
Chapter 6 z-Transform

Part A: z-Transform

Part B: The Inverse z-Transform

and z-Transform Theorems

Part C: Convolution(卷积) 

Part D: The Transfer Function



6.7 The Transfer Function

 The convolution sum description of an LTI 

discrete-time system with an impulse 

response h[n] is given by
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6.7 The Transfer Function

• Taking the z-transforms of both sides we get
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6.7 The Transfer Function

Thus, Y(z) = H(z)X(z)
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Therefore,



6.7.1 Definition

 Transfer function or the system function
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6.7.2 Transfer Function Expression

 Consider an LTI discrete-time system 

characterized by a difference equation

 Its transfer function is obtained by taking the 

z-transform of both sides of the above equation

 Thus
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6.7.2 Transfer Function Expression

• Or, equivalently as

• An alternate form of the transfer function is 

given by














N

k

kN

k

M

k

kM

kMN

zd

zp
zzH

0

0)(
)(


















N

k k

M

k k

z

z

d

p
zH

1

1

1

1

0

0

)1(

)1(
)(







 For a causal IIR digital filter, the impulse 
response is a causal sequence.

 The ROC of the causal transfer function

is thus exterior to a circle going through the 
pole furthest from the origin

 Thus the ROC is given by
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IIR数字滤波器传递函数的表达式



• Example - A causal LTI IIR digital filter is 

described by a constant coefficient difference 

equation given by

y[n]=x[n-1]-1.2x[n-2]+x[n-3]+1.3y[n-1]

-1.04y[n-2]+0.222y[n-3]

• Its transfer function is therefore given by
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• Alternate forms:

222.004.13.1

12.1
)(

23

2






zzz

zz
zH

)7.05.0)(7.05.0)(3.0(

)8.06.0)(8.06.0(

jzjzz

jzjz






74.0zROC:

74.0

• Note: Poles farthest from                                    
z=0 have a magnitude
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FIR数字滤波器传递函数的表达式
 FIR数字滤波器的卷积和方程可表达为

 FIR数字滤波器的传递函数可表达为

 注意，因果FIR滤波器的H(z)的所有极点均在z平面的原点
处. 因此, H(z)的收敛域在除了z=0之外的整个z平面上。

00 0
[ ] [ ], 1, 0, 1, ,

N M

k k kk k
d y n k p x n k d d k N

 
      

2 2

1 1

( ) [ ]
N N

n k

k

n N k N

H z h n z p z 

 

  

2

1

1 2[ ] [ ] [ ]
N

k N

y n h k x n k N N


  



• Example - Consider the M-point moving-

average FIR filter with an impulse response
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• Its transfer function is then given by
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• M zeros on the unit circle at  

z=ej2k/M, 0  k  M-1

• M-1 poles at z = 0 and 1 pole 

at z = 1

• The pole at z = 1 exactly 

cancels the zero at z = 1

• The ROC is the entire                                        

z-plane except z = 0

FIR数字滤波器传递函数的表达式

M = 8



从传递函数得到频率响应
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6.7.3 Frequency Response from 
Transfer Function

• For a stable rational transfer function in 
the form
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the factored form of the frequency response is 

given by



6.7.3 Frequency Response from 
Transfer Function

• The magnitude function is given by

• The phase response for a rational transfer 
function is of the form
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6.7.4 Geometric Interpretation of 
Frequency Response Computation

 The factored form of the frequency response 

is convenient to develop a geometric 

interpretation of the frequency response 

computation from the pole-zero plot as ω 

varies from 0 to 2π on the unit circle
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6.7.4 Geometric Interpretation of 
Frequency Response Computation

 The geometric interpretation can be used to 

obtain a sketch of the response as a function of 

the frequency

 A typical factor in the factored form of the 

frequency response is given by

(ejω - ρejΦ )

where ρej Φ is a zero if it is zero factor or is a 

pole if it is a pole factor



6.7.4 Geometric Interpretation of 
Frequency Response Computation

 As shown below in the z-plane the factor 

(ejω- ρejΦ) represents a vector starting at the 

point z=ρejΦ and ending on the unit circle at z= 

ejω Imj z

Re z
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 As ω is varied from 0 to 2π, the tip of the 

vector moves counterclockise (逆时针) from 

the point z = 1 tracing the unit circle and back 

to the point z = 1

6.7.4 Geometric Interpretation of 
Frequency Response Computation

幅度最小

幅度最大



 To highly attenuate signal components in a 

specified frequency range, we need to place 

zeros very close to or on the unit circle in this 

range（零点——谷值）

 Likewise, to highly emphasize signal 

components in a specified frequency range, we 

need to place poles very close to or on the unit 

circle in this range（极点——峰值）

6.7.4 Geometric Interpretation of 
Frequency Response Computation



Question：

1、极点的位置对系统的稳定性会有影
响吗？

2、系统在Z域的稳定性条件是什么？



 A causal LTI digital filter is BIBO stable if and 

only if its impulse response h[n] is absolutely 

summable, i.e.,

 An FIR digital filter with bounded impulse 

response is always stable

 On the other hand, an IIR filter may be 

unstable if not designed properly

6.7.5 Stability Condition in Terms 
of the Pole Locations
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6.7.5 Stability Condition in Terms 
of the Pole Locations

 The ROC of the z-transform H(z) of the 

impulse response sequence h[n] is defined by 

values of |z| = r for which h[n]r-n is absolutely 

summable
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 Thus, if the ROC includes the unit circle |z| = 1, 

then the digital filter is stable, and vice versa

 This in turn implies that the DTFT  H(ejω) of 

{h[n]} exists

 Now, if the ROC of the z-transform H(z) 

includes the unit circle, then

6.7.5 Stability Condition in Terms 
of the Pole Locations
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 Consider the causal IIR digital filter with a 

rational transfer function H(z) given by

 Its impulse response {h[n]} is a right-sided

sequence

 The ROC of H(z) is exterior to a circle going 

through the pole furthest from z = 0

6.7.5 Stability Condition in Terms 
of the Pole Locations
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 For a stable and causal digital filter for which 

h[n] is a right-sided sequence, the ROC will 

include the unit circle and entire z-plane 

including the point z=∞

 Conclusion: All poles of a causal stable transfer 

function H(z) must be strictly inside the unit 

circle.

6.7.5 Stability Condition in Terms 
of the Pole Locations



 Example - The factored form of

is

which has a real pole at z = 0.902 and a real 

pole at z = 0.943

 Since both poles are inside the unit circle, 

H(z) is BIBO stable

6.7.5 Stability Condition in Terms 
of the Pole Locations
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 Example - The factored form of

is

which has a real pole on the unit circle at z 

= 1 and the other pole inside the unit circle

 Since one pole is not inside the unit circle,

H(z) is unstable

6.7.5 Stability Condition in Terms 
of the Pole Locations
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系统 时域条件 Z域条件

因果 h(n)≡0 (n<0) ROC:  R1 <┃Z┃≤∞

稳定

∞ 

Σ ┃h(n)┃<∞

n=-∞

ROC:  包含单位圆

因果
稳定

所有极点全在单位圆内部



Homework

 Problems: 6.2(a,b), 6.5, 6.7, 6.8(a)(i,iv), 6.13(a),  

6.42, 6.44, 6.81

 Matlab Exercises: M6.1(a), M6.5



Consider a LTI causal system whose I/O 

difference equation is )1()2()1(
2

5
)(  nxnynyny  

1) Compute the transform function. 

2) Determine the corresponding pole/zero 

pattern and the ROC. 

3) Compute the impulse response. 

4) It is easy to know this system is not stable. 

Determine another stable (but anticausal) 

system satisfying the same I/O difference 

equation. 



Solution:

a) 

b) zeroes： z＝0；

poles：z=2, z=1/2;  

ROC: |z|>2

c)
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d) ROC: 1/2<|z|<2,                
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