Skip to content

NEU-IDKE/ConvEICF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-aspect Enhanced Convolutional Neural Networks for Knowledge Graph Completion

This is the code of paper Multi-aspect Enhanced Convolutional Neural Networks for Knowledge Graph Completion.

Requirements

  • python 3.8
  • torch 1.9
  • dgl 0.8

Datasets

Available datasets are:

FB15k-237
WN18RR

Reproduce the Results

To run a model execute the following command :

  • FB15k-237 python run.py --data FB15k-237 --th1 0.3 --th2 0.2 --conve_hid_drop 0.2 --feat_drop 0.2 --input_drop 0.2 --num_filt 200 --x_ops p.b.d --temperature 0.007
  • WN18RR python run.py --data wn18rr --th1 0.2 --th2 0.1 --conve_hid_drop 0.4 --feat_drop 0.1 --input_drop 0.2 --num_filt 250 --x_ops p.b.d --r_ops p.b.d --temperature 0.001

Acknowledgement

We refer to the code of LTE and DGL. Thanks for their contributions.

About

Knwoledge Graph Completion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages