
Introduction

The evaluation of clinical research findings increas-
ingly rests on the statistical rigour of the analysis,
rather than on the clinical importance of the results.
Traditionally, statistical analyses in clinical research
have been carried out from a ‘frequentist’ perspec-
tive, in which a hypothesis of no effect is rejected 
if a P-value is sufficiently small. The existence of a
competing paradigm, the Bayesian paradigm, has
been relatively unknown in clinical and health care

research. However, recent interest in, and application
of, Bayesian methods is growing rapidly.

Bayesian methods allow one explicitly to incorpo-
rate existing knowledge and expert opinion into the
analysis of data. They also allow one to ask different
questions of the data than are possible from the 
frequentist perspective. Goodman (1999a, 1999b)
argues for the superiority of Bayesian methods for
analysing clinical data generally. Lilford & Braun-
holtz (1996) argue against the use of conventional
statistical tests as a basis for implementing policy
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Acute myocardial infarction mortality data are then analysed from both a
Bayesian and a frequentist perspective. In some analyses, the two methods
are seen to produce comparable results; in others, they produce different
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are highlighted.
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based on clinical research, stating a concern that con-
ventional statistical tests dichotomize results accord-
ing to whether they are significant or not, forcing
what they describe as an ‘off/on’ response from 
decision-makers.

One reason Bayesian methods may be preferred
over the frequentist approach is that they more
closely approximate our natural thought processes
(Freedman 1996; Davidoff 1999; Malakof 1999). The
frequentist approach to statistics is deductive 
(Freedman 1996; Davidoff 1999; Goodman 1999a):
it assumes that a given hypothesis is true, and then
calculates the probability of observing an outcome 
at least as extreme as that which was observed.
The resultant probability is called the P-value. The
Bayesian paradigm is an inductive approach to infer-
ence, which, given observed data, allows one to assess
the likelihood of a given hypothesis.

This paper begins with an introduction to both 
the frequentist and Bayesian approaches to statistics,
followed by an example in which acute myocardial
infarction (AMI) mortality data are analysed from
both a frequentist and a Bayesian perspective. The
results of the two analyses are compared and the
interpretations contrasted. Finally, some applications
of Bayesian methods in clinical research are outlined.

Background to frequentist and 
Bayesian methods

Frequentists and Bayesians use the term ‘probability’
in different ways. The traditional approach to statis-
tical inference is called ‘frequentist’ because of the
way it interprets probability. When a random event
(like tossing a coin) is repeated a large number of
times independently and under identical conditions,
the probability of an event is approached by way of
its relative frequency of occurrence. Hence, for the
frequentist, probability is a model of long-run rela-
tive frequency. Note that with this interpretation, it is
illogical to speak of the probability that it will rain
tomorrow, or that a particular patient will be alive
5 years from now. One would have to imagine a series
of tomorrows, all occurring under identical circum-
stances, and observe in what proportion of those
tomorrows rain occurred.

The Bayesian approach takes its name from the
English clergyman Thomas Bayes (1702–1761), who

was responsible for a theorem specifying certain 
relations among conditional probabilities. Bayes’
theorem says that the probability distribution of a
given parameter, conditional on the observed data, is
equal to the product of the prior probability distrib-
ution of the parameter with the likelihood function,
divided by the probability of the data. In the
Bayesian approach to statistical inference, probabil-
ity is a model of scientific knowledge. As such, there
is a subjective element to probability, in that differ-
ent observers may have differing degrees of belief in
the likelihood of a specific event or hypothesis. Still,
it is assumed that these beliefs are constrained by the
usual rules of probability. However, there is evidence
(French & Smith 1997) that informal human judge-
ments do not strictly conform to the laws of proba-
bility. Expert opinion or belief that exists prior to
observing the data can be converted into a probabil-
ity distribution called a prior probability distribution.
A model for observable data, given that some ‘fact’
is true, is combined with the prior probability distri-
bution via Bayes’ theorem to yield a posterior prob-
ability that the ‘fact’ is true, given the observed 
data. This posterior probability represents the state
of knowledge after observing the data, and may by
used as prior information in subsequent studies.
Therefore, one can say that the Bayesian approach 
to statistical analysis is an idealized model of how
subjective belief ought to change when a rational
being encounters new data. Some argue that, for a
Bayesian, scientific knowledge emerges not from
objective analyses but from consensus: when a major-
ity of scientists, each starting from their respective
prior beliefs, are led to the same inference on the
basis of the data (French & Smith 1997). One of the
great strengths of the Bayesian method is that it
allows expert knowledge, in the form of a prior prob-
ability distribution, to be formally incorporated into
the statistical analysis. In contrast to this, the use of
prior information in frequentist inference tends to be
informal and unsystematic.

The differences between Bayesian and frequentist
methods are illustrated in their treatment of 
constants and random variables. A random variable
is a quantity that can assume any of a number of 
possible values, each with a given probability or 
likelihood. For instance, in rolling a fair die, the
number that will come up is a random variable,
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taking the numbers 1 to 6, each with probability 
1 in 6.

A constant can only assume one value. From a 
frequentist perspective, the name of the first author
of this paper is a constant, since it can only take one
value.There is not a set of values that the name could
potentially assume. One can make probabilistic state-
ments only about random variables. Given a fair die,
one can ask what is the probability that upon rolling
it, the number one turns up. In contrast, one cannot
make probabilistic statements about constants. From
a frequentist perspective, one cannot ask what is the
probability that the first author of this paper is called
‘Dave’, since he is not called ‘Dave’.

The second author will now comment on the 
previous paragraph. The statements the first author
makes about his name are correct, from his subjec-
tive perspective. However, whether the first author’s
name is ‘Dave’ is in fact a random variable. In the
mind of the second author, there is some infinitesi-
mally small probability that the first author really is
named ‘Dave’. Perhaps he is leading a double life, or
is a spy under very deep cover, or is being shielded
as part of a witness protection programme. In the
mind of someone that has never heard of the first
author and has not yet seen this paper, the probabil-
ity that the first author is named ‘Dave’ may be some
appreciable fraction of one percent. Now, upon
seeing the first page of this paper, such a person’s
subjective probability of ‘Dave’ should dip to near
zero, while the second author’s beliefs will not be
affected at all.

The frequentist approach to statistics (Cox &
Hinkley 1974) assumes that parameters (e.g. means,
variances and regression coefficients) are unknown
constants characterizing the larger population from
which the data were drawn. The analyst seeks to gen-
erate estimates of these true (but unknown) popula-
tion parameters, and computes sample statistics
accordingly. Given observed data, and a model con-
taining parameters, the likelihood function (Fraser
1976) is the likelihood of observing the given data,
conditional on a particular set of parameter values.
Statistical estimation is often carried out using
maximum likelihood methods, in which the parame-
ter estimates are those parameter values under which
the observed data were most likely to have arisen.
Given observed data, one can formulate a null

hypothesis concerning the underlying model through
which the data were generated. The null hypothesis
is typically one of no effect.Associated with each null
hypothesis is a P-value (Cox & Hinkley 1974). This
is the probability of obtaining an outcome at least as
extreme as that observed, under the assumption that
the null hypothesis is true. The P-value is a rough
measure of the consistency of the data with the null
hypothesis. Royall (1997) criticized the use of the P-
value for two reasons. Firstly, it is confounded with
sample size. Secondly, it refers to unobserved data
(‘results at least as extreme as that observed’). The
reference to that which is unobserved violates the
likelihood principle (Royall 1997) – that conclusions
should only be based on the observed data.

Neyman and Pearson (1933) developed a formal
hypothesis-testing framework. Any statistical test of
hypothesis has two components: the null hypothesis
(e.g. the mean is zero) and an alternative hypothesis
(e.g. the mean is not zero). For each hypothesis test,
a test statistic is determined. If the test statistic
exceeds a predetermined threshold, the null hypoth-
esis is rejected. The threshold is chosen so as to limit
the rate of rejecting the null hypothesis to a pre-
specified level when the null hypothesis is indeed
true (type I error), and to limit the rate of accepting
the null hypothesis when the alternate hypothesis is
true (type II error). The outcome of a hypothesis test
is to be a decision: to accept or reject the null hypoth-
esis. Contrary to common belief, one does not either
reject or fail to reject the null hypothesis – one either
accepts or rejects a given hypothesis (Neyman 1950).
The threshold at which one accepts the alternate
hypothesis is chosen to limit the long-term rate of
incorrect decisions. Neyman (1950) comments that
the result of a hypothesis test is to be an action.
Goodman (1999a) notes that the result of a hypoth-
esis test is to be a decision, and not an inference, and
that there is no number that reflects back to the
strength or weakness of the evidence for or against
the specific hypothesis of interest.

Frequentist methods permit the construction of
confidence intervals around parameter estimates.
Whilst it is tempting to simplify the explanation of a
95% confidence interval to an interval such that
there is a 95% chance that the true parameter value
lies in the interval, the frequentist must reject such a
formulation since it implies that the true parameter
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value is a random variable and not a fixed quantity.
From the frequentist perspective, only the data are
random, whereas the parameters are fixed but
unknown quantities. For a frequentist, then, a 95%
confidence interval is an interval such that if data
were generated repeatedly under identical condi-
tions, then 95% of the constructed confidence 
intervals would contain the true (but unknown) 
parameter value. The 95% confidence interval 
only tells us about the precision with which we have
estimated the underlying parameter, and nothing of
its location. Similarly, one cannot talk about the 
probability that a parameter exceeds a specified
threshold. The population parameter of interest is a
fixed value, and either exceeds the threshold, or does
not.

The Bayesian paradigm (Cox & Hinkley 1974;
Lee 1989; Gelman et al. 1995) views both the data 
and the underlying parameters (means, regression
coefficients, variances, etc.) that generated the data
as random variables – random because they are
unknown. The Bayesian perspective allows one to
explicitly incorporate prior beliefs and expert knowl-
edge concerning underlying parameters with the
observed data to obtain probability distributions of
the parameters. The prior probability distribution
summarizes all available information and expert
opinion concerning the parameter of interest before
the data have been observed. Bayes’ theorem pro-
vides a method of combining the likelihood function
with the prior probability distribution to obtain the
posterior probability distribution. The posterior
probability distribution is the probability distribution
of the unobserved parameter, conditional on the
observed data, given one’s prior beliefs. For a
Bayesian, all knowledge about the underlying para-
meter, after observing the data, is contained in the
posterior probability distribution.

Once the posterior distribution has been deter-
mined, one is able to make probabilistic statements
about the underlying, unobserved parameters, such
as the probability that a given parameter exceeds a
specified threshold, or that the parameter of interest
lies in a certain interval. Bayesian methods allow the
construction of ‘credible intervals’ for parameters of
interest. A 95% credible interval is an interval such
that the true population parameter lies in the inter-
val with probability 0.95. Therefore, a 95% credible

interval provides the most likely location of the
underlying parameter.

The Bayesian model explicitly combines prior
beliefs concerning the parameter’s probability distri-
bution with the likelihood function to produce a pos-
terior distribution. As the sample size increases, the
likelihood dominates the prior (Gelman et al. 1995).
In such situations, the choice of prior probability dis-
tribution will have little influence on the posterior
probability distribution. That is, two scientists who
may start out with very different prior opinions may
come to different conclusions based on a small
amount of data. However, their conclusions will con-
verge as the amount of data increases.

The Bayesian paradigm permits hypothesis testing,
using Bayes factors. Suppose one wishes to compare
the evidence for a null hypothesis vs. an alternative
hypothesis. The Bayes factor is defined as a ratio: the
probability of obtaining the observed data given the
null hypothesis, divided by the probability of obtain-
ing the observed data under the alternative hypoth-
esis. Naturally, small values are taken as evidence
against the null hypothesis, since they mean that the
data are relatively more likely to have occurred,
given the alternative hypothesis. If one of the
hypotheses is a composite hypothesis, then the prob-
ability of the data is the weighted average of the 
likelihood of the data given each of the possible
components of that hypothesis, with the weights
derived from the prior probability. Bayes factors
allow one to determine to what degree prior beliefs
in the likelihood of the null hypothesis have been
modified by the data. Guidelines exist for deciding
how small the Bayes factor has to be before one
chooses the alternative hypothesis over the null
hypothesis (Goodman 1999b). Goodman suggests
that a Bayes factor of 1/5, 1/10, 1/20 and 1/100 be
taken as weak, moderate, moderate to strong and
strong to very strong evidence against the null
hypothesis, respectively. In general, the optimal
choice of a cut-off depends upon the benefits of
deciding correctly and the cost of deciding 
incorrectly.

Traditionally, it has been surprisingly difficult to
compute posterior probabilities and Bayes factors,
except in the simplest of cases. However, with the
advent of Markov Chain Monte Carlo (MCMC)
methods (Gilks et al. 1996), Bayesian methods are
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being implemented with increasing frequency.
MCMC methods are computer-intensive procedures
that allow one to simulate draws from the posterior
distribution without having to calculate the posterior
distribution explicitly. The mean or specified quan-
tiles of the posterior distribution can be estimated 
by computing the mean or specified quantiles of 
the simulated draws from the posterior distribution.
The advent of MCMC methods is largely responsible
for the increasing interest in Bayesian methods.
Bayesian calculations that would have been largely
intractable are now relatively simple to implement
using MCMC methods.

Hypothetical case study

For our case study, we examine the mortality rate for
one hospital’s patients admitted for acute myocardial
infarction (AMI). For the hospital in question, out of
100 patients in a given year, 10 patients died follow-
ing admission, prior to hospital discharge. Assume
that the overall observed in-hospital mortality rate in
the population of AMI patients, at all hospitals and
for all patients, is 15%. In the case study, we contrast
a frequentist with a Bayesian analysis of the above
data. The results of the case study are summarized 
in Table 1. We will ask the following questions of the
data: firstly, is the given hospital different from
average?; secondly, is the hospital better than
average?; thirdly, what is the probability that the 
hospital delivers excellent care, when excellence in
medical care is defined as a mortality rate of less than
10%?

In both the frequentist and Bayesian analyses, we
assume that the number of deaths follows a binomial
distribution. In the frequentist analyses, confidence
intervals and P-values will be determined using
large-sample normal approximations to the binomial
distributions. In the Bayesian analyses, central or
equal tail credible intervals will be constructed.

We begin with a frequentist analysis of the data.
Figure 1 depicts the likelihood function for the hos-
pital’s true in-hospital mortality rate. The maximum-
likelihood estimate of the hospital’s mortality rate is
10%. This is the most likely estimate of the hospital’s
mortality rate for patients admitted for an AMI,
given the observed data. The 95% confidence inter-
val around the estimated mortality rate is (4.1%,
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15.9%). If data were to be generated repeatedly,
under identical circumstances for the same hospital,
then 95% of the constructed confidence intervals
would contain the hospital’s true in-hospital mortal-
ity rate.

To address the first question (‘is the hospital 
different from average?’), we formally test the null
hypothesis that the hospital’s mortality rate is equal
to 15% against the alternate hypothesis that the mor-
tality rate is different from 15%. The result would be
to accept the null hypothesis that the hospital’s true
mortality rate is no different from the average mor-
tality rate of 15% in the population of AMI patients
(P = 0.16). To address the second question (‘is the
hospital better than average?’), one can test the null
hypothesis that the hospital’s true mortality rate is at
least 15% against the alternative hypothesis that the
true mortality rate is less that 15%.The P-value asso-
ciated with this test is 0.08. Therefore, we would
accept the null hypothesis that the hospital’s true
mortality rate is at least as high as the population
average.

The frequentist paradigm does not allow us to
address the third question. From the frequentist per-

spective, the hospital’s mortality rate is a constant,
and not a random variable. Therefore, it is either
higher or lower than 10%, but one cannot assign a
probability to either scenario.

The Bayesian paradigm allows us to avoid begin-
ning with a specific hypothesis about the hospital’s
mortality rate. The Bayesian analysis begins by 
specifying a prior probability distribution for the 
hospital’s in-hospital AMI mortality rate. This distri-
bution may incorporate expert knowledge and spe-
cific information about the hospital being studied,
such as the annual volume of AMI patients or acad-
emic affiliation of the hospital. The prior must be
specified before the data are examined.

The first prior distribution that we will assume is a
non-informative, or diffuse, prior distribution. This
means that the hospital’s mortality rate can take on
any value from 0 to 1 with equal likelihood. By spec-
ifying this prior distribution, we are saying that our
prior beliefs about the hospital’s mortality rate are
vague or diffuse. By assuming this prior distribution,
we assume, for example, that the hospital’s mortality
rate is as likely to lie below 10% as it is to lie above
90% (an unlikely scenario).

Using Bayes’ theorem, we combine the prior prob-
ability distribution and the likelihood function, which
is derived solely from the data and the assumed prob-
ability model, to obtain the posterior probability 
distribution.This is the probability distribution of the
hospital’s mortality rate, conditional on the observed
data, given our prior beliefs concerning the para-
meter’s probability distribution. Figure 2 depicts the
diffuse prior probability distribution and the derived
posterior probability distribution. The mode of the
posterior distribution gives the most likely value 
for the hospital’s in-hospital mortality rate, given our
prior beliefs, conditional on the observed data, as
10.0%. The most likely posterior value for the hos-
pital’s mortality rate is the same as the frequentist
maximum likelihood estimate. This will always
happen when a uniform prior distribution is
assumed. The associated 95% credible interval is
(5.6%, 17.5%). The hospital’s true mortality rate lies
in this interval with probability 0.95.

To address the first question, of whether the hos-
pital is different from average, one can compute the
Bayes factor comparing the null hypothesis that the
hospital’s true mortality rate is 15% vs. the alternate
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hypothesis that the mortality rate is different from
15%. The Bayes factor associated with this test of
hypothesis is 4.5. Since it is greater than one, there is
no evidence in favour of the alternate hypothesis.

To address the second question, of whether the
hospital is better than average, one can similarly
compute the Bayes factor comparing the null hypo-
thesis that the hospital’s mortality rate is higher than
average to the alternate hypothesis that the mortal-
ity rate is lower than average. The Bayes factor asso-
ciated with this test of hypothesis is 1/55. There is
strong evidence in favour of the alternate hypothesis
– that the hospital has a lower than average mortal-
ity rate.

Bayesian methods allow one to address the third
question. In the Bayesian paradigm, the hospital’s
mortality rate follows a probability distribution.
Hence, one can make probabilistic statements con-
cerning the hospital’s mortality rate. The probability
that the mortality rate lies below 10% is 0.43. If a
mortality rate of 10% denotes excellence in medical
care, one is able to assess the probability that the 
hospital delivers excellent medical care. One can thus

use clinically informed criteria to assess the hospital’s
performance.

The above results depend on the prior probability
distribution that was assumed at the beginning of the
analysis. As a sensitivity analysis, one can modify
assumptions concerning the prior probability distrib-
ution to see how the results vary. However, for large
samples, the impact of the choice of prior probabil-
ity distribution will disappear (Gelman et al. 1995).
We repeat the analysis, assuming a more informative
prior probability distribution. Let us assume that 
our prior beliefs about the hospital’s mortality rate
are worth the equivalent of observing the hospital
treat 20 patients, and that we believe the mean in-
hospital mortality rate to be 15% (the underlying
mathematical form of the prior probability distribu-
tion has two parameters, requiring us to specify the
above information). A prior distribution represent-
ing our beliefs and the posterior probability dis-
tribution are illustrated in Fig. 3. The mode of the
hospital’s mortality rate distribution is 10.2%. The
associated 95% credible interval is (5.9%, 17.0%).

To address the first question, one can now test the
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simple null hypothesis that the hospital’s mortality
rate is 15% vs. the alternate hypothesis that it is dif-
ferent from 15%. The Bayes factor associated with
this test is 1/1.1. Therefore, there is very little evi-
dence in favour of the alternate hypothesis over the
null hypothesis. To address the second question, one
can test the compound null hypothesis that the hos-
pital’s true mortality rate is at least 15% against the
alternate hypothesis that it is less than 15%. The
Bayes factor associated with this test is 1/9.1. There-
fore, there is moderate evidence that the hospital’s
mortality rate is lower than average. The probability
that the hospital’s mortality rate is less than 10% is
0.41, allowing us to address the third question.

The sensitivity analysis showed that the hospital’s
estimated in-hospital mortality rate is relatively
insensitive to choice of prior distribution. By varying
our choice of prior distribution, the probability that
the mortality rate lies below 10% is changed slightly.
Under both prior probability distributions, there 
was no evidence in favour of the hypothesis that the 
hospital’s mortality rate was different to the average.
When evaluating the evidence that the hospital’s
mortality rate was lower than average compared 
with higher than average, the weight of evidence
decreased with the more informative prior, from
strong evidence to moderate evidence.

Discussion

In comparing the frequentist and Bayesian analyses
of the case study data, one notices both similarities
and differences in the conclusions that were drawn.
The most likely value for the hospital’s mortality rate
was the same in the frequentist analysis as in the first
Bayesian analysis. The most likely value obtained
from the second Bayesian analysis was only margin-
ally higher than that in the two other analyses. The
95% confidence interval and the 95% Bayesian cred-
ible intervals were of approximately the same length,
although the two Bayesian intervals were shifted
upwards compared with the frequentist confidence
interval.

The frequentist analysis did not reject the null
hypothesis that the hospital’s mortality rate was 
different from average (P = 0.16). Similarly, in both
Bayesian analyses, there was little evidence that the

hospital was different than average. However, when
we tested the null hypothesis that the hospital was
worse than average against the alternate hypothesis
that the hospital was better than average, the two 
paradigms reached strikingly different conclusions.
The frequentist analysis did not reject the null hypo-
thesis (P = 0.08), whereas the two Bayesian analyses
found moderate to strong evidence in favour of the
alternate hypothesis. Strictly speaking, a frequentist
should act as if the hospital was worse than average,
whereas a Bayesian would have strong reason to
believe that the hospital was better than average.

Finally, the two Bayesian analyses were able to
assess the probability that the hospital’s mortality
rate was below specified thresholds. According to the
Bayesian analysis, there was a moderate probability
that the hospital had a mortality rate that was below
10%. From a frequentist perspective, this question
cannot be addressed, since the hospital’s mortality
rate is seen as a constant, and therefore does not
follow a probability distribution.

In the frequentist paradigm, the hospital’s in-
hospital mortality rate is seen as a fixed (but un-
known) constant. The observed data provide the
most likely estimate of the fixed (but unknown) 
mortality rate. One is able to test the hypothesis that
the true mortality rate is equal to a specified value.
Since the true mortality rate is a constant, and not a
random variable, one cannot determine with what
probability it exceeds a given threshold or lies in a
specified interval. Frequentists interpret probability
as the long-term rate of occurrence of an event.
Hence, confidence intervals and P-values associated
with hypothesis tests are interpreted as what would
happen if data were generated repeatedly under
similar circumstances.

In the Bayesian paradigm, the hospital’s mortality
rate is a random variable that follows a probability
distribution. Data about the hospital’s mortality rate
are combined with prior beliefs concerning this prob-
ability distribution. Once the posterior probability
distribution has been determined, one can make
probabilistic statements concerning the hospital’s
mortality rate. If a mortality rate of 10% denotes
excellence in medical care, one can determine the
probability that the hospital’s mortality rate lies
below this threshold. In doing so, one can assess the

284 © 2002 Blackwell Science, Journal of Evaluation in Clinical Practice, 8, 2, 277–286



probability that excellence in medical care is being
provided.

Historically, there has been acrimonious debate
between frequentists and Bayesians. Frequentists
have accused Bayesians of introducing an element of
subjectivity into the analysis, via the prior distribu-
tion. Frequentists claim that their own analyses are
objective, with parameter estimates being derived
solely from the data. Bayesians respond that fre-
quentists commonly use prior beliefs or knowledge
in evaluating new data. Presented with results from
a small clinical trial that found a null effect for a
certain medication, one would interpret the results in
light of previous large trials that found a significant
and positive effect due to the medication. Bayesians
claim that their analyses explicitly incorporate 
prior knowledge or beliefs, whereas frequentists
implicitly incorporate prior knowledge in interpret-
ing the results of their analyses. Similarly, Bayesians
contend that choices in modelling strategies are often
subjective. For instance, when modelling a binary
outcome, clinical researchers frequently use a gener-
alized linear model with a logit link (logistic regres-
sion). However, alternative, competing choices, such
as the probit link or the complementary log–log 
link, are rarely considered, despite being viable 
alternatives.

The ability to incorporate prior evidence does not
come without a risk. If one thinks that one is a perfect
surgeon, and takes that as one’s prior belief, it would
take a lot of empirical evidence to shift one’s per-
ception. However, employing sensitivity analyses by
varying the prior distribution allows one to examine
the robustness of the results under different prior
assumptions.

There is a growing interest in the use of Bayesian
methods in clinical research. They are increasingly
common in the area of diagnostic testing. Given that
a test was positive, Bayes’ theorem allows one to
determine how the patient’s prior probability or odds
of having the condition have changed. Several com-
mentators have argued that the P-value is of limited
utility, is confounded with both effect size and sample
size and tends to overstate the evidence against the
null hypothesis (Freeman 1993; Lang et al. 1998;
Goodman 1999b). There is a growing awareness of
the potential usefulness of Bayesian methods in the

monitoring of, and analysis of, clinical trials (Berry
1993; Hughes 1993; Fayers et al. 1997). Bayesian
methods allow an analysis of the strength of the
trial’s results to overcome different levels of scepti-
cism about a treatment’s effect. Bayesian methods
allow more flexible interim monitoring of trials, and
in assisting decisions to stop the trials. There is an
increasing interest in the use of Bayesian methods in
health care profiling (Christiansen & Morris 1997;
Normand et al. 1997; Brophy & Joseph 1998).
Bayesian hierarchical regression models allow profil-
ing to be guided by medical standards, rather than by
statistical standards. Bayesian methods are increas-
ingly being recognized as a powerful tool in decision
analysis (French & Smith 1997). In evaluating the
results from a clinical trial, one must decide whether
it is worse falsely to conclude that an ineffective treat-
ment works, or falsely to conclude that an ineffective
treatment does not work. If one can quantify the ‘cost’
associated with an incorrect decision, the costs can 
be incorporated directly into a Bayesian statistical
analysis and combined with the data to produce an
optimum decision (DeGroot 1970). Bayesian methods
readily lend themselves to, and are increasingly being
used in, meta-analysis (Stangl & Berry 2000).

In conclusion, the Bayesian paradigm allows 
one explicitly to incorporate prior knowledge and
beliefs into statistical analyses. Bayesians view the
data, as well as the underlying parameters, as random
variables.Therefore, one is able to ask different ques-
tions of the data than are possible from the frequen-
tist perspective. In particular, Bayesian methods
allow one to construct intervals that have the 
interpretation that many scientists are tempted to
ascribe to frequentist confidence intervals. Addition-
ally, scientists are often tempted to interpret P-values
as the probability that the null hypothesis is true – a
statement that is nonsensical from a frequentist per-
spective, but perfectly natural to a Bayesian. Sensi-
tivity analyses allow one to test the sensitivity of the
results to the prior probability distribution that was
specified. Bayesian methods allow the fitting of all
the statistical models that one has become accus-
tomed to fitting using frequentist methods. With the
growth in the implementation of Bayesian methods
in clinical research, clinicians – whether they sub-
scribe to the Bayesian philosophy or not – need to be
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aware of the existence and possibilities of these
methods.

Acknowledgements

The authors thank Kathy Knowles Chapeskie for
editorial assistance in preparing the manuscript.
The views expressed herein are solely those of the
authors and do not represent the views of any of the
sponsoring organizations.

References

Berry D.A. (1993) A case for Bayesianism in clinical trials.
Statistics in Medicine 12, 1377–1393.

Brophy J.M. & Joseph L. (1998) Practice variations, chance
and quality of care. Canadian Medical Association
Journal 159, 949–952.

Christiansen C.L. & Morris C.N. (1997) Improving the 
statistical approach to health care provider profiling.
Annals of Internal Medicine 127, 764–768.

Cox D.R. & Hinkley D.V. (1974) Theoretical Statistics. CRC
Press, Boca Raton, FL.

Davidoff F. (1999) Standing statistics right-side-up. Annals
of Internal Medicine 130, 1019–1021.

DeGroot M.H. (1970) Optimal Statistical Decisions.
McGraw-Hill, New York.

Fayers P.M., Ashby D. & Parmar M.K. (1997) Tutorial in
biostatistics: Bayesian data monitoring in clinical trials.
Statistics in Medicine 16, 1413–1430.

Fraser D.A.S. (1976) Probability and Statistics: Theory 
and Applications. Institute for Theoretical Statistics,
Toronto.

Freedman L. (1996) Bayesian statistical methods 
[Editorial]. British Medical Journal 313, 569–570.

Freeman P.R. (1993) The role of P-values in analysing trial
results. Statistics in Medicine 12, 1443–1452.

French S. & Smith J.Q. (1997) Bayesian analysis. In The
Practice of Bayesian Analysis (eds S. French &  J.Q.
Smith), pp. 1–24. Arnold, London.

Gelman A., Carlin J.B., Stern H.S. & Rubin D.B.
(1995) Bayesian Data Analysis. Chapman & Hall,
London.

Gilks W.R., Richardson S. & Spiegelhalter D.J. (1996)
Introducing Markov chain Monte Carlo. In Markov
Chain Monte Carlo in Practice (eds W.R. Gilks, S.
Richardson & D.J. Spiegelhalter), pp. 1–19. Chapman &
Hall, London.

Goodman S.N. (1999a) Toward evidence-based medical
statistics I: the P-value fallacy. Annals of Internal Medi-
cine 130, 995–1004.

Goodman S.N. (1999b) Toward evidence-based medical
statistics II: the Bayes factor. Annals of Internal Medi-
cine 130, 1005–1013.

Hughes M.D. (1993) Reporting Bayesian analyses of 
clinical trials. Statistics in Medicine 12, 1651–1663.

Lang J.M., Rothman K.J. & Cann C.I. (1998) That con-
founded P-value. Epidemiology 9, 7–8.

Lee P.M. (1989) Bayesian Statistics: an Introduction, 2nd

edn. Arnold, New York.
Lilford R.J. & Braunholtz D. (1996) The statistical basis of

public policy: a paradigm shift is overdue. British Medical
Journal 313, 603–607.

Malakof D. (1999) Bayes offers a ‘new’ way to make sense
of numbers. Science 286, 1460–1464.

Neyman J. (1950) First Course in Probability and Statistics.
Henry Holt, New York.

Neyman J. & Pearson E.S. (1933) On the problem of the
most efficient tests of statistical hypotheses. Philosophi-
cal Transactions of the Royal Society, Series A 231,
289–337.

Normand S.L.T., Glickman M.E. & Gatsonis C.A. (1997)
Statistical methods for profiling providers of medical
care: issues and applications. Journal of the American 
Statistical Association 92, 803–814.

Royall R. (1997) Statistical Evidence: a Likelihood 
Paradigm. Chapman & Hall/CRC Press, Boca Raton,
FL.

Stangl D.K. & Berry D.A. (2000) Meta-Analysis in 
Medicine and Health Policy. Marcel Dekker Inc., New
York.

286 © 2002 Blackwell Science, Journal of Evaluation in Clinical Practice, 8, 2, 277–286




