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Abstract

DILIsym®, a quantitative systems toxicology model developed
over the last decade by the drug-induced liver injury (DILI)-sim
Initiative, has provided novel insights regarding mechanisms
underlying drug-induced liver injury and why animal models
sometimes fail to accurately assess the liver safety liability of
new drug candidates. For example, DILIsym, but not routine
preclinical testing, predicted the human hepatotoxicity of the
migraine drugs telcagepant and MK3207 that terminated their
clinical development. DILIsym also predicted that the next in-
class drug, ubrogepant, would be relatively safe for the liver;
this prediction was prospectively confirmed in phase-3 clinical
trials leading to FDA approval without liver safety warnings.
DILIsym also identifies mechanisms underlying liver toxicity,
and this information can identify patient-specific risk factors for
drug-induced liver injury including drug—drug interactions and
certain disease states, improving risk management and phar-
macovigilance. DILIsym provides an example of how
increased application of quantitative systems toxicology
modeling should lead to more efficient development of new
drugs.
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Introduction

Hepatotoxicity remains a major adverse event that limits
drug development [1]. Current nonclinical methods to
identify liver safety liabilities in new drug candidates are
not completely successful, and advanced clinical
development  programs continue to encounter
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unexpected liver toxicity with serious regulatory impli-
cations [2]. The drug-induced liver injury (DILI)-sim
Initiative is a public—private partnership that is
applying quantitative systems toxicology to understand
and predict liver safety liability in new drug candidates
[3]. Over the last decade, the Initiative has involved
scientists from academia, the FDA, and 19 major phar-
maceutical companies and produced successive versions
of software termed DILIsym®. Liver pathways gener-
ally recognized to underlie hepatotoxicity [4,5] have
been represented by differential equations in submo-
dels, including oxidative stress, interference in mito-
chondrial function, and accumulation of bile acids due to
inhibition of efflux transporters. The submodels in
DILIsym are linked together such that the aggregate
effect of a drug or metabolite on each pathway can
contribute to hepatocyte death resulting in the predic-
ted time-dependent release of serum biomarkers into
circulation (e.g. alanine aminotransferase [ALT]).
Regeneration of hepatocytes is built into DILIsym and
net liver function (viable hepatocyte mass) is reflected
in the predicted level of serum bilirubin. The quanti-
tative ability of a drug or metabolite to affect each
submodel pathway (such as half maximal inhibitory
concentration (IC50) for expressed efflux transporters)
can be assessed in the laboratory, and the results entered
into DILIsym together with estimates of drug/metabo-
lite exposure outside and within the hepatocyte based
on selected dosing regimens (Figure 1).

Parameters in DILIsym have been varied to create
simulated patient populations (SimPops®) reflecting
genetic and nongenetic factors that can potentially ac-
count for interpatient heterogeneity in susceptibility to
DILI. The successive DILIsym versions have been
developed by adjusting the model parameters to repro-
duce the known incidence and severity of liver toxicity
observed with multiple ‘exemplar’ drugs. The needed
data, which are often provided by the Initiative partners,
are for drugs with or without preclinical liver safety
signals and with or without liver safety signals in the
clinic. Although the human DILIsym model is most
developed, parameters have been changed in the model
to create virtual populations of rats or dogs to examine
species differences in susceptibility of DILI. More
detailed description of the Initiative and DILIsym
model can be found the manuscripts by Howell et al. [3]
and Watkins et al. [6] were reviews not studies.
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Using DILIsym. Hepatic concentrations of drug/metabolite resulting from a specified dosing regimen are estimated using physiologically based phar-
macokinetic modeling and other available data (e.g. preclinical tissue distribution data and the role of transporters). Next assessed is the concentration-
dependent ability of the drug/metabolite to 1) inhibit bile acid transporters and thereby raise hepatocyte bile acid concentration, 2) inhibit mitochondrial
respiration, and 3) cause oxidative stress (reactive oxygen species [ROS] generation). The model will then predict the time-dependent death of hepa-
tocytes, and hence the time-dependent release and level of certain biomarkers into blood, first in a baseline (normal) simulated patient, and then in a
simulated patient population where variables in DILIsym have been varied to account for interpatient heterogeneity. Anticipated or observed variation in
pharmacokinetics can also be incorporated. Typical outputs from the model are time-dependent serum levels of alanine aminotransferase (ALT) reflecting
rate of hepatocyte death and serum bilirubin reflecting global liver function. Modifications in DILIsym provide modeling predictions in rat and dog. More

detailed discussion of DILIsym input data and data outputs is available [32].

As covered in a recent review [7], the DILI-sim Initia-
tive has provided many novel insights into mechanisms
underlying DILI (some of which are summarized in
Table 1).

DiLIsym applications in drug development
A frequent application of DILIsym has been after
treatment emergent elevations in serum ALT have been
observed in a clinical trial of a new molecular entity. The
first question is whether ALT elevations (generally > 3
X upper limits of normal) are predicted with the new
molecular entity when the process outlined in Figure 1
is undertaken. In the growing validation cohort, DILI-
sym has correctly predicted the liver safety liability of
80% of the predicted cases (out of around 70 drugs
predicted) (Brett Howell, personal communication
February, 2020 based on the DILIsym Performance
Review, which is compiled for the DILI-sim members
each year).

Improving nonclinical assessment of liver safety

DILIsym has also been applied to understand why
animal models sometimes fail to predict hepatotoxicity
in humans. It is well known that species differences in
drug metabolism exist and this can be modeled in
DILIsym if the relevant metabolites have undergone
the process outlined in Figure 1. DILIsym modeling has
also provided additional explanations for species

differences in susceptibility. The rat profile of bile acids
is inherently less toxic than is the case in humans [8].
Just on the basis of drug effects on bile acid homeostasis,
DILIsym has been able to account for liver safety lia-
bility observed in humans despite clean rat studies
[6,9—12]. In addition, a recent study indicated that rats
were more sensitive to inhibition of mitochondrial
respiration from a chemokine receptor antagonist, and
that this contributed liver toxicity was observed in rats
but not in humans [13]. These observations support the
idea that DILIsym modeling may improve lead candi-
date selection even when hepatotoxicity is observed in
preclinical species.

Identifying DILI potential of next in class
DILIsym has been increasingly used to compare liver
safety across members of the same class — particularly
when others in class have had liver safety concerns.
DILIsym has successfully predicted the relative liver
safety profile of pairs of drugs in the same class when
their liver safety profiles have been discordant (e.g.
tolcapone vs entacapone [14] and troglitazone vs
pioglitazone [10]). In these cases, the predictions were
retrospective as the discordant liver safety profiles were
already established.

An exciting recent development has been DILIsym’s
successful prospective prediction of the liver safety of
ubrogepant, a small molecule antagonist of calcitonin
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gene-related peptide. Merck developed the first in-class
drug, telcagepant, but had to abandon it late in phase-
three clinical trials when potentially serious liver
toxicity was observed. Merck’s next in class molecule,
MK-3207, was also abandoned during clinical develop-
ment because of liver safety concerns. Ubrogepant was
Merck’s third in class molecule, and this was acquired by
Allergan before any human studies had been under-
taken. All three molecules did not have significant liver
safety alerts in traditional preclinical studies. Both
telcagepant and MK-3207 were modeled in DILIsym,
and significant liver safety liability was correctly
predicted for both compounds [15]. Ubrogepant was
then modeled in DILIsym, and no simulated patients
experienced elevations in serum ALT" >3 X upper limits
of normal (ULN), even at dosing exposures 10-fold
anticipated to be necessary to achieve efficacy [15]. In
the clinical trials of ubrogepant, there was no difference
in incidence of serum ALT elevations >3 X ULN be-
tween those receiving active drug and those receiving
placebo [16], as had been prospectively predicted by the
DILIsym. At the end of December 2019, the FDA
approved sale of ubrogepant without any liver safety
warnings (https://www.fda.gov/news-events/press-
announcements/fda-approves-new-treatment-adults-
migraine).

There are now several clinical trials being undertaken
with new drug candidates predicted by DILIsym to have
an improved liver safety profile over others in their class.
For example, the only approved treatment for autosomal
dominant polycystic kidney disease (ADPKD) , tolvap-
tan, was successfully predicted by DILIsym to be hep-
atotoxic [9] whereas a next in class drug, lixivaptan, has
been predicted by DILIsym to be safe for the liver in
the dosing proposed for this population [17]. A clinical
trial of lixivaptan in ADPKD patients is now underway.

Identification of patient risk factors

When DILIsym is successful in predicting the observed
elevations in serum ALT, it is possible to examine the
subset of simulated individuals who experienced the
hepatotoxicity to determine which specific variables in
DILIsym contributed to this sensitivity. This approach
with troglitazone DILI suggested a number of poten-
tially important susceptibility factors, including inter-
patient variation in the colonic microbiome [10]. A
simpler approach to identifying risk factors is to deter-
mine which of the three toxicity mechanisms chiefly
account for the predicted elevations. This can be easily
assessed by turning off each of the three mechanisms in
succession in DILIsym to determine the effect on the
predicted incidence of ALT elevations. In some cases,
identifying the dominant mechanism has revealed spe-
cific patient risk factors for DILI. For example, in clin-
ical trials of two drugs in different therapeutic classes, it
was noted that patients concomitantly receiving treat-
ment with metformin experienced an increased
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incidence of ALT elevations versus those patients not
receiving metformin, and this was not due to a phar-
macokinetic interaction. DILIsym modeling revealed
that for both drugs, interference in mitochondrial
respiration was the dominant mechanism accounting for
the observed ALT elevations. Metformin then under-
went DILIsym modeling confirming an effect on mito-
chondrial respiration. Interestingly, DILIsym did not
predict that metformin would cause ALT elevations at
usual therapeutic doses, and this is consistent with the
excellent liver safety profile of this drug. However,
modeling the combined effect of each drug adminis-
tered together with metformin successfully predicted
the observed increased incidence of ALT elevations
(Brett Howell, personal communication, February
2020). For one of the drugs, continued drug develop-
ment is planned adding metformin treatment as a pro-
tocol exclusion criterion. An important question was
what other drugs in usual therapeutic doses might have
a mitochondrial effect similar to that of metformin and
should, therefore, also be excluded. Continued appli-
cation of DILIsym should generate such a list.

It should also be noted that DILIsym may be useful in
identifying susceptibility to DILI related to specific
diseases. An example is the increased susceptibility to
tolvaptan DILI observed in patients with ADPKD [18].
A mechanism underlying this increased susceptibility
was suggested by the demonstration of reduced activity
of the canalicular efflux transporter MRP2 in a rat model
of ADPKD [19]. Additional studies demonstrated that
the reduction in MRP2 expression was associated with
decreased biliary secretion of tolvaptan and its major
metabolite of tolvaptan, DN-4103 [20]. DILIsym suc-
cessfully modeled liver toxicity due to tolvaptan in
humans [9], and because altered bile acid homeostasis
was a prominent underlying mechanism, rodents would
not be a good model to study the liver toxicity of
tolvaptan [8]. Instead, the available DILIsym model for
tolvaptan [9], which included the parent drug and its
major metabolite DM-4103, was used to assess the toxic
outcome accompanying reduced biliary efflux. The
modeling demonstrated that reduced efflux of DM-4103
results in increased hepatotoxicity but reduced efflux of
parent tolvaptan had little effect [21]. The modeling
therefore supported reduced biliary efflux of DM-4103,
likely through reduced activity of MRP2, as a basis for
increased DILI susceptibility to tolvaptan DILI in the
ADPKD patients. Progression of disease in the patients
with ADPKD resulting in progressive loss of biliary
efflux of DM-1403 could therefore also account for the
sudden development of DILI in patients treated with
tolvaptan for more than one year [18] — an unusual
observation for drugs causing DILI [2]. As more diseases
are associated with altered expression of relevant liver
transporters (e.g. fatty liver disease [22]), DILIsym is
likely to be able to predict increases in DILI risk for
certain drugs in these patient populations.
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Table 1 Some mechanistic insights from the DILI-sim initiative.
Insight Comments References
1). Effects on just three processes account for the The data inputs in Figure 1 can predict ~80% of liver safety [71
majority of dose-dependent DILI in patients liabilities in a validation cohort of drugs.
2). Dominant DILI mechanisms can vary among drugs This was best shown for macrolide antibiotics [33]
that are closely related in structure
3). Importance of bile acids in DILI Bile acid accumulation has emerged as the most frequent [7,11,29]
contributor to DILI predictions
4). Importance of mechanisms of BSEP inhibition Although not typically assessed, mechanism of BSEP inhibition [11,29]
(competitive vesus noncompetitive) can have large effects on
DILI potential
5). Weak inhibition of BSEP can substantially contribute Although a recent consensus considered a BSEP IC50 > 25 uM [9,12,29]
to DILI potential. as not a DILI risk factor, modeling has predicted a DILI risk
contribution with IC 50 > 100 uM for some drugs (when one or
both of the other mechanisms are involved).
6). Species differences in DILI susceptibility In addition to variation in toxic potential of bile acids, different effects [6,9-11,13,15,29]
on mitochondrial respiration can contribute
7). DILIsym results may be relevant to prediction of delay DILIsym has predicted DILI liability for troglitazone, tolcapone, TAK-875, [9,10,14,29]
idiosyncratic DILI and tolvaptan
8). DILIsym can optimize interpretation of serum biomarkers DILIsym provides estimates of hepatocyte loss and global liver function [27]
and has been used to refine interpretation of ‘Hy’s law cases’.
9). Disease-associated changes in efflux transporter function Alternations in biliary efflux of a major metabolite of tolvaptan (likely due to [21]

could account increased
susceptibility to DILI in patients

reduced MRP2 activity) could account for increased DILI susceptibility
noted in patients with autosomal dominant polycystic kidney disease

DILI, drug-induced liver injury; BSEP, bile salt excretory protein.
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Optimizing clinical trial protocols and biomarker
interpretation

If DILIsym predicts ALT elevations for a new drug
candidate, it is also possible to use DILIsym to vary the
exposure parameters to predict dosing regimens to
reduce or even eliminate serum ALT elevations [23]. If
elimination of ALT elevations is not achieved at doses
needed to be effective, the model can predict the fre-
quency of liver chemistry monitoring and appropriate
stopping criteria based on the ALLT value to avoid serious
liver injury. The use of DILIsym has been applied in this
way to drugs in development [24].

DILIsym predicts the time-dependent death of hepa-
tocytes reflected in the rise in serum of AL T and, by also
predicting the rate of hepatocyte regeneration, the net
functioning hepatocyte mass over time as reflected in
the serum bilirubin level. If serial assessments of serum
ALT are available in an actual patient experiencing
DILI, it is possible to use DILIsym ‘in reverse’ to pre-
dict liver function based on the viable hepatocyte mass
at any time point. Such modeling has pointed out that
the peak serum ALT value, which is typically used as
cutoffs for action in clinical trials or in product labeling,
may be misleading in terms of degree of liver injury [25].
In several cases [26,27], DILIsym modeling has resulted
in reinterpretation of liver events observed in clinical
trials that fit the regulatory definition of a Hy’s law case
(i.e. hepatocellular injury due to study drug and serum
ALT and total bilirubin rising above 3 and 2 X upper
limits of normal, respectively [2]). DILIsym also in-
corporates newer biomarkers, such as the cytokeratin 18
and its caspase cleaved fragment enabling estimation of
the relative apoptosis versus necrosis, which can affect
the relationship between serum ALT and predicted
percent hepatocyte loss [26]. DILIsym can also predict
elevations in direct and/or indirect bilirubin due to drug/
metabolite inhibition of bilirubin transporters and/or
inhibition of UGT1A1l [28]. The use of DILIsym in
biomarker interpretation has been recently reviewed

[27].

Future applications of DILIsym

DILIsym modeling is increasingly used by pharmaceu-
tical companies to contribute to the weight of evidence
supporting drug development decisions. It is not known
to what extent DILIsym modeling was considered in the
recent FDA decision to approve marketing of ubroge-
pant and, in view of the in-class liver toxicity, to approve
without an advisory committee meeting and without
liver safety warnings. However, there is general recog-
nition that drug development must become more effi-
cient, and recent FDA demands for large clinical trials
just to demonstrate liver safety [2] is not consistent
with this goal. As pressure rises from the Congress and
the public for reduced pricing of new drugs, it is likely
that regulators will increasingly rely on DILIsym to
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support NDA approvals with smaller liver safety data-
bases, perhaps with pharmacovigilance including
increased scrutiny on specific patient populations
predicted by DILIsym to be at the greatest DILI risk. It
should be noted that a DILIsym license has been ac-
quired by the Center for Evaluation of Drug Research
(https://apnews.com/

484d6cf5a1a845208b03289ad6beadc91), and some phar-
macometric staff there have undergone training in the
use of the software. There is no regulatory path for
approval of models such as DILIsym, which like
GastroPlus and Simcyp, can simply gain regulatory
application as confidence in the modeling results grows.

It should be noted that it is currently unknown to what
extent DILIsym modeling can reduce the risk of the
very rare and typically delayed idiosyncratic DILI.
Current data support that these events often result from
an adaptive immune attack on the liver [4]. However,
the current belief is that drug-induced stress to hepa-
tocytes is an essential first step in the cascade of events
leading to the adaptive immune attack [4]. If so,
reducing or eliminating this stress should reduce the
risk of idiosyncratic DILI. The fact that DILIsym has
predicted liver safety liability of drugs capable of causing
delayed idiosyncratic DILI [9,10,14,29] supports that
the modeling is relevant. Whether using DILIsym in
lead compound selection will reduce or eliminate the
risk of delayed idiosyncratic DILI remains to be deter-
mined. It should be noted that components of the
immune responses are now being incorporated into
DILIsym [30], with the initial goal of understanding and
predicting DILI associated with checkpoint inhibitors
used in oncology [31].

Conclusion

DILIsym is being increasingly utilized in decision
making in drug development and is likely in the future
to help reduce the size of clinical trials needed to
establish adequate liver safety for marketing. DILIsym
provides an example of how development of quantita-
tive systems toxicology models should improve the ef-
ficiency of drug development.
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