Chapter 6 z-Transform

Part A: z-Transform
Part B: The Inverse z-Transform and z-Transform Theorems
Part C: Convolution(卷积)
Part D: The Transfer Function

6.7 The Transfer Function

- The convolution sum description of an LTI discrete-time system with an impulse response $h[n]$ is given by

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

6．7 The Transfer Function

－Taking the z－transforms of both sides we get

$$
\begin{aligned}
& Y(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} h[k] x[n-k]\right) z^{-n} \\
& =\sum_{k=-\infty}^{\infty} h[k]\left(\sum_{n=-\infty}^{\infty} x[\underline{n-k}] z^{-n}\right) \text { 变量代换 } \\
& =\sum_{k=-\infty}^{\infty} h[k]\left(\sum_{l=-\infty}^{\infty} x \underline{\left.[\ell] z^{-(\ell+k)}\right)}\right.
\end{aligned}
$$

6.7 The Transfer Function

Or, $Y(z)=\sum_{k=-\infty}^{\infty} h[k] \underbrace{\sum_{l=-\infty}^{\infty} x[\ell] z^{-l}}_{X(z)}) z^{-k}$

Therefore,

$$
Y(z)=\underbrace{\left(\sum_{k=-\infty}^{\infty} h[k] z^{-k}\right)}_{H(z)} X(z)
$$

Thus, $Y(\mathbf{z})=\boldsymbol{H}(\mathbf{z}) X(\mathbf{z})$

6.7.1 Definition

- Transfer function or the system function

$$
\begin{aligned}
& H(z)=\frac{Y(z)}{X(z)} \\
& H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
\end{aligned}
$$

6.7.2 Transfer Function Expression

- Consider an LTI discrete-time system characterized by a difference equation

$$
\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k]
$$

- Its transfer function is obtained by taking the z-transform of both sides of the above equation
- Thus

$$
\boldsymbol{H}(z)=\frac{\sum_{k=0}^{M} \boldsymbol{p}_{k} z^{-k}}{\sum_{k=0}^{N} \boldsymbol{d}_{k} z^{-k}}
$$

6.7.2 Transfer Function Expression

- Or, equivalently as

$$
H(z)=z^{(N-M)} \frac{\sum_{k=0}^{M} p_{k} z^{M-k}}{\sum_{k=0}^{N} d_{k} z^{N-k}}
$$

- An alternate form of the transfer function is given by

$$
H(z)=\frac{p_{0}}{d_{0}} \cdot \frac{\prod_{k=1}^{M}\left(1-\xi_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-\lambda_{k} z^{-1}\right)}
$$

IIR数字滤波器传递函数的表达式

－For a causal IIR digital filter，the impulse response is a causal sequence．
－The ROC of the causal transfer function

$$
H(z)=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

is thus exterior to a circle going through the pole furthest from the origin
－Thus the ROC is given by $|z|>\max _{k}\left|\lambda_{k}\right|$

IIR数字滤波器传递函数的表达式

－Example－A causal LTI IIR digital filter is described by a constant coefficient difference equation given by

$$
\begin{gathered}
y[n]=x[n-1]-1.2 x[n-2]+x[n-3]+1.3 y[n-1] \\
-1.04 y[n-2]+0.222 y[n-3]
\end{gathered}
$$

－Its transfer function is therefore given by

$$
H(z)=\frac{z^{-1}-1.2 z^{-2}+z^{-3}}{1-1.3 z^{-1}+1.04 z^{-2}-0.222 z^{-3}}
$$

IIR数字滤波器传递函数的表达式

－Alternate forms：

$$
\begin{aligned}
H(z) & =\frac{z^{2}-1.2 z+1}{z^{3}-1.3 z^{2}+1.04 z-0.222} \\
& =\frac{(z-0.6+j 0.8)(z-0.6-j 0.8)}{(z-0.3)(z-0.5+j 0.7)(z-0.5-j 0.7)}
\end{aligned}
$$

－Note：Poles farthest from $z=0$ have a magnitude $\sqrt{0.74}$

ROC：$|z|>\sqrt{0.74}$

FIR数字滤波器传递函数的表达式

－FIR数字滤波器的卷积和方程可表达为

$$
y[n]=\sum_{k=N_{1}}^{N_{2}} h[k] x[n-k] \quad N_{1}<N_{2}
$$

$\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k], d_{0}=1, d_{k}=0, \quad k=1, \cdots, N$
－FIR数字滤波器的传递函数可表达为

$$
H(z)=\sum_{n=N_{1}}^{N_{2}} h[n] z^{-n}=\sum_{k=N_{1}}^{N_{2}} p_{k} z^{-k}
$$

－注意，因果FIR滤波器的 $H(z)$ 的所有极点均在 z 平面的原点处。因此，$H(z)$ 的收敛域在除了 $z=0$ 之外的整个 z 平面上。

FIR数字滤波器传递函数的表达式

－Example－Consider the M－point moving－ average FIR filter with an impulse response

$$
h[n]=\left\{\begin{array}{cc}
1 / M, & 0 \leq n \leq M-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Its transfer function is then given by

$$
H(z)=\frac{1}{M} \sum_{n=0}^{M-1} z^{-n}=\frac{1-z^{-M}}{M\left(1-z^{-1}\right)}=\frac{z^{M}-1}{M\left[z^{M-1}(z-1)\right]}
$$

FIR数字滤波器传递函数的表达式

－M zeros on the unit circle at

$$
\mathrm{z}=\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{k} / \mathrm{M}}, \mathbf{0} \leq \mathrm{k} \leq \mathrm{M}-\mathbf{1}
$$

－M－1 poles at $\mathrm{z}=0$ and 1 pole at $\mathrm{z}=1$
－The pole at $\mathrm{z}=1$ exactly cancels the zero at $\mathrm{z}=1$
－The ROC is the entire z－plane except $\mathrm{z}=0$

$$
\mathrm{M}=8
$$

从传递函数得到频率响应

6.7.3 Frequency Response from Transfer Function

- For a stable rational transfer function in the form

$$
H(z)=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

the factored form of the frequency response is given by

$$
H\left(e^{j \omega}\right)=\frac{p_{0}}{d_{0}} e^{j \omega(N-M)} \frac{\prod_{k=1}^{M}\left(e^{j \omega}-\xi_{k}\right)}{\prod_{k=1}^{N}\left(e^{j \omega}-\lambda_{k}\right)}
$$

6.7.3 Frequency Response from Transfer Function

- The magnitude function is given by
$\left|H\left(e^{j \omega}\right)\right|=\left|\frac{p_{0}}{d_{0}}\right|\left|e^{j \omega(N-M)}\right| \frac{\prod_{k=1}^{M}\left|e^{j \omega}-\xi_{k}\right|}{\prod_{k=1}^{N}\left|e^{j \omega}-\lambda_{k}\right|}=\left|\frac{p_{0}}{d_{0}}\right| \frac{\prod_{k=1}^{M}\left|e^{j \omega}-\xi_{k}\right|}{\prod_{k=1}^{N}\left|e^{j \omega}-\lambda_{k}\right|}$
- The phase response for a rational transfer function is of the form
$\arg H\left(e^{i \omega}\right)=\arg \left(p_{0} / d_{0}\right)+\omega(N-M)+\sum_{k=1}^{M} \arg \left(e^{i \omega}-\xi_{k}\right)-\sum_{k=1}^{N} \arg \left(e^{i \omega}-\lambda_{k}\right)$

6.7.4 Geometric Interpretation of Frequency Response Computation

- The factored form of the frequency response

$$
H\left(e^{j \omega}\right)=\frac{p_{0}}{d_{0}} e^{j \omega(N-M)} \frac{\prod_{k=1}^{M}\left(e^{j \omega}-\xi_{k}\right)}{\prod_{k=1}^{N}\left(e^{j \omega}-\lambda_{k}\right)}
$$

is convenient to develop a geometric interpretation of the frequency response computation from the pole-zero plot as ω varies from 0 to 2π on the unit circle Frequency Response Computation

- The geometric interpretation can be used to obtain a sketch of the response as a function of the frequency
- A typical factor in the factored form of the frequency response is given by

$$
\left(e^{j \omega}-\rho e^{j \Phi}\right)
$$

where $\rho e^{j}{ }^{\Phi}$ is a zero if it is zero factor or is a pole if it is a pole factor

6.7.4 Geometric Interpretation of Frequency Response Computation

- As shown below in the z-plane the factor $\left(e^{j \omega}-\rho e^{j \Phi}\right)$ represents a vector starting at the point $z=\rho e^{j \Phi}$ and ending on the unit circle at $z=$ $e^{j \omega}$

6．7．4 Geometric Interpretation of Frequency Response Computation
－As ω is varied from 0 to 2π ，the tip of the vector moves counterclockise（逆时针）from the point $z=1$ tracing the unit circle and back to the point $z=1$

6．7．4 Geometric Interpretation of Frequency Response Computation
－To highly attenuate signal components in a specified frequency range，we need to place zeros very close to or on the unit circle in this range（零点——谷值）
－Likewise，to highly emphasize signal components in a specified frequency range，we need to place poles very close to or on the unit circle in this range（极点——峰值）

Question：

1，极点的位置对系统的稳定性会有影响吗？
2，系统在 \mathbf{Z} 域的稳定性条件是什么？
6.7.5 Stability Condition in Terms of the Pole Locations

- A causal LTI digital filter is BIBO stable if and only if its impulse response $h[n]$ is absolutely summable, i.e.,

$$
S=\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

- An FIR digital filter with bounded impulse response is always stable
- On the other hand, an IIR filter may be unstable if not designed properly
6.7.5 Stability Condition in Terms of the Pole Locations
- The ROC of the z-transform $H(z)$ of the impulse response sequence $h[n]$ is defined by values of $|z|=r$ for which $h[n] r^{-n}$ is absolutely summable

$$
\begin{aligned}
& H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n} \stackrel{z=r e^{i j o}}{=} \sum_{n=-\infty}^{\infty} h[n] r^{-n} e^{-j a n} \\
& S^{\prime}=\sum_{n=-\infty}^{\infty}\left|h[n] r^{-n} e^{-j o n}\right|=\sum_{n=-\infty}^{\infty}\left|h[n] r^{-n}\right|<\infty \\
& \stackrel{|r|=1}{\Rightarrow} \sum_{n=-\infty}^{\infty}\left|h[n] r^{-n}\right|=\sum_{n=-\infty}^{\infty}|h[n]|<\infty \quad \text { BIBO stable }
\end{aligned}
$$

6.7.5 Stability Condition in Terms of the Pole Locations

- Thus, if the ROC includes the unit circle $|z|=1$, then the digital filter is stable, and vice versa
- This in turn implies that the DTFT $H\left(e^{j \omega}\right)$ of \{h[n]\} exists
- Now, if the ROC of the z-transform $H(z)$ includes the unit circle, then

$$
\boldsymbol{H}\left(\boldsymbol{e}^{j \omega}\right)=\left.\boldsymbol{H}(z)\right|_{z=e^{j \omega}}
$$

6.7.5 Stability Condition in Terms of the Pole Locations

- Consider the causal IIR digital filter with a rational transfer function $H(z)$ given by

$$
H(z)=\frac{\sum_{k=0}^{M} p_{k} z^{-k}}{\sum_{k=0}^{N} d_{k} z^{-k}}
$$

- Its impulse response $\{h[n]\}$ is a right-sided sequence
- The ROC of $\boldsymbol{H}(z)$ is exterior to a circle going through the pole furthest from $z=0$
6.7.5 Stability Condition in Terms of the Pole Locations
- For a stable and causal digital filter for which $h[n]$ is a right-sided sequence, the ROC will include the unit circle and entire z-plane including the point $\mathrm{z}=\infty$
- Conclusion: All poles of a causal stable transfer function $H(z)$ must be strictly inside the unit circle.
6.7.5 Stability Condition in Terms of the Pole Locations
- Example - The factored form of

$$
H(z)=\frac{1}{1-1.845 z^{-1}+0.850856 z^{-2}}
$$

is

$$
H(z)=\frac{1}{\left(1-0.902 z^{-1}\right)\left(1-0.943 z^{-1}\right)}
$$

which has a real pole at $z=0.902$ and a real pole at $z=0.943$

- Since both poles are inside the unit circle, $H(z)$ is BIBO stable
6.7.5 Stability Condition in Terms of the Pole Locations
- Example - The factored form of

$$
\hat{H}(z)=\frac{1}{1-1.85 z^{-1}+0.85 z^{-2}}
$$

is

$$
\hat{H}(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.85 z^{-1}\right)}
$$

which has a real pole on the unit circle at z $=1$ and the other pole inside the unit circle

- Since one pole is not inside the unit circle, $H(z)$ is unstable

系统	时域条件	Z域条件

Homework

- Problems: 6.2(a,b), 6.5, 6.7, 6.8(a)(i,iv), 6.13(a), 6.42, 6.44, 6.81
- Matlab Exercises: M6.1(a), M6.5

Consider a LTI causal system whose I/O difference equation is $y(n)=\frac{5}{2} y(n-1)-y(n-2)+x(n-1)$

1) Compute the transform function.
2) Determine the corresponding pole/zero pattern and the ROC.
3) Compute the impulse response.
4) It is easy to know this system is not stable. Determine another stable (but anticausal) system satisfying the same I / O difference equation.

Solution:

a) $H(z)=\frac{z}{1-\frac{5}{2} z^{-1}+z^{-2}}=\frac{z}{\left(1-2 z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}$
b) zeroes: $\mathrm{z}=0$;
poles: $\mathrm{z}=2, \mathrm{z}=1 / 2$;
ROC: $|z|>2$
c)

$$
\begin{aligned}
& H(z)=\frac{2 / 3}{1-2 z^{-1}}+\frac{-2 / 3}{1-\frac{1}{2} z^{-1}} \\
& h[n]=\frac{2}{3} 2^{n} \mu[n]-\frac{2}{3}\left(\frac{1}{2}\right)^{n} \mu[n]
\end{aligned}
$$

d) ROC: $1 / 2<|z|<2$,

$$
h[n]=-\frac{2}{3} 2^{n} \mu[-n-1]-\frac{2}{3}\left(\frac{1}{2}\right)^{n} \mu[n]
$$

