Skip to content
Permalink
v3.14.1
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
3375 lines (2511 sloc) 95.4 KB
import atexit
import csv
import ctypes.util
import hashlib
import importlib
import os
import platform
import re
import sys
import urllib.parse
import warnings
from collections.abc import Iterable
from itertools import product
from marshal import dumps
from math import isnan
from numbers import Integral
from os import mkdir
from os.path import abspath as _os_path_abspath
from os.path import dirname as _os_path_dirname
from os.path import expanduser as _os_path_expanduser
from os.path import expandvars as _os_path_expandvars
from os.path import join as _os_path_join
from os.path import relpath as _os_path_relpath
import cfdm
import netCDF4
import numpy as np
from dask import config as _config
from dask.base import is_dask_collection
from dask.utils import parse_bytes
from psutil import virtual_memory
from . import __file__, __version__
from .constants import (
CONSTANTS,
OperandBoundsCombination,
_stash2standard_name,
)
from .docstring import _docstring_substitution_definitions
# Instruction to close /proc/mem at exit.
def _close_proc_meminfo():
try:
_meminfo_file.close()
except Exception:
pass
atexit.register(_close_proc_meminfo)
# --------------------------------------------------------------------
# Inherit classes from cfdm
# --------------------------------------------------------------------
class Constant(cfdm.Constant):
def __docstring_substitutions__(self):
return _docstring_substitution_definitions
def __docstring_package_depth__(self):
return 0
def __repr__(self):
"""Called by the `repr` built-in function."""
return super().__repr__().replace("<", "<CF ", 1)
class DeprecationError(Exception):
pass
KWARGS_MESSAGE_MAP = {
"relaxed_identity": "Use keywords 'strict' or 'relaxed' instead.",
"axes": "Use keyword 'axis' instead.",
"traceback": "Use keyword 'verbose' instead.",
"exact": "Use 're.compile' objects instead.",
"i": (
"Use keyword 'inplace' instead. Note that when inplace=True, "
"None is returned."
),
"info": (
"Use keyword 'verbose' instead. Note the informational levels "
"have been remapped: V = I + 1 maps info=I to verbose=V inputs, "
"excluding I >= 3 which maps to V = -1 (and V = 0 disables messages)"
),
}
if platform.system() == "Linux":
# ----------------------------------------------------------------
# GNU/LINUX
# ----------------------------------------------------------------
# Opening /proc/meminfo once per PE here rather than in
# _free_memory each time it is called works with MPI on
# Debian-based systems, which otherwise throw an error that there
# is no such file or directory when run on multiple PEs.
# ----------------------------------------------------------------
_meminfo_fields = set(("SReclaimable:", "Cached:", "Buffers:", "MemFree:"))
_meminfo_file = open("/proc/meminfo", "r", 1)
def _free_memory():
"""The amount of available physical memory on GNU/Linux.
This amount includes any memory which is still allocated but is no
longer required.
:Returns:
`float`
The amount of available physical memory in bytes.
**Examples**
>>> _free_memory()
96496240.0
"""
# https://github.com/giampaolo/psutil/blob/master/psutil/_pslinux.py
# ----------------------------------------------------------------
# The available physical memory is the sum of the values of
# the 'SReclaimable', 'Cached', 'Buffers' and 'MemFree'
# entries in the /proc/meminfo file
# (http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt).
# ----------------------------------------------------------------
free_KiB = 0.0
n = 0
# with open('/proc/meminfo', 'r', 1) as _meminfo_file:
# Seeking the beginning of the file /proc/meminfo regenerates
# the information contained in it.
_meminfo_file.seek(0)
for line in _meminfo_file:
field_size = line.split()
if field_size[0] in _meminfo_fields:
free_KiB += float(field_size[1])
n += 1
if n > 3:
break
free_bytes = free_KiB * 1024
return free_bytes
else:
# ----------------------------------------------------------------
# NOT GNU/LINUX
# ----------------------------------------------------------------
def _free_memory():
"""The amount of available physical memory.
:Returns:
`float`
The amount of available physical memory in bytes.
**Examples**
>>> _free_memory()
96496240.0
"""
return float(virtual_memory().available)
def configuration(
atol=None,
rtol=None,
tempdir=None,
chunksize=None,
log_level=None,
regrid_logging=None,
relaxed_identities=None,
bounds_combination_mode=None,
of_fraction=None,
collapse_parallel_mode=None,
free_memory_factor=None,
):
"""View or set any number of constants in the project-wide
configuration.
The full list of global constants that can be set in any
combination are:
* `atol`
* `rtol`
* `tempdir`
* `chunksize`
* `log_level`
* `regrid_logging`
* `relaxed_identities`
* `bounds_combination_mode`
These are all constants that apply throughout cf, except for in
specific functions only if overridden by the corresponding keyword
argument to that function.
The value of `None`, either taken by default or supplied as a
value, will result in the constant in question not being changed
from the current value. That is, it will have no effect.
Note that setting a constant using this function is equivalent to
setting it by means of a specific function of the same name,
e.g. via `cf.atol`, but in this case multiple constants can be set
at once.
.. versionadded:: 3.6.0
.. seealso:: `atol`, `rtol`, `tempdir`, `chunksize`,
`total_memory`, `log_level`, `regrid_logging`,
`relaxed_identities`, `bounds_combination_mode`
:Parameters:
atol: `float` or `Constant`, optional
The new value of absolute tolerance. The default is to not
change the current value.
rtol: `float` or `Constant`, optional
The new value of relative tolerance. The default is to not
change the current value.
tempdir: `str` or `Constant`, optional
The new directory for temporary files. Tilde expansion (an
initial component of ``~`` or ``~user`` is replaced by
that *user*'s home directory) and environment variable
expansion (substrings of the form ``$name`` or ``${name}``
are replaced by the value of environment variable *name*)
are applied to the new directory name.
The default is to not change the directory.
chunksize: `float` or `Constant`, optional
The new chunksize in bytes. The default is to not change
the current behaviour.
bounds_combination_mode: `str` or `Constant`, optional
Determine how to deal with cell bounds in binary
operations. See `cf.bounds_combination_mode` for details.
log_level: `str` or `int` or `Constant`, optional
The new value of the minimal log severity level. This can
be specified either as a string equal (ignoring case) to
the named set of log levels or identifier ``'DISABLE'``,
or an integer code corresponding to each of these, namely:
* ``'DISABLE'`` (``0``);
* ``'WARNING'`` (``1``);
* ``'INFO'`` (``2``);
* ``'DETAIL'`` (``3``);
* ``'DEBUG'`` (``-1``).
regrid_logging: `bool` or `Constant`, optional
The new value (either True to enable logging or False to
disable it). The default is to not change the current
behaviour.
relaxed_identities: `bool` or `Constant`, optional
The new value; if True, use "relaxed" mode when getting a
construct identity. The default is to not change the
current value.
of_fraction: `float` or `Constant`, optional
Deprecated at version 3.14.0 and is no longer
available.
collapse_parallel_mode: `int` or `Constant`, optional
Deprecated at version 3.14.0 and is no longer
available.
free_memory_factor: `float` or `Constant`, optional
Deprecated at version 3.14.0 and is no longer
available.
:Returns:
`Configuration`
The dictionary-like object containing the names and values
of the project-wide constants prior to the change, or the
current names and values if no new values are specified.
**Examples**
>>> cf.configuration() # view full global configuration of constants
{'rtol': 2.220446049250313e-16,
'atol': 2.220446049250313e-16,
'tempdir': '/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'WARNING',
'bounds_combination_mode': 'AND',
'chunksize': 82873466.88000001}
>>> cf.chunksize(7.5e7) # any change to one constant...
82873466.88000001
>>> cf.configuration()['chunksize'] # ...is reflected in the configuration
75000000.0
>>> cf.configuration(tempdir='/usr/tmp', log_level='INFO') # set items
{'rtol': 2.220446049250313e-16,
'atol': 2.220446049250313e-16,
'tempdir': '/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'WARNING',
'bounds_combination_mode': 'AND',
'chunksize': 75000000.0}
>>> cf.configuration() # the items set have been updated accordingly
{'rtol': 2.220446049250313e-16,
'atol': 2.220446049250313e-16,
'tempdir': '/usr/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'INFO',
'bounds_combination_mode': 'AND',
'chunksize': 75000000.0}
Use as a context manager:
>>> print(cf.configuration())
{'rtol': 2.220446049250313e-16,
'atol': 2.220446049250313e-16,
'tempdir': '/usr/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'INFO',
'bounds_combination_mode': 'AND',
'chunksize': 75000000.0}
>>> with cf.configuration(atol=9, rtol=10):
... print(cf.configuration())
...
{'rtol': 9.0,
'atol': 10.0,
'tempdir': '/usr/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'INFO',
'bounds_combination_mode': 'AND',
'chunksize': 75000000.0}
>>> print(cf.configuration())
{'rtol': 2.220446049250313e-16,
'atol': 2.220446049250313e-16,
'tempdir': '/usr/tmp',
'regrid_logging': False,
'relaxed_identities': False,
'log_level': 'INFO',
'bounds_combination_mode': 'AND',
'chunksize': 75000000.0}
"""
if of_fraction is not None:
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION_KWARGS(
"configuration",
kwargs={"of_fraction": None},
version="TODODASVER",
removed_at="5.0.0",
) # pragma: no cover
if collapse_parallel_mode is not None:
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION_KWARGS(
"configuration",
kwargs={"collapse_parallel_mode": None},
version="TODODASVER",
removed_at="5.0.0",
) # pragma: no cover
return _configuration(
Configuration,
new_atol=atol,
new_rtol=rtol,
new_tempdir=tempdir,
new_chunksize=chunksize,
new_log_level=log_level,
new_regrid_logging=regrid_logging,
new_relaxed_identities=relaxed_identities,
bounds_combination_mode=bounds_combination_mode,
)
def _configuration(_Configuration, **kwargs):
"""Internal helper function to provide the logic for
`cf.configuration`.
We delegate from the user-facing `cf.configuration` for two main reasons:
1) to avoid a name clash there between the keyword arguments and the
functions which they each call (e.g. `atol` and `cf.atol`) which
would otherwise necessitate aliasing every such function name; and
2) because the user-facing function must have the appropriate keywords
explicitly listed, but the very similar logic applied for each keyword
can be consolidated by iterating over the full dictionary of input kwargs.
:Parameters:
_Configuration: class
The `Configuration` class to be returned.
:Returns:
`Configuration`
The names and values of the project-wide constants prior
to the change, or the current names and values if no new
values are specified.
"""
old = {name.lower(): val for name, val in CONSTANTS.items()}
old.pop("total_memory", None)
# Filter out 'None' kwargs from configuration() defaults. Note that this
# does not filter out '0' or 'True' values, which is important as the user
# might be trying to set those, as opposed to None emerging as default.
kwargs = {name: val for name, val in kwargs.items() if val is not None}
# Note values are the functions not the keyword arguments of same name:
reset_mapping = {
"new_atol": atol,
"new_rtol": rtol,
"new_tempdir": tempdir,
"new_chunksize": chunksize,
"new_log_level": log_level,
"new_regrid_logging": regrid_logging,
"new_relaxed_identities": relaxed_identities,
"bounds_combination_mode": bounds_combination_mode,
}
old_values = {}
try:
# Run the corresponding func for all input kwargs
for setting_alias, new_value in kwargs.items():
reset_mapping[setting_alias](new_value)
setting = setting_alias.replace("new_", "", 1)
old_values[setting_alias] = old[setting]
except ValueError:
# Reset any constants that were changed prior to the exception
for setting_alias, old_value in old_values.items():
reset_mapping[setting_alias](old_value)
# Raise the exception
raise
return _Configuration(**old)
# --------------------------------------------------------------------
# Inherit class from cfdm
# --------------------------------------------------------------------
class Configuration(cfdm.Configuration):
def __new__(cls, *args, **kwargs):
"""Must override this method in subclasses."""
instance = super().__new__(cls)
instance._func = configuration
return instance
def __docstring_substitutions__(self):
return _docstring_substitution_definitions
def __docstring_package_depth__(self):
return 0
def __repr__(self):
"""Called by the `repr` built-in function."""
return super().__repr__().replace("<", "<CF ", 1)
def free_memory():
"""The available physical memory.
:Returns:
`float`
The amount of free memory in bytes.
**Examples**
>>> import numpy
>>> print('Free memory =', cf.free_memory()/2**30, 'GiB')
Free memory = 88.2728042603 GiB
>>> a = numpy.arange(10**9)
>>> print('Free memory =', cf.free_memory()/2**30, 'GiB')
Free memory = 80.8082618713 GiB
>>> del a
>>> print('Free memory =', cf.free_memory()/2**30, 'GiB')
Free memory = 88.2727928162 GiB
"""
return _free_memory()
def FREE_MEMORY():
"""Alias for `cf.free_memory`."""
return free_memory()
_disable_logging = cfdm._disable_logging
# We can inherit the generic logic for the cf-python log_level()
# function as contained in _log_level, but can't inherit the
# user-facing log_level() from cfdm as it operates on cfdm's CONSTANTS
# dict. Define cf-python's own. This also means the log_level
# dostrings are independent which is important for providing
# module-specific documentation links and directives, etc.
_reset_log_emergence_level = cfdm._reset_log_emergence_level
_is_valid_log_level_int = cfdm._is_valid_log_level_int
# --------------------------------------------------------------------
# Functions inherited from cfdm
# --------------------------------------------------------------------
class ConstantAccess(cfdm.ConstantAccess):
_CONSTANTS = CONSTANTS
_Constant = Constant
def __docstring_substitutions__(self):
return _docstring_substitution_definitions
def __docstring_package_depth__(self):
return 0
class atol(ConstantAccess, cfdm.atol):
pass
class rtol(ConstantAccess, cfdm.rtol):
pass
class log_level(ConstantAccess, cfdm.log_level):
_is_valid_log_level_int = _is_valid_log_level_int
_reset_log_emergence_level = _reset_log_emergence_level
class regrid_logging(ConstantAccess):
"""Whether or not to enable `ESMF` regridding logging.
If it is logging is performed after every call to `ESMF`.
:Parameters:
arg: `bool` or `Constant`, optional
The new value (either `True` to enable logging or `False`
to disable it). The default is to not change the current
behaviour.
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
**Examples**
>>> cf.regrid_logging()
False
>>> cf.regrid_logging(True)
False
>>> cf.regrid_logging()
True
"""
_name = "REGRID_LOGGING"
def _parse(cls, arg):
"""Parse a new constant value.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
return bool(arg)
class collapse_parallel_mode(ConstantAccess):
"""Which mode to use when collapse is run in parallel. There are
three possible modes:
Deprecated at version 3.14.0 and is no longer available.
0. This attempts to maximise parallelism, possibly at the expense
of extra communication. This is the default mode.
1. This minimises communication, possibly at the expense of the
degree of parallelism. If collapse is running slower than you
would expect, you can try changing to mode 1 to see if this
improves performance. This is only likely to work if the
output of collapse will be a sizeable array, not a single
point.
2. This is here for debugging purposes, but we would expect this
to maximise communication possibly at the expense of
parallelism. The use of this mode is, therefore, not
recommended.
:Parameters:
arg: `int` or `Constant`, optional
The new value (0, 1 or 2).
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
**Examples**
>>> cf.collapse_parallel_mode()
0
>>> cf.collapse_parallel_mode(1)
0
>>> cf.collapse_parallel_mode()
1
"""
_name = "COLLAPSE_PARALLEL_MODE"
def _parse(cls, arg):
"""Parse a new constant value.
Deprecated at version 3.14.0 and is no longer available.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"collapse_parallel_mode", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
class relaxed_identities(ConstantAccess):
"""Use 'relaxed' mode when getting a construct identity.
If set to True, sets ``relaxed=True`` as the default in calls to a
construct's `identity` method (e.g. `cf.Field.identity`).
This is used by construct arithmetic and field construct
aggregation.
:Parameters:
arg: `bool` or `Constant`, optional
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
**Examples**
>>> org = cf.relaxed_identities()
>>> org
False
>>> cf.relaxed_identities(True)
False
>>> cf.relaxed_identities()
True
>>> cf.relaxed_identities(org)
True
>>> cf.relaxed_identities()
False
"""
_name = "RELAXED_IDENTITIES"
def _parse(cls, arg):
"""Parse a new constant value.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
return bool(arg)
class chunksize(ConstantAccess):
"""Set the default chunksize used by `dask` arrays.
If called without any arguments then the existing chunksize is
returned.
.. note:: Setting the chunk size will also change the `dask`
global configuration value ``'array.chunk-size'``. If
`chunksize` is used in a context manager then the `dask`
configuration value is only altered within that context.
Setting the chunk size directly from the `dask`
configuration API will affect subsequent data creation,
but will *not* change the value of `chunksize`.
:Parameters:
arg: number or `str` or `Constant`, optional
The chunksize in bytes. Any size accepted by
`dask.utils.parse_bytes` is accepted, for instance
``100``, ``'100'``, ``'1e6'``, ``'100 MB'``, ``'100M'``,
``'5kB'``, ``'5.4 kB'``, ``'1kiB'``, ``'1e6 kB'``, and
``'MB'`` are all valid sizes.
Note that if *arg* is a `float`, or a string that implies
a non-integral amount of bytes, then the integer part
(rounded down) will be used.
*Parameter example:*
A chunksize of 2 MiB may be specified as ``'2097152'``
or ``'2 MiB'``
*Parameter example:*
Chunksizes of ``'2678.9'`` and ``'2.6789 KB'`` are both
equivalent to ``2678``.
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
"""
_name = "CHUNKSIZE"
def _parse(cls, arg):
"""Parse a new constant value.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
_config.set({"array.chunk-size": arg})
return parse_bytes(arg)
class tempdir(ConstantAccess):
"""The directory for internally generated temporary files.
When setting the directory, it is created if the specified path
does not exist.
:Parameters:
arg: `str`, optional
The new directory for temporary files. Tilde expansion (an
initial component of ``~`` or ``~user`` is replaced by
that *user*'s home directory) and environment variable
expansion (substrings of the form ``$name`` or ``${name}``
are replaced by the value of environment variable *name*)
are applied to the new directory name.
The default is to not change the directory.
:Returns:
`str`
The directory prior to the change, or the current
directory if no new value was specified.
**Examples**
>>> cf.tempdir()
'/tmp'
>>> old = cf.tempdir('/home/me/tmp')
>>> cf.tempdir(old)
'/home/me/tmp'
>>> cf.tempdir()
'/tmp'
"""
_name = "TEMPDIR"
def _parse(cls, arg):
"""Parse a new constant value.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
arg = _os_path_expanduser(_os_path_expandvars(arg))
# Create the directory if it does not exist.
try:
mkdir(arg)
except OSError:
pass
return arg
class of_fraction(ConstantAccess):
"""The amount of concurrently open files above which files
containing data arrays may be automatically closed.
Deprecated at version 3.14.0 and is no longer available.
The amount is expressed as a fraction of the maximum possible
number of concurrently open files.
Note that closed files will be automatically reopened if
subsequently needed by a variable to access its data array.
.. seealso:: `cf.close_files`, `cf.close_one_file`,
`cf.open_files`, `cf.open_files_threshold_exceeded`
:Parameters:
arg: `float` or `Constant`, optional
The new fraction (between 0.0 and 1.0). The default is to
not change the current behaviour.
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
**Examples**
>>> cf.of_fraction()
0.5
>>> old = cf.of_fraction(0.33)
>>> cf.of_fraction(old)
0.33
>>> cf.of_fraction()
0.5
The fraction may be translated to an actual number of files as
follows:
>>> old = cf.of_fraction(0.75)
>>> import resource
>>> max_open_files = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
>>> threshold = int(max_open_files * cf.of_fraction())
>>> max_open_files, threshold
(1024, 768)
"""
_name = "OF_FRACTION"
def _parse(cls, arg):
"""Parse a new constant value.
Deprecated at version 3.14.0 and is no longer available.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"of_fraction", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
class free_memory_factor(ConstantAccess):
"""Set the fraction of memory kept free as a temporary workspace.
Deprecated at version 3.14.0 and is no longer available.
Users should set the free memory factor through cf.set_performance
so that the upper limit to the chunksize is recalculated
appropriately. The free memory factor must be a sensible value
between zero and one. If no arguments are passed the existing free
memory factor is returned.
:Parameters:
arg: `float` or `Constant`, optional
The fraction of memory kept free as a temporary workspace.
:Returns:
`Constant`
The value prior to the change, or the current value if no
new value was specified.
"""
_name = "FREE_MEMORY_FACTOR"
def _parse(cls, arg):
"""Parse a new constant value.
Deprecated at version 3.14.0 and is no longer available.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"free_memory_factor", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
class bounds_combination_mode(ConstantAccess):
"""Determine how to deal with cell bounds in binary operations.
The flag returned by ``cf.bounds_combination_mode()`` is used to
influence whether or not the result of a binary operation "op(x,
y)", such as ``x + y``, ``x -= y``, ``x << y``, etc., will contain
bounds, and if so how those bounds are calculated.
The result of op(x, y) may only contain bounds if
* ``x`` is a construct that may contain bounds, or
* ``x`` does not support the operation and ``y`` is a construct
that may contain bounds, e.g. ``2 + y``.
and so the flag only has an effect in these specific cases. Only
dimension coordinate, auxiliary coordinate and domain ancillary
constructs support bounds.
The behaviour for the different flag values is described by the
following truth tables, for which it assumed that it is possible
for the result of the operation to contain bounds:
* If the flag is ``'AND'`` (the default) then
========== ========== ========== ======================
x y op(x, y) Resulting bounds
has bounds has bounds has bounds
========== ========== ========== ======================
Yes Yes **Yes** op(x.bounds, y.bounds)
Yes No *No*
No Yes *No*
No No *No*
========== ========== ========== ======================
* If the flag is ``'OR'`` then
========== ========== ========== ======================
x y op(x, y) Resulting bounds
has bounds has bounds has bounds
========== ========== ========== ======================
Yes Yes **Yes** op(x.bounds, y.bounds)
Yes No **Yes** op(x.bounds, y)
No Yes **Yes** op(x, y.bounds)
No No *No*
========== ========== ========== ======================
* If the flag is ``'XOR'`` then
========== ========== ========== ======================
x y op(x, y) Resulting bounds
has bounds has bounds has bounds
========== ========== ========== ======================
Yes Yes *No*
Yes No **Yes** op(x.bounds, y)
No Yes **Yes** op(x, y.bounds)
No No *No*
========== ========== ========== ======================
* If the flag is ``'NONE'`` then
========== ========== ========== ======================
x y op(x, y) Resulting bounds
has bounds has bounds has bounds
========== ========== ========== ======================
Yes Yes *No*
Yes No *No*
No Yes *No*
No No *No*
========== ========== ========== ======================
.. versionadded:: 3.8.0
.. seealso:: `configuration`
:Parameters:
arg: `str` or `Constant`, optional
Provide a new flag value that will apply to all subsequent
binary operations.
:Returns:
`str`
The value prior to the change, or the current value if no
new value was specified.
**Examples**
>>> old = cf.bounds_combination_mode()
>>> print(old)
AND
>>> print(cf.bounds_combination_mode('OR'))
AND
>>> print(cf.bounds_combination_mode())
OR
>>> print(cf.bounds_combination_mode(old))
OR
>>> print(cf.bounds_combination_mode())
AND
Use as a context manager:
>>> print(cf.bounds_combination_mode())
AND
>>> with cf.bounds_combination_mode('XOR'):
... print(cf.bounds_combination_mode())
...
XOR
>>> print(cf.bounds_combination_mode())
AND
"""
_name = "BOUNDS_COMBINATION_MODE"
def _parse(cls, arg):
"""Parse a new constant value.
.. versionaddedd:: 3.8.0
:Parameters:
cls:
This class.
arg:
The given new constant value.
:Returns:
A version of the new constant value suitable for insertion
into the `CONSTANTS` dictionary.
"""
try:
valid = hasattr(OperandBoundsCombination, arg)
except (AttributeError, TypeError):
valid = False
if not valid:
valid_vals = ", ".join(
[repr(val.name) for val in OperandBoundsCombination]
)
raise ValueError(
f"{arg!r} is not one of the valid values: {valid_vals}"
)
return arg
def CF():
"""The version of the CF conventions.
This indicates which version of the CF conventions are represented
by this release of the cf package, and therefore the version can not
be changed.
"""
return cfdm.CF()
CF.__doc__ = cfdm.CF.__doc__.replace("cfdm.", "cf.")
# Module-level alias to avoid name clashes with function keyword
# arguments (corresponding to 'import atol as cf_atol' etc. in other
# modules)
_cf_atol = atol
_cf_rtol = rtol
def _cf_chunksize(*new_chunksize):
"""Internal alias for `cf.chunksize`.
Used in this module to prevent a name clash with a function keyword
argument (corresponding to 'import X as cf_X' etc. in other
modules). Note we don't use CHUNKSIZE() as it will likely be
deprecated in future.
"""
return chunksize(*new_chunksize)
def fm_threshold():
"""The amount of memory which is kept free as a temporary work
space.
Deprecated at version 3.14.0 and is no longer available.
:Returns:
`float`
The amount of memory in bytes.
**Examples**
>>> cf.fm_threshold()
10000000000.0
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"fm_threshold", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def set_performance(chunksize=None, free_memory_factor=None):
"""Tune performance of parallelisation.
Deprecated at version 3.14.0 and is no longer available.
Sets the chunksize and free memory factor. By just providing the
chunksize it can be changed to a smaller value than an upper
limit, which is determined by the existing free memory factor. If
just the free memory factor is provided then the chunksize is set
to the corresponding upper limit. Note that the free memory
factor is the fraction of memory kept free as a temporary
workspace and must be a sensible value between zero and one. If
both arguments are provided then the free memory factor is changed
first and then the chunksize is set provided it is consistent with
the new free memory value. If any of the arguments is invalid then
an error is raised and no parameters are changed. When called
with no arguments the existing values of the parameters are
returned in a tuple.
:Parameters:
chunksize: `float`, optional
The size in bytes of a chunk used by LAMA to partition the
data array.
free_memory_factor: `float`, optional
The fraction of memory to keep free as a temporary
workspace.
:Returns:
`tuple`
A tuple of the previous chunksize and free_memory_factor.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"set_performance", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def min_total_memory():
"""The minimum total memory across nodes.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"min_total_memory", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def total_memory():
"""The total amount of physical memory (in bytes)."""
return CONSTANTS["TOTAL_MEMORY"]
# --------------------------------------------------------------------
# Aliases (for back-compatibility etc.):
# --------------------------------------------------------------------
def ATOL(*new_atol):
"""Alias for `cf.atol`."""
return atol(*new_atol)
def RTOL(*new_rtol):
"""Alias for `cf.rtol`."""
return rtol(*new_rtol)
def FREE_MEMORY_FACTOR(*new_free_memory_factor):
"""Alias for `cf.free_memory_factor`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"FREE_MEMORY_FACTOR", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def LOG_LEVEL(*new_log_level):
"""Alias for `cf.log_level`."""
return log_level(*new_log_level)
def CHUNKSIZE(*new_chunksize):
"""Alias for `cf.chunksize`."""
return chunksize(*new_chunksize)
def SET_PERFORMANCE(*new_set_performance):
"""Alias for `cf.set_performance`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"SET_PERFORMANCE", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def OF_FRACTION(*new_of_fraction):
"""Alias for `cf.of_fraction`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"OF_FRACTION", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def REGRID_LOGGING(*new_regrid_logging):
"""Alias for `cf.regrid_logging`."""
return regrid_logging(*new_regrid_logging)
def COLLAPSE_PARALLEL_MODE(*new_collapse_parallel_mode):
"""Alias for `cf.collapse_parallel_mode`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"COLLAPSE_PARALLEL_MODE", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def RELAXED_IDENTITIES(*new_relaxed_identities):
"""Alias for `cf.relaxed_identities`."""
return relaxed_identities(*new_relaxed_identities)
def MIN_TOTAL_MEMORY(*new_min_total_memory):
"""Alias for `cf.min_total_memory`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"MIN_TOTAL_MEMORY", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def TEMPDIR(*new_tempdir):
"""Alias for `cf.tempdir`."""
return tempdir(*new_tempdir)
def TOTAL_MEMORY(*new_total_memory):
"""Alias for `cf.total_memory`."""
return total_memory(*new_total_memory)
def FM_THRESHOLD(*new_fm_threshold):
"""Alias for `cf.fm_threshold`.
Deprecated at version 3.14.0 and is no longer available.
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"FM_THRESHOLD", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
# def IGNORE_IDENTITIES(*arg):
# '''TODO
#
# :Parameters:
#
# arg: `bool`, optional
#
# :Returns:
#
# `bool`
# The value prior to the change, or the current value if no
# new value was specified.
#
# **Examples**
#
# >>> org = cf.IGNORE_IDENTITIES()
# >>> print(org)
# False
# >>> cf.IGNORE_IDENTITIES(True)
# False
# >>> cf.IGNORE_IDENTITIES()
# True
# >>> cf.IGNORE_IDENTITIES(org)
# True
# >>> cf.IGNORE_IDENTITIES()
# False
#
# '''
# old = CONSTANTS['IGNORE_IDENTITIES']
# if arg:
# CONSTANTS['IGNORE_IDENTITIES'] = bool(arg[0])
#
# return old
def dump(x, **kwargs):
"""Print a description of an object.
If the object has a `!dump` method then this is used to create the
output, so that ``cf.dump(f)`` is equivalent to ``print
f.dump()``. Otherwise ``cf.dump(x)`` is equivalent to
``print(x)``.
:Parameters:
x:
The object to print.
kwargs : *optional*
As for the input variable's `!dump` method, if it has one.
:Returns:
None
**Examples**
>>> x = 3.14159
>>> cf.dump(x)
3.14159
>>> f
<CF Field: rainfall_rate(latitude(10), longitude(20)) kg m2 s-1>
>>> cf.dump(f)
>>> cf.dump(f, complete=True)
"""
if hasattr(x, "dump") and callable(x.dump):
print(x.dump(**kwargs))
else:
print(x)
# _max_number_of_open_files = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
def open_files_threshold_exceeded():
"""Return True if the total number of open files is greater than the
current threshold.
Deprecated at version 3.14.0 and is no longer available.
The threshold is defined as a fraction of the maximum possible number
of concurrently open files (an operating system dependent amount). The
fraction is retrieved and set with the `of_fraction` function.
.. seealso:: `cf.close_files`, `cf.close_one_file`,
`cf.open_files`
:Returns:
`bool`
Whether or not the number of open files exceeds the
threshold.
**Examples**
In this example, the number of open files is 75% of the maximum
possible number of concurrently open files:
>>> cf.of_fraction()
0.5
>>> cf.open_files_threshold_exceeded()
True
>>> cf.of_fraction(0.9)
>>> cf.open_files_threshold_exceeded()
False
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"open_files_threshold_exceeded",
version="3.14.0",
removed_at="5.0.0",
) # pragma: no cover
def close_files(file_format=None):
"""Close open files containing sub-arrays of data arrays.
Deprecated at version 3.14.0 and is no longer available.
By default all such files are closed, but this may be restricted
to files of a particular format.
Note that closed files will be automatically reopened if
subsequently needed by a variable to access the sub-array.
If there are no appropriate open files then no action is taken.
.. seealso:: `cf.close_one_file`, `cf.open_files`,
`cf.open_files_threshold_exceeded`
:Parameters:
file_format: `str`, optional
Only close files of the given format. Recognised formats
are ``'netCDF'`` and ``'PP'``. By default files of any
format are closed.
:Returns:
None
**Examples**
>>> cf.close_files()
>>> cf.close_files('netCDF')
>>> cf.close_files('PP')
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"close_files", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def close_one_file(file_format=None):
"""Close an arbitrary open file containing a sub-array of a data
array.
Deprecated at version 3.14.0 and is no longer available.
By default a file of arbitrary format is closed, but the choice
may be restricted to files of a particular format.
Note that the closed file will be automatically reopened if
subsequently needed by a variable to access the sub-array.
If there are no appropriate open files then no action is taken.
.. seealso:: `cf.close_files`, `cf.open_files`,
`cf.open_files_threshold_exceeded`
:Parameters:
file_format: `str`, optional
Only close a file of the given format. Recognised formats
are ``'netCDF'`` and ``'PP'``. By default a file of any
format is closed.
:Returns:
`None`
**Examples**
>>> cf.close_one_file()
>>> cf.close_one_file('netCDF')
>>> cf.close_one_file('PP')
>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x181bcd0>,
'file2.nc': <netCDF4.Dataset at 0x1e42350>,
'file3.nc': <netCDF4.Dataset at 0x1d185e9>}}
>>> cf.close_one_file()
>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x181bcd0>,
'file3.nc': <netCDF4.Dataset at 0x1d185e9>}}
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"close_one_file", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def open_files(file_format=None):
"""Return the open files containing sub-arrays of master data
arrays.
Deprecated at version 3.14.0 and is no longer available.
By default all such files are returned, but the selection may be
restricted to files of a particular format.
.. seealso:: `cf.close_files`, `cf.close_one_file`,
`cf.open_files_threshold_exceeded`
:Parameters:
file_format: `str`, optional
Only return files of the given format. Recognised formats
are ``'netCDF'`` and ``'PP'``. By default all files are
returned.
:Returns:
`dict`
If *file_format* is set then return a dictionary of file
names of the specified format and their open file
objects. If *file_format* is not set then return a
dictionary for which each key is a file format whose value
is the dictionary that would have been returned if the
*file_format* parameter was set.
**Examples**
>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x187b6d0>}}
>>> cf.open_files('netCDF')
{'file1.nc': <netCDF4.Dataset at 0x187b6d0>}
>>> cf.open_files('PP')
{}
"""
# TODODASKAPI
_DEPRECATION_ERROR_FUNCTION(
"open_files", version="3.14.0", removed_at="5.0.0"
) # pragma: no cover
def ufunc(name, x, *args, **kwargs):
"""The variable must have a `!copy` method and a method called.
*name*. Any optional positional and keyword arguments are passed
unchanged to the variable's *name* method.
:Parameters:
name: `str`
x:
The input variable.
args, kwargs:
:Returns:
A new variable with size 1 axes inserted into the data
array.
"""
x = x.copy()
getattr(x, name)(*args, **kwargs)
return x
def _numpy_allclose(a, b, rtol=None, atol=None, verbose=None):
"""Returns True if two broadcastable arrays have equal values to
within numerical tolerance, False otherwise.
The tolerance values are positive, typically very small numbers. The
relative difference (``rtol * abs(b)``) and the absolute difference
``atol`` are added together to compare against the absolute difference
between ``a`` and ``b``.
:Parameters:
a, b : array_like
Input arrays to compare.
atol : float, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `atol` function is used.
rtol : float, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `rtol` function is used.
:Returns:
`bool`
Returns True if the arrays are equal, otherwise False.
**Examples**
>>> cf._numpy_allclose([1, 2], [1, 2])
True
>>> cf._numpy_allclose(numpy.array([1, 2]), numpy.array([1, 2]))
True
>>> cf._numpy_allclose([1, 2], [1, 2, 3])
False
>>> cf._numpy_allclose([1, 2], [1, 4])
False
>>> a = numpy.ma.array([1])
>>> b = numpy.ma.array([2])
>>> a[0] = numpy.ma.masked
>>> b[0] = numpy.ma.masked
>>> cf._numpy_allclose(a, b)
True
"""
# TODO: we want to use @_manage_log_level_via_verbosity on this function
# but we cannot, since importing it to this module would lead to a
# circular import dependency with the decorators module. Tentative plan
# is to move the function elsewhere. For now, it is not 'loggified'.
# THIS IS WHERE SOME NUMPY FUTURE WARNINGS ARE COMING FROM
a_is_masked = np.ma.isMA(a)
b_is_masked = np.ma.isMA(b)
if not (a_is_masked or b_is_masked):
try:
return np.allclose(a, b, rtol=rtol, atol=atol)
except (IndexError, NotImplementedError, TypeError):
return np.all(a == b)
else:
if a_is_masked and b_is_masked:
if (a.mask != b.mask).any():
if verbose:
print("Different masks (A)")
return False
else:
if np.ma.is_masked(a) or np.ma.is_masked(b):
if verbose:
print("Different masks (B)")
return False
try:
return np.ma.allclose(a, b, rtol=rtol, atol=atol)
except (IndexError, NotImplementedError, TypeError):
# To prevent a bug causing some header/coord-only CDL reads or
# aggregations to error. See also TODO comment below.
if a.dtype == b.dtype:
out = np.ma.all(a == b)
else:
# TODO: is this most sensible? Or should we attempt dtype
# conversion and then compare? Probably we should avoid
# altogether by catching the different dtypes upstream?
out = False
if out is np.ma.masked:
return True
else:
return out
def indices_shape(indices, full_shape, keepdims=True):
"""Return the shape of the array subspace implied by indices.
**Performance**
Boolean `dask` arrays will be computed, and `dask` arrays with
unknown size will have their chunk sizes computed.
.. versionadded:: 3.14.0
.. seealso:: `cf.parse_indices`
:Parameters:
indices: `tuple`
The indices to be applied to an array with shape
*full_shape*.
full_shape: sequence of `ints`
The shape of the array to be subspaced.
keepdims: `bool`, optional
If True then an integral index is converted to a
slice. For instance, ``3`` would become ``slice(3, 4)``.
:Returns:
`list`
The shape of the subspace defined by the *indices*.
**Examples**
>>> import numpy as np
>>> import dask.array as da
>>> cf.indices_shape((slice(2, 5), 4), (10, 20))
[3, 1]
>>> cf.indices_shape(([2, 3, 4], np.arange(1, 6)), (10, 20))
[3, 5]
>>> index0 = [False] * 5
>>> index0[2:5] = [True] * 3
>>> cf.indices_shape((index0, da.arange(1, 6)), (10, 20))
[3, 5]
>>> index0 = da.full((5,), False, dtype=bool)
>>> index0[2:5] = True
>>> index1 = np.full((6,), False, dtype=bool)
>>> index1[1:6] = True
>>> cf.indices_shape((index0, index1), (10, 20))
[3, 5]
>>> index0 = da.arange(5)
>>> index0 = index0[index0 < 3]
>>> cf.indices_shape((index0, []), (10, 20))
[3, 0]
>>> cf.indices_shape((da.from_array(2), np.array(3)), (10, 20))
[1, 1]
>>> cf.indices_shape((da.from_array([]), np.array(())), (10, 20))
[0, 0]
>>> cf.indices_shape((slice(1, 5, 3), 3), (10, 20))
[2, 1]
>>> cf.indices_shape((slice(5, 1, -2), 3), (10, 20))
[2, 1]
>>> cf.indices_shape((slice(5, 1, 3), 3), (10, 20))
[0, 1]
>>> cf.indices_shape((slice(1, 5, -3), 3), (10, 20))
[0, 1]
>>> cf.indices_shape((slice(2, 5), 4), (10, 20), keepdims=False)
[3]
>>> cf.indices_shape((da.from_array(2), 3), (10, 20), keepdims=False)
[]
>>> cf.indices_shape((2, np.array(3)), (10, 20), keepdims=False)
[]
"""
shape = []
for index, full_size in zip(indices, full_shape):
if isinstance(index, slice):
start, stop, step = index.indices(full_size)
if (stop - start) * step < 0:
# E.g. 5:1:3 or 1:5:-3
size = 0
else:
size = abs((stop - start) / step)
int_size = round(size)
if size > int_size:
size = int_size + 1
else:
size = int_size
elif is_dask_collection(index) or isinstance(index, np.ndarray):
if index.dtype == bool:
# Size is the number of True values in the array
size = int(index.sum())
else:
size = index.size
if isnan(size):
index.compute_chunk_sizes()
size = index.size
if not keepdims and not index.ndim:
# Scalar array
continue
elif isinstance(index, list):
size = len(index)
if size:
i = index[0]
if isinstance(i, bool):
# Size is the number of True values in the list
size = sum(index)
else:
# Index is Integral
if not keepdims:
continue
size = 1
shape.append(size)
return shape
def parse_indices(shape, indices, cyclic=False, keepdims=True):
"""Parse indices for array access and assignment.
:Parameters:
shape: sequence of `ints`
The shape of the array.
indices: `tuple`
The indices to be applied.
keepdims: `bool`, optional
If True then an integral index is converted to a
slice. For instance, ``3`` would become ``slice(3, 4)``.
:Returns:
`list` [, `dict`]
The parsed indices. If *cyclic* is True then a dictionary
is also returned that contains the parameters needed to
interpret any cyclic slices.
**Examples**
>>> cf.parse_indices((5, 8), ([1, 2, 4, 6],))
[array([1, 2, 4, 6]), slice(None, None, None)]
>>> cf.parse_indices((5, 8), (Ellipsis, [2, 4, 6]))
[slice(None, None, None), [2, 4, 6]]
>>> cf.parse_indices((5, 8), (Ellipsis, 4))
[slice(None, None, None), slice(4, 5, 1)]
>>> cf.parse_indices((5, 8), (Ellipsis, 4), keepdims=False)
[slice(None, None, None), 4]
>>> cf.parse_indices((5, 8), (slice(-2, 2)), cyclic=False)
[slice(-2, 2, None), slice(None, None, None)]
>>> cf.parse_indices((5, 8), (slice(-2, 2)), cyclic=True)
([slice(0, 4, 1), slice(None, None, None)], {0: 2})
"""
parsed_indices = []
roll = {}
if not isinstance(indices, tuple):
indices = (indices,)
# Initialise the list of parsed indices as the input indices with any
# Ellipsis objects expanded
length = len(indices)
n = len(shape)
ndim = n
for index in indices:
if index is Ellipsis:
m = n - length + 1
parsed_indices.extend([slice(None)] * m)
n -= m
else:
parsed_indices.append(index)
n -= 1
length -= 1
len_parsed_indices = len(parsed_indices)
if ndim and len_parsed_indices > ndim:
raise IndexError(
f"Invalid indices {parsed_indices} for array with shape {shape}"
)
if len_parsed_indices < ndim:
parsed_indices.extend([slice(None)] * (ndim - len_parsed_indices))
if not ndim and parsed_indices:
raise IndexError(
"Scalar array can only be indexed with () or Ellipsis"
)
for i, (index, size) in enumerate(zip(parsed_indices, shape)):
if cyclic and isinstance(index, slice):
# Check for a cyclic slice
start = index.start
stop = index.stop
step = index.step
if start is None or stop is None:
step = 0
elif step is None:
step = 1
if step > 0:
if 0 < start < size and 0 <= stop <= start:
# 6:0:1 => -4:0:1
# 6:1:1 => -4:1:1
# 6:3:1 => -4:3:1
# 6:6:1 => -4:6:1
start = size - start
elif -size <= start < 0 and -size <= stop <= start:
# -4:-10:1 => -4:1:1
# -4:-9:1 => -4:1:1
# -4:-7:1 => -4:3:1
# -4:-4:1 => -4:6:1
# -10:-10:1 => -10:0:1
stop += size
elif step < 0:
if -size <= start < 0 and start <= stop < 0:
# -4:-1:-1 => 6:-1:-1
# -4:-2:-1 => 6:-2:-1
# -4:-4:-1 => 6:-4:-1
# -10:-2:-1 => 0:-2:-1
# -10:-10:-1 => 0:-10:-1
start += size
elif 0 <= start < size and start < stop < size:
# 0:6:-1 => 0:-4:-1
# 3:6:-1 => 3:-4:-1
# 3:9:-1 => 3:-1:-1
stop -= size
if step > 0 and -size <= start < 0 and 0 <= stop <= size + start:
# x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# x[ -1:0:1] => [9]
# x[ -1:1:1] => [9, 0]
# x[ -1:3:1] => [9, 0, 1, 2]
# x[ -1:9:1] => [9, 0, 1, 2, 3, 4, 5, 6, 7, 8]
# x[ -4:0:1] => [6, 7, 8, 9]
# x[ -4:1:1] => [6, 7, 8, 9, 0]
# x[ -4:3:1] => [6, 7, 8, 9, 0, 1, 2]
# x[ -4:6:1] => [6, 7, 8, 9, 0, 1, 2, 3, 4, 5]
# x[ -9:0:1] => [1, 2, 3, 4, 5, 6, 7, 8, 9]
# x[ -9:1:1] => [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
# x[-10:0:1] => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
index = slice(0, stop - start, step)
roll[i] = -start
elif step < 0 and 0 <= start < size and start - size <= stop < 0:
# x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# x[0: -4:-1] => [0, 9, 8, 7]
# x[6: -1:-1] => [6, 5, 4, 3, 2, 1, 0]
# x[6: -2:-1] => [6, 5, 4, 3, 2, 1, 0, 9]
# x[6: -4:-1] => [6, 5, 4, 3, 2, 1, 0, 9, 8, 7]
# x[0: -2:-1] => [0, 9]
# x[0:-10:-1] => [0, 9, 8, 7, 6, 5, 4, 3, 2, 1]
index = slice(start - stop - 1, None, step)
roll[i] = -1 - stop
elif keepdims and isinstance(index, Integral):
# Convert an integral index to a slice
if index == -1:
index = slice(-1, None, None)
else:
index = slice(index, index + 1, 1)
parsed_indices[i] = index
if not cyclic:
return parsed_indices
return parsed_indices, roll
def get_subspace(array, indices):
"""Return a subspace defined by the given indices of an array.
Subset the input numpy array with the given indices. Indexing is
similar to that of a numpy array. The differences to numpy array
indexing are:
1. An integer index i takes the i-th element but does not reduce
the rank of the output array by one.
2. When more than one dimension's slice is a 1-d boolean array or
1-d sequence of integers then these indices work independently
along each dimension (similar to the way vector subscripts work
in Fortran).
Indices must contain an index for each dimension of the input array.
:Parameters:
array: `numpy.ndarray`
indices: `list`
"""
gg = [i for i, x in enumerate(indices) if not isinstance(x, slice)]
len_gg = len(gg)
if len_gg < 2:
# ------------------------------------------------------------
# At most one axis has a list-of-integers index so we can do a
# normal numpy subspace
# ------------------------------------------------------------
return array[tuple(indices)]
else:
# ------------------------------------------------------------
# At least two axes have list-of-integers indices so we can't
# do a normal numpy subspace
# ------------------------------------------------------------
if np.ma.isMA(array):
take = np.ma.take
else:
take = np.take
indices = indices[:]
for axis in gg:
array = take(array, indices[axis], axis=axis)
indices[axis] = slice(None)
if len_gg < len(indices):
array = array[tuple(indices)]
return array
_equals = cfdm.Data()._equals
def equals(x, y, rtol=None, atol=None, ignore_data_type=False, **kwargs):
"""True if two objects are equal within a given tolerance."""
if rtol is None:
rtol = _cf_rtol()
if atol is None:
atol = _cf_atol()
return _equals(
x, y, rtol=rtol, atol=atol, ignore_data_type=ignore_data_type, **kwargs
)
def equivalent(x, y, rtol=None, atol=None, traceback=False):
"""True if and only if two objects are logically equivalent.
If the first argument, *x*, has an `!equivalent` method then it is
used, and in this case ``equivalent(x, y)`` is the same as
``x.equivalent(y)``.
:Parameters:
x, y :
The objects to compare for equivalence.
atol : float, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `atol` function is used.
rtol : float, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `rtol` function is used.
traceback : bool, optional
If True then print a traceback highlighting where the two
objects differ.
:Returns:
`bool`
Whether or not the two objects are equivalent.
**Examples**
>>> f
<CF Field: rainfall_rate(latitude(10), longitude(20)) kg m2 s-1>
>>> cf.equivalent(f, f)
True
>>> cf.equivalent(1.0, 1.0)
True
>>> cf.equivalent(1.0, 33)
False
>>> cf.equivalent('a', 'a')
True
>>> cf.equivalent('a', 'b')
False
>>> cf.equivalent(cf.Data(1000, units='m'), cf.Data(1, units='km'))
True
For a field, ``f``:
>>> cf.equivalent(f, f.transpose())
True
"""
if rtol is None:
rtol = _cf_rtol()
if atol is None:
atol = _cf_atol()
atol = float(atol)
rtol = float(rtol)
eq = getattr(x, "equivalent", None)
if callable(eq):
# x has a callable equivalent method
return eq(y, rtol=rtol, atol=atol, traceback=traceback)
eq = getattr(y, "equivalent", None)
if callable(eq):
# y has a callable equivalent method
return eq(x, rtol=rtol, atol=atol, traceback=traceback)
return equals(
x, y, rtol=rtol, atol=atol, ignore_fill_value=True, traceback=traceback
)
def load_stash2standard_name(table=None, delimiter="!", merge=True):
"""Load a STASH to standard name conversion table from a file.
This used when reading PP and UM fields files.
Each mapping is defined by a separate line in a text file. Each
line contains nine ``!``-delimited entries:
1. ID: UM sub model identifier (1 = atmosphere, 2 = ocean, etc.)
2. STASH: STASH code (e.g. 3236)
3. STASHmaster description:STASH name as given in the STASHmaster
files
4. Units: Units of this STASH code (e.g. 'kg m-2')
5. Valid from: This STASH valid from this UM version (e.g. 405)
6. Valid to: This STASH valid to this UM version (e.g. 501)
7. CF standard name: The CF standard name
8. CF info: Anything useful (such as standard name modifiers)
9. PP conditions: PP conditions which need to be satisfied for
this translation
Only entries "ID", "STASH", and "CF standard name" are mandatory,
all other entries may be left blank. For example,
``1!999!!!!!ultraviolet_index!!`` is a valid mapping from
atmosphere STASH code 999 to the standard name
ultraviolet_index.
If the "Valid from" and "Valid to" entries are omitted then the
stash mapping is assumed to apply to all UM versions.
.. seealso:: `stash2standard_name`
:Parameters:
table: `str`, optional
Use the conversion table at this file location. By default
the table will be looked for at
``os.path.join(os.path.dirname(cf.__file__),'etc/STASH_to_CF.txt')``
Setting *table* to `None` will reset the table, removing
any modifications that have previously been made.
delimiter: `str`, optional
The delimiter of the table columns. By default, ``!`` is
taken as the delimiter.
merge: `bool`, optional
If False then the table is updated to only contain the
mappings defined by the *table* parameter. By default the
mappings defined by the *table* parameter are incorporated
into the existing table, overwriting any entries which
already exist.
If *table* is `None` then *merge* is taken as False,
regardless of its given value.
:Returns:
`dict`
The new STASH to standard name conversion table.
**Examples**
>>> cf.load_stash2standard_name()
>>> cf.load_stash2standard_name('my_table.txt')
>>> cf.load_stash2standard_name('my_table2.txt', ',')
>>> cf.load_stash2standard_name('my_table3.txt', merge=True)
>>> cf.load_stash2standard_name('my_table4.txt', merge=False)
"""
# 0 Model
# 1 STASH code
# 2 STASH name
# 3 units
# 4 valid from UM vn
# 5 valid to UM vn
# 6 standard_name
# 7 CF extra info
# 8 PP extra info
# Number matching regular expression
number_regex = r"([-+]?\d*\.?\d+(e[-+]?\d+)?)"
if table is None:
# Use default conversion table
merge = False
package_path = os.path.dirname(__file__)
table = os.path.join(package_path, "etc/STASH_to_CF.txt")
else:
# User supplied table
table = abspath(os.path.expanduser(os.path.expandvars(table)))
with open(table, "r") as open_table:
lines = csv.reader(
open_table, delimiter=delimiter, skipinitialspace=True
)
lines = list(lines)
raw_list = []
[raw_list.append(line) for line in lines]
# Get rid of comments
for line in raw_list[:]:
if line[0].startswith("#"):
raw_list.pop(0)
continue
break
# Convert to a dictionary which is keyed by (submodel, STASHcode)
# tuples
(
model,
stash,
name,
units,
valid_from,
valid_to,
standard_name,
cf,
pp,
) = list(range(9))
stash2sn = {}
for x in raw_list:
key = (int(x[model]), int(x[stash]))
if not x[units]:
x[units] = None
try:
cf_info = {}
if x[cf]:
for d in x[7].split():
if d.startswith("height="):
cf_info["height"] = re.split(
number_regex, d, re.IGNORECASE
)[1:4:2]
if cf_info["height"] == "":
cf_info["height"][1] = "1"
if d.startswith("below_"):
cf_info["below"] = re.split(
number_regex, d, re.IGNORECASE
)[1:4:2]
if cf_info["below"] == "":
cf_info["below"][1] = "1"
if d.startswith("where_"):
cf_info["where"] = d.replace("where_", "where ", 1)
if d.startswith("over_"):
cf_info["over"] = d.replace("over_", "over ", 1)
x[cf] = cf_info
except IndexError:
pass
try:
x[valid_from] = float(x[valid_from])
except ValueError:
x[valid_from] = None
try:
x[valid_to] = float(x[valid_to])
except ValueError:
x[valid_to] = None
x[pp] = x[pp].rstrip()
line = (x[name:],)
if key in stash2sn:
stash2sn[key] += line
else:
stash2sn[key] = line
if not merge:
_stash2standard_name.clear()
_stash2standard_name.update(stash2sn)
def stash2standard_name():
"""Return a copy of the loaded STASH to standard name conversion
table.
.. versionadded:: 3.8.0
.. seealso:: `load_stash2standard_name`
"""
return _stash2standard_name.copy()
def flat(x):
"""Return an iterator over an arbitrarily nested sequence.
:Parameters:
x: scalar or arbitrarily nested sequence
The arbitrarily nested sequence to be flattened. Note that
a If *x* is a string or a scalar then this is equivalent
to passing a single element sequence containing *x*.
:Returns:
generator
An iterator over flattened sequence.
**Examples**
>>> cf.flat([1, [2, [3, 4]]])
<generator object flat at 0x3649cd0>
>>> list(cf.flat([1, (2, [3, 4])]))
[1, 2, 3, 4]
>>> import numpy
>>> list(cf.flat((1, [2, numpy.array([[3, 4], [5, 6]])])))
[1, 2, 3, 4, 5, 6]
>>> for a in cf.flat([1, [2, [3, 4]]]):
... print(a, end=' ')
...
1 2 3 4
>>> for a in cf.flat(['a', ['bc', ['def', 'ghij']]]):
... print(a, end=' ')
...
a bc def ghij
>>> for a in cf.flat(2004):
... print(a)
...
2004
>>> for a in cf.flat('abcdefghij'):
... print(a, end=' ')
...
abcdefghij
>>> f
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
>>> for a in cf.flat(f):
... print(repr(a))
...
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
>>> for a in cf.flat([f, [f, [f, f]]]):
... print(repr(a))
...
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
>>> fl = cf.FieldList(cf.flat([f, [f, [f, f]]]))
>>> fl
[<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>]
"""
if not isinstance(x, Iterable) or isinstance(x, str):
x = (x,)
for a in x:
if not isinstance(a, str) and isinstance(a, Iterable):
for sub in flat(a):
yield sub
else:
yield a
def abspath(filename):
"""Return a normalized absolute version of a file name.
If `None` or a string containing URL is provided then it is
returned unchanged.
.. seealso:: `cf.dirname`, `cf.pathjoin`, `cf.relpath`
:Parameters:
filename: `str` or `None`
The name of the file, or `None`
:Returns:
`str`
The normalized absolutised version of *filename*, or
`None`.
**Examples**
>>> import os
>>> os.getcwd()
'/data/archive'
>>> cf.abspath('file.nc')
'/data/archive/file.nc'
>>> cf.abspath('..//archive///file.nc')
'/data/archive/file.nc'
>>> cf.abspath('http://data/archive/file.nc')
'http://data/archive/file.nc'
"""
if filename is None:
return
u = urllib.parse.urlparse(filename)
if u.scheme != "":
return filename
return _os_path_abspath(filename)
def relpath(filename, start=None):
"""Return a relative filepath to a file.
The filepath is relative either from the current directory or from
an optional start point.
If a string containing URL is provided then it is returned unchanged.
.. seealso:: `cf.abspath`, `cf.dirname`, `cf.pathjoin`
:Parameters:
filename: `str`
The name of the file.
start: `str`, optional
The start point for the relative path. By default the
current directory is used.
:Returns:
`str`
The relative path.
**Examples**
>>> cf.relpath('/data/archive/file.nc')
'../file.nc'
>>> cf.relpath('/data/archive///file.nc', start='/data')
'archive/file.nc'
>>> cf.relpath('http://data/archive/file.nc')
'http://data/archive/file.nc'
"""
u = urllib.parse.urlparse(filename)
if u.scheme != "":
return filename
if start is not None:
return _os_path_relpath(filename, start)
return _os_path_relpath(filename)
def dirname(filename):
"""Return the directory name of a file.
If a string containing URL is provided then everything up to, but
not including, the last slash (/) is returned.
.. seealso:: `cf.abspath`, `cf.pathjoin`, `cf.relpath`
:Parameters:
filename: `str`
The name of the file.
:Returns:
`str`
The directory name.
**Examples**
>>> cf.dirname('/data/archive/file.nc')
'/data/archive'
>>> cf.dirname('..//file.nc')
'..'
>>> cf.dirname('http://data/archive/file.nc')
'http://data/archive'
"""
u = urllib.parse.urlparse(filename)
if u.scheme != "":
return filename.rpartition("/")[0]
return _os_path_dirname(filename)
def pathjoin(path1, path2):
"""Join two file path components intelligently.
If either of the paths is a URL then a URL will be returned
.. seealso:: `cf.abspath`, `cf.dirname`, `cf.relpath`
:Parameters:
path1: `str`
The first component of the path.
path2: `str`
The second component of the path.
:Returns:
`str`
The joined paths.
**Examples**
>>> cf.pathjoin('/data/archive', '../archive/file.nc')
'/data/archive/../archive/file.nc'
>>> cf.pathjoin('/data/archive', '../archive/file.nc')
'/data/archive/../archive/file.nc'
>>> cf.abspath(cf.pathjoin('/data/', 'archive/'))
'/data/archive'
>>> cf.pathjoin('http://data', 'archive/file.nc')
'http://data/archive/file.nc'
"""
u = urllib.parse.urlparse(path1)
if u.scheme != "":
return urllib.parse.urljoin(path1, path2)
return _os_path_join(path1, path2)
def hash_array(array, algorithm=hashlib.sha1):
"""Return a hash value of a numpy array.
The hash value is dependent on the data type and the shape of the
array. If the array is a masked array then the hash value is
independent of the fill value and of data array values underlying
any masked elements.
:Parameters:
array: `numpy.ndarray`
The numpy array to be hashed. May be a masked array.
algorithm: `hashlib` constructor function
Constructor function for the desired hash algorithm,
e.g. `hashlib.md5`, `hashlib.sha256`, etc.
.. versionadded:: 3.14.0
:Returns:
`int`
The hash value.
**Examples**
>>> a = np.array([[0, 1, 2, 3]])
>>> cf.hash_array(a)
-5620332080097671134
>>> a = np.ma.array([[0, 1, 2, 3]], mask=[[0, 1, 0, 0]])
>>> cf.hash_array(array)
8372868545804866378
>>> a[0, 1] = 999
>>> a[0, 1] = np.ma.masked
>>> print(a)
[[0 -- 2 3]]
>>> print(a.data)
[[ 0 999 2 3]]
>>> cf.hash_array(a)
8372868545804866378
>>> a = a.astype(float)
>>> cf.hash_array(a)
5950106833921144220
"""
h = algorithm()
h.update(dumps(array.dtype.name))
h.update(dumps(array.shape))
if np.ma.isMA(array):
if np.ma.is_masked(array):
mask = array.mask
if not mask.flags.c_contiguous:
mask = np.ascontiguousarray(mask)
h.update(mask)
array = array.copy()
array.set_fill_value()
array = array.filled()
else:
array = array.data
if not array.flags.c_contiguous:
array = np.ascontiguousarray(array)
h.update(array)
return hash(h.digest())
def inspect(self):
"""Inspect the attributes of an object.
:Returns:
`None`
"""
from pprint import pprint
try:
name = repr(self)
except Exception:
name = self.__class__.__name__
print("\n".join([name, "".ljust(len(name), "-")]))
if hasattr(self, "__dict__"):
pprint(self.__dict__)
def broadcast_array(array, shape):
"""Broadcast an array to a given shape.
It is assumed that ``numpy.ndim(array) <= len(shape)`` and that
the array is broadcastable to the shape by the normal numpy
broadcasting rules, but neither of these things is checked.
For example, ``a[...] = broadcast_array(a, b.shape)`` is
equivalent to ``a[...] = b``.
:Parameters:
a: numpy array-like
shape: `tuple`
:Returns:
`numpy.ndarray`
**Examples**
>>> a = numpy.arange(8).reshape(2, 4)
[[0 1 2 3]
[4 5 6 7]]
>>> print(cf.broadcast_array(a, (3, 2, 4)))
[[[0 1 2 3]
[4 5 6 0]]
[[0 1 2 3]
[4 5 6 0]]
[[0 1 2 3]
[4 5 6 0]]]
>>> a = numpy.arange(8).reshape(2, 1, 4)
[[[0 1 2 3]]
[[4 5 6 7]]]
>>> print(cf.broadcast_array(a, (2, 3, 4)))
[[[0 1 2 3]
[0 1 2 3]
[0 1 2 3]]
[[4 5 6 7]
[4 5 6 7]
[4 5 6 7]]]
>>> a = numpy.ma.arange(8).reshape(2, 4)
>>> a[1, 3] = numpy.ma.masked
>>> print(a)
[[0 1 2 3]
[4 5 6 --]]
>>> cf.broadcast_array(a, (3, 2, 4))
[[[0 1 2 3]
[4 5 6 --]]
[[0 1 2 3]
[4 5 6 --]]
[[0 1 2 3]
[4 5 6 --]]]
"""
a_shape = np.shape(array)
if a_shape == shape:
return array
tile = [(m if n == 1 else 1) for n, m in zip(a_shape[::-1], shape[::-1])]
tile = shape[0 : len(shape) - len(a_shape)] + tuple(tile[::-1])
return np.tile(array, tile)
def allclose(x, y, rtol=None, atol=None):
"""Returns True if two broadcastable arrays have equal values to
within numerical tolerance, False otherwise.
The tolerance values are positive, typically very small
numbers. The relative difference (``rtol * abs(b)``) and the
absolute difference ``atol`` are added together to compare against
the absolute difference between ``a`` and ``b``.
:Parameters:
x, y: array_like
Input arrays to compare.
atol: `float`, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `atol` function is used.
rtol: `float`, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `rtol` function is used.
:Returns:
`bool`
Returns True if the arrays are equal, otherwise False.
**Examples**
"""
if rtol is None:
rtol = _cf_rtol()
if atol is None:
atol = _cf_atol()
atol = float(atol)
rtol = float(rtol)
allclose = getattr(x, "allclose", None)
if callable(allclose):
# x has a callable allclose method
return allclose(y, rtol=rtol, atol=atol)
allclose = getattr(y, "allclose", None)
if callable(allclose):
# y has a callable allclose method
return allclose(x, rtol=rtol, atol=atol)
# x nor y has a callable allclose method
return _numpy_allclose(x, y, rtol=rtol, atol=atol)
def _section(x, axes=None, stop=None, chunks=False, min_step=1):
"""Return a list of m dimensional sections of a Field of n
dimensions or a dictionary of m dimensional sections of a Data
object of n dimensions, where m <= n.
In the case of a `Data` object, the keys of the dictionary are the
indices of the sections in the original Data object. The m
dimensions that are not sliced are marked with `None` as a
placeholder making it possible to reconstruct the original data
object. The corresponding values are the resulting sections of
type `Data`.
:Parameters:
x: `Field` or `Data`
The `Field` or `Data` object to be sectioned.
axes: optional
In the case of a Field this is a query for the m axes that
define the sections of the Field as accepted by the Field
object's axes method. The keyword arguments are also
passed to this method. See `cf.Field.axes` for details. If
an axis is returned that is not a data axis it is ignored,
since it is assumed to be a dimension coordinate of size
1. In the case of a Data object this should be a tuple or
a list of the m indices of the m axes that define the
sections of the Data object. If axes is None (the default)
all axes are selected.
Note: the axes specified by the *axes* parameter are the
one which are to be kept whole. All other axes are
sectioned
data: `bool`, optional
If True this indicates that a data object has been passed,
if False it indicates that a field object has been
passed. By default it is False.
stop: `int`, optional
Deprecated at version 3.14.0.
Stop after taking this number of sections and return. If
stop is None all sections are taken.
chunks: `bool`, optional
Deprecated at version 3.14.0. Consider using
`cf.Data.rechunk` instead.
If True return sections that are of the maximum possible
size that will fit in one chunk of memory instead of
sectioning into slices of size 1 along the dimensions that
are being sectioned.
min_step: `int`, optional
The minimum step size when making chunks. By default this
is 1. Can be set higher to avoid size 1 dimensions, which
are problematic for linear regridding.
:Returns:
`list` or `dict`
The list of m dimensional sections of the Field or the
dictionary of m dimensional sections of the Data object.
**Examples**
>>> d = cf.Data(np.arange(120).reshape(2, 6, 10))
>>> d
<CF Data(2, 6, 10): [[[0, ..., 119]]]>
>>> d.section([0, 1], min_step=2)
{(None, None, 0): <CF Data(2, 6, 2): [[[0, ..., 111]]]>,
(None, None, 2): <CF Data(2, 6, 2): [[[2, ..., 113]]]>,
(None, None, 4): <CF Data(2, 6, 2): [[[4, ..., 115]]]>,
(None, None, 6): <CF Data(2, 6, 2): [[[6, ..., 117]]]>,
(None, None, 8): <CF Data(2, 6, 2): [[[8, ..., 119]]]>}
"""
if stop is not None:
raise DeprecationError(
"The 'stop' keyword of cf._section() was deprecated at "
"version 3.14.0 and is no longer available"
)
if chunks:
raise DeprecationError(
"The 'chunks' keyword of cf._section() was deprecated at "
"version 3.14.0 and is no longer available. Consider using "
"cf.Data.rechunk instead."
)
if axes is None:
axes = list(range(x.ndim))
axes = x.data._parse_axes(axes)
ndim = x.ndim
shape = x.shape
# TODODASK: For v4.0.0, consider redefining the axes by removing
# the next line. I.e. the specified axes would be those
# that you want to be chopped, not those that you want
# to remain whole.
axes = [i for i in range(ndim) if i not in axes]
indices = [
(slice(j, j + min_step) for j in range(0, n, min_step))
if i in axes
else [slice(None)]
for i, n in enumerate(shape)
]
keys = [
range(0, n, min_step) if i in axes else [None]
for i, n in enumerate(shape)
]
out = {
key: x[index] for key, index in zip(product(*keys), product(*indices))
}
return out
def _get_module_info(module, try_except=False):
"""Helper function for processing modules for cf.environment."""
if try_except:
try:
importlib.import_module(module)
except ImportError:
return ("not available", "")
return (
importlib.import_module(module).__version__,
importlib.util.find_spec(module).origin,
)
def environment(display=True, paths=True):
"""Return the names and versions of the cf package and its
dependencies.
:Parameters:
display: `bool`, optional
If False then return the description of the environment as
a string. By default the description is printed.
paths: `bool`, optional
If False then do not output the locations of each package.
.. versionadded:: 3.0.6
:Returns:
`None` or `str`
If *display* is True then the description of the
environment is printed and `None` is returned. Otherwise
the description is returned as a string.
**Examples**
>>> cf.environment()
Platform: Linux-4.15.0-54-generic-x86_64-with-glibc2.10
HDF5 library: 1.10.6
netcdf library: 4.8.0
udunits2 library: /home/username/anaconda3/envs/cf-env/lib/libudunits2.so.0
ESMF: 8.1.1 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/ESMF/__init__.py
Python: 3.8.10 /home/username/anaconda3/envs/cf-env/bin/python
dask: 2022.6.0 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/dask/__init__.py
netCDF4: 1.5.6 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/netCDF4/__init__.py
psutil: 5.9.0 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/psutil/__init__.py
packaging: 21.3 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/packaging/__init__.py
numpy: 1.22.2 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/numpy/__init__.py
scipy: 1.8.0 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/scipy/__init__.py
matplotlib: 3.4.3 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/matplotlib/__init__.py
cftime: 1.6.0 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/cftime/__init__.py
cfunits: 3.3.5 /home/username/cfunits/cfunits/__init__.py
cfplot: 3.1.18 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/cfplot/__init__.py
cfdm: 1.10.0.1 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/cfdm/__init__.py
cf: 3.14.0 /home/username/anaconda3/envs/cf-env/lib/python3.8/site-packages/cf/__init__.py
>>> cf.environment(paths=False)
Platform: Linux-4.15.0-54-generic-x86_64-with-glibc2.10
HDF5 library: 1.10.6
netcdf library: 4.8.0
udunits2 library: libudunits2.so.0
ESMF: 8.1.1
Python: 3.8.10
dask: 2022.6.0
netCDF4: 1.5.6
psutil: 5.9.0
packaging: 21.3
numpy: 1.22.2
scipy: 1.8.0
matplotlib: 3.4.3
cftime: 1.6.0
cfunits: 3.3.5
cfplot: 3.1.18
cfdm: 1.10.0.1
cf: 3.14.0
"""
dependency_version_paths_mapping = {
# Platform first, then use an ordering to group libraries as follows...
"Platform": (platform.platform(), ""),
# Underlying C and Fortran based libraries first
"HDF5 library": (netCDF4.__hdf5libversion__, ""),
"netcdf library": (netCDF4.__netcdf4libversion__, ""),
"udunits2 library": (ctypes.util.find_library("udunits2"), ""),
"ESMF": _get_module_info("ESMF", try_except=True),
# Now Python itself
"Python": (platform.python_version(), sys.executable),
# Then Dask (cover first from below as it's important under-the-hood)
"dask": _get_module_info("dask"),
# Then Python libraries not related to CF
"netCDF4": _get_module_info("netCDF4"),
"psutil": _get_module_info("psutil"),
"packaging": _get_module_info("packaging"),
"numpy": _get_module_info("numpy"),
"scipy": _get_module_info("scipy", try_except=True),
"matplotlib": _get_module_info("matplotlib", try_except=True),
# Finally the CF related Python libraries, with the cf version last
# as it is the most relevant (cfdm penultimate for similar reason)
"cftime": _get_module_info("cftime"),
"cfunits": _get_module_info("cfunits"),
"cfplot": _get_module_info("cfplot", try_except=True),
"cfdm": _get_module_info("cfdm"),
"cf": (__version__, _os_path_abspath(__file__)),
}
string = "{0}: {1!s}"
if paths:
# Include path information, else exclude, when unpacking tuple
string += " {2!s}"
out = [
string.format(dep, *info)
for dep, info in dependency_version_paths_mapping.items()
]
out = "\n".join(out)
if display:
print(out) # pragma: no cover
else:
return out
def default_netCDF_fillvals():
"""Default data array fill values for each data type.
:Returns:
`dict`
The fill values, keyed by `numpy` data type strings
**Examples**
>>> cf.default_netCDF_fillvals()
{'S1': '\x00',
'i1': -127,
'u1': 255,
'i2': -32767,
'u2': 65535,
'i4': -2147483647,
'u4': 4294967295,
'i8': -9223372036854775806,
'u8': 18446744073709551614,
'f4': 9.969209968386869e+36,
'f8': 9.969209968386869e+36}
"""
return netCDF4.default_fillvals
def size(a):
"""Return the number of elements.
:Parameters:
a: array_like
Input data.
:Returns:
`int`
The number of elements.
**Examples**
>>> cf.size(9)
1
>>> cf.size("foo")
1
>>> cf.size([9])
1
>>> cf.size((8, 9))
2
>>> import numpy as np
>>> cf.size(np.arange(9))
9
>>> import dask.array as da
>>> cf.size(da.arange(9))
9
"""
try:
return a.size
except AttributeError:
return np.asanyarray(a).size
def unique_constructs(constructs, ignore_properties=None, copy=True):
return cfdm.unique_constructs(
constructs, ignore_properties=ignore_properties, copy=copy
)
unique_constructs.__doc__ = cfdm.unique_constructs.__doc__.replace(
"cfdm.", "cf."
)
unique_constructs.__doc__ = unique_constructs.__doc__.replace(
"<Field:", "<CF Field:"
)
unique_constructs.__doc__ = unique_constructs.__doc__.replace(
"<Domain:", "<CF Domain:"
)
def _DEPRECATION_ERROR(message="", version="3.0.0", removed_at="4.0.0"):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"{message}. Deprecated at version {version}{removed_at}."
)
def _DEPRECATION_ERROR_ARG(
instance, method, arg, message="", version="3.0.0", removed_at="4.0.0"
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"Argument {arg!r} of method '{instance.__class__.__name__}.{method}' "
f"has been deprecated at version {version} and is no longer available"
f"{removed_at}. {message}"
)
def _DEPRECATION_ERROR_FUNCTION_KWARGS(
func,
kwargs=None,
message="",
exact=False,
traceback=False,
info=False,
version="3.0.0",
removed_at="4.0.0",
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
# Unsafe to set mutable '{}' as default in the func signature.
if kwargs is None: # distinguish from falsy '{}'
kwargs = {}
for kwarg, msg in KWARGS_MESSAGE_MAP.items():
# This eval is safe as the kwarg is not a user input
if kwarg in ("exact", "traceback") and eval(kwarg):
kwargs = {kwarg: None}
message = msg
for key in kwargs.keys():
raise DeprecationError(
f"Keyword {key!r} of function '{func}' has been deprecated at "
f"version {version} and is no longer available{removed_at}. "
f"{message}"
)
def _DEPRECATION_ERROR_KWARGS(
instance,
method,
kwargs=None,
message="",
i=False,
traceback=False,
axes=False,
exact=False,
relaxed_identity=False,
info=False,
version=None,
removed_at=None,
):
if version is None:
raise ValueError("Must provide deprecation version, e.g. '3.14.0'")
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
# Unsafe to set mutable '{}' as default in the func signature.
if kwargs is None: # distinguish from falsy '{}'
kwargs = {}
for kwarg, msg in KWARGS_MESSAGE_MAP.items():
if eval(kwarg): # safe as this is not a kwarg input by the user
kwargs = {kwarg: None}
message = msg
for key in kwargs.keys():
raise DeprecationError(
f"Keyword {key!r} of method "
f"'{instance.__class__.__name__}.{method}' has been deprecated "
f"at version {version} and is no longer available{removed_at}. "
f"{message}"
)
def _DEPRECATION_ERROR_KWARG_VALUE(
instance,
method,
kwarg,
value,
message="",
version="3.0.0",
removed_at="4.0.0",
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"Value {value!r} of keyword {kwarg!r} of method "
f"'{instance.__class__.__name__}.{method}' has been deprecated at "
f"version {version} and is no longer available{removed_at}. {message}"
)
def _DEPRECATION_ERROR_METHOD(
instance, method, message="", version="3.0.0", removed_at=""
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"{instance.__class__.__name__} method {method!r} has been deprecated "
f"at version {version} and is no longer available{removed_at}. "
f"{message}"
)
def _DEPRECATION_ERROR_ATTRIBUTE(
instance, attribute, message="", version="3.0.0", removed_at=""
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"{instance.__class__.__name__} attribute {attribute!r} has been "
f"deprecated at version {version}{removed_at}. {message}"
)
def _DEPRECATION_ERROR_FUNCTION(
func, message="", version="3.0.0", removed_at="4.0.0"
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"Function {func!r} has been deprecated at version {version} and is "
f"no longer available{removed_at}. {message}"
)
def _DEPRECATION_ERROR_CLASS(
cls, message="", version="3.0.0", removed_at="4.0.0"
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"Class {cls!r} has been deprecated at version {version} and is no "
f"longer available{removed_at}. {message}"
)
def _DEPRECATION_WARNING_METHOD(
instance, method, message="", new=None, version="3.0.0", removed_at="4.0.0"
):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
warnings.warn(
f"{instance.__class__.__name__} method {method!r} has been deprecated "
f"at version {version}{removed_at}. {message}",
DeprecationWarning,
)
def _DEPRECATION_ERROR_DICT(message="", version="3.0.0", removed_at="4.0.0"):
if removed_at:
removed_at = f"and will be removed at version {removed_at}"
raise DeprecationError(
"Use of a 'dict' to identify constructs has been deprecated at "
f"version {version} and is no longer available and will be removed "
f"at version {removed_at}. {message}"
)
def _DEPRECATION_ERROR_SEQUENCE(instance, version="3.0.0", removed_at="4.0.0"):
if removed_at:
removed_at = f" and will be removed at version {removed_at}"
raise DeprecationError(
f"Use of a {instance.__class__.__name__!r} to identify constructs "
f"has been deprecated at version {version} and is no longer available"
f"{removed_at}. Use the * operator to unpack the arguments instead."
)
# --------------------------------------------------------------------
# Deprecated functions
# --------------------------------------------------------------------
def default_fillvals():
"""Default data array fill values for each data type.
Deprecated at version 3.0.2 and is no longer available. Use function
`cf.default_netCDF_fillvals` instead.
"""
_DEPRECATION_ERROR_FUNCTION(
"default_fillvals",
"Use function 'cf.default_netCDF_fillvals' instead.",
version="3.0.2",
removed_at="4.0.0",
) # pragma: no cover
def set_equals(
x, y, rtol=None, atol=None, ignore_fill_value=False, traceback=False
):
"""Deprecated at version 3.0.0."""
_DEPRECATION_ERROR_FUNCTION(
"cf.set_equals", version="3.0.0", removed_at="4.0.0"
) # pragma: no cover