physics Process

Process-split physics processes are schemes that share a common input state, whereas
time-split processes use the state provided by the previous physics process. A SDF can
be any combination of time-split and process-split schemes, just as long as the appropriate
interstitial schemes are created to couple the physics schemes.
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7.2.3 About the CCPP Suite Simulator

The CCPP Suite Simulator (CSS) emulates the evolution of the internal physics state
provided by the SDF. There are different deployments of the suite simulator, depending
on the role(s) and order of the physical processes in the SDF we are emulating (e.g. time
vs. process-split), that need further attention. For instance, SDFs consisting of only
process-split physics schemes can be handled simply by adding the simulator to the end
of the SDF, since for process-split schemes the order is not critical to the evolution of
the internal physics state. On the other hand, for SDFs that contain time-split processes,
where the simulator is added is important to preserve the order of the internal state
evolution.

7.2.4 Python Dependencies

The scripts here require a few python packages that may not be found by default in
all python installations. There is a YAML file with the python environment needed
to run the script in ccpp-scm/environment-suite-sim.yml. To create and activate this
environment using conda:

Create environment (only once):

> conda env create -f environment-suite-sim.yml

This will create the conda environment scm_suite_sim

Activate environment:

> conda activate scm_suite_sim

7.2.5 Enabling the CCPP Suite Simulator

To use the CSS in the CCPP-SCM three modifications need to be made:

1. Add CSS, and any interstitial schemes needed for coupling the CSS to the host (e.g.
SCM), to an existing CCPP SDF (or create a new SDF).

2. Set do_ccpp_suite_sim = .true. in the GFS physics namelist, gfs_physics_nml
3. Modify, or create new, namelist that has the options needed to activate the CSS.

7.2.6 Modifying the CCPP Suite Definition File

The SDF needs to be modified to include the CSS scheme, and any interstitial schemes
needed for your host application. Here we will illustrate how to use the CSS within SCM
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(UFS) physics, for which all applications use a physics SDF with a mixture of process-split
and time-split physics schemes. In general,

• for SDFs that contain ONLY process-split schemes, the CSS can be added to the
end of the SDF for all configurations. In this case we have the flexibility to switch
“on/off” any combination of active physics and simulated physics at runtime, via
namelist, with the same modified SDF.

• when using SDFs that contain ONLY time-split schemes, the CSS needs to be added
before and after each scheme you want to switch “on/off”. So one could add calls to
the CSS between each process in the SDF to obtain total flexibility, or just around
the schemes they are interested in.

In the examples below we will demonstrate how to modify SDFs to use the CSS for SCM
(UFS) physics applications, 7.2.9 and 7.2.10.

7.2.7 Namelist for the CCPP Suite Simulator

The CSS has its own namelist, ccpp_suite_sim_nml, that needs to be added to the physics
namelists used by the SCM.

Listing 7.1: Example namelist for CCPP Suite Simulator.
& ccpp_suite_sim_nml

suite_sim_file = ’’
nprc_sim = 7
prc_LWRAD_cfg = 0, 0, 1
prc_SWRAD_cfg = 0, 0, 2
prc_PBL_cfg = 1, 0, 3
prc_GWD_cfg = 1, 0, 4
prc_SCNV_cfg = 1, 1, 5
prc_DCNV_cfg = 1, 1, 6
prc_cldMP_cfg = 1, 1, 7

• suite_sim_file: Input file with simulated data tendencies (See 7.2.8 for how to
create input file from SCM output).

• nprc_sim: Number of physical processes in the input data.
• prc_XYZ_cfg: Configuration for physical process XYZ.

– 0 - Active scheme; 1 - Use data
– 0 - Process-split scheme; 1 - Time-split scheme
– Index for scheme order (1 - nprc_sim)

For example, in Listing 7.1, there are two active schemes, longwave and shortwave radia-
tion, and five simulated schemes: PBL, gravity-wave drag, deep/shallow convection, and
cloud microphysics. The radiation, gravity-wave drag and PBL schemes are all process-
split, whereas convection and cloud microphysics are time-split.

7.2.8 Creating Custom Data for Simulator

Navigate to ccpp-scm/scm/etc/scripts/ccpp_suite_sim
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Figure 7.2: Changes to GFS v16 physics SDF to include CCPP suite simulator for active
radiation parameterization. All other parameterizations are replaced by sim-
ulated data.

Provided with the SCM are scripts to generate data for the suite simulator using output
from a previous SCM run. The first script, create_1D_CSSdata.py, extracts the physics
tendencies from a user-specified time interval, which are used for constant forcing in
the suite simulator. The other script, create_2D_CSSdata.py, creates a two-dimensional
forcing dataset. The suite simulator interpolates these forcings in time.

1. Run the SCM twice using the TWPICE case with the GFS_v16 and GFS_v17_p8
suites.
cd ccpp -scm/scm/bin
./ run_scm .py -c twpice -s SCM_GFS_v16
./ run_scm .py -c twpice -s SCM_GFS_v17_p8

2. Create 2D forcing data for the CSS, using SCM output from TWPICE case with
GFS_v16 suite.
cd ccpp -scm/scm/etc/ scripts / ccpp_suite_sim
./ create_2D_CSSdata .py --cases twpice --suites SCM_GFS_v16

3. Create constant forcing data for the CSS, using SCM output, at forecast time 3600s,
from TWPICE case with GFS_v17_p8 suite.
cd ccpp -scm/scm/etc/ scripts / ccpp_suite_sim
./ create_1D_CSSdata .py --cases twpice --suites SCM_GFS_v17_p8 --

time 3600

The data file will be written to ccpp-scm/scm/etc/scripts/ccpp_suite_sim/ with the
following format, data_CSS_DIM.CASES.SUITES.nc.

7.2.9 Example 1: Suite with Active Radiation

For this example we will use the two-dimensional forcing data from 7.2.8.

First, we need to modify the SDF to include the CSS, ccpp_suite_simulator.F90 and an
additional interstital scheme to couple to the GFS physics, GFS_ccpp_suite_sim_pre.F90
(See 7.2).

Next, the physics namelist needs to be configured to:
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1. Add data file, suite_sim_file created in 7.2.8 to the namelist.
2. Turn “off” all schemes except the radiation (see Listing 7.1)

Finally, we rebuild the SCM with the modified SDFs to include the CSS, and run the
SCM using TWPICE case with the modified GFS_v16 suite.
cd ccpp -scm/scm/bin
cmake ../ src -DCCPP_SUITES = SCM_GFS_v16
./ run_scm .py -c twpice -s SCM_GFS_v16

7.2.10 Example 2: Suite with Active Cloud Microphysics

For this example we will use the constant forcing data from 7.2.8.

First, we need to modify the SDF to include the CSS, ccpp_suite_simulator.F90 and an
additional interstital scheme to couple to the GFS physics, GFS_ccpp_suite_sim_pre.F90
(See 7.3).

Figure 7.3: Changes to GFS v17 Prototype 8 physics SDF to include CCPP suite simu-
lator for active cloud microphysics parameterization. All other parameteri-
zations are replaced by simulated data.

Next, the physics namelist needs to be configured to:

1. Add data file, suite_sim_file created in 7.2.8 to the namelist.
2. Turn “off” all schemes except the cloud microphysics (see Listing 7.2)

Listing 7.2: Example namelist for CCPP Suite Simulator with active cloud microphysics.
& ccpp_suite_sim_nml

suite_sim_file = ’ccpp -scm/scm/etc/ scripts / ccpp_scheme_sim / data_scheme_sim_1D .
twpice . SCM_GFS_v16 .nc ’

nprc_sim = 7
prc_LWRAD_cfg = 1, 0, 1
prc_SWRAD_cfg = 1, 0, 2
prc_PBL_cfg = 1, 0, 3
prc_GWD_cfg = 1, 0, 4
prc_SCNV_cfg = 1, 1, 5
prc_DCNV_cfg = 1, 1, 6
prc_cldMP_cfg = 0, 1, 7
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Finally, we rebuild the SCM with the modified SDFs to include the CSS, and run the
SCM using TWPICE case with the modified GFS_v17_p8 suite.
cd ccpp -scm/scm/bin
cmake ../ src -DCCPP_SUITES = SCM_GFS_v17_p8
./ run_scm .py -c twpice -s SCM_GFS_v17_p8

7.2.11 Plotting tools

Additionally, plotting scripts provided in ccpp-scm/scm/etc/scripts/ccpp_scheme_sim:

1. ./ plt_scmout_2d .py [-h] -n CASE_NAME -sdf SDF -nmls NMLS -vars VAR1
VAR2 VAR3

Mandatory arguments:
a) --case_name (-n) name of case
b) --suite (-sdf) CCPP suite definition file
c) --nml_list (-nmls) namelists, separated by a space
d) --var_list (-vars) varaibles to plot, separated by a space

2. ./ plt_scmout_3d .py [-h] -n CASE_NAME -sdf SDF -nmls NMLS -vars VAR1
VAR2 VAR3 -time TIME

Mandatory arguments:
a) --case_name (-n) name of case
b) --suite (-sdf) CCPP suite definition file
c) --nml_list (-nmls) namelists, separated by a space
d) --var_list (-vars) varaibles to plot, separated by a space
e) --time_plot (-time) time to plot, in seconds
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