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Types of Transfer Functions

 In the case of digital transfer functions with
frequency-selective frequency responses,
there are two types of classifications

* (1) Classification based on the shape of the
magnitude function |H (e/?)|

o (2) Classification based on the the form of
the phase function 6(®)



7.1 Transfer Function Classification Based

on Magnitude Characteristics
/.1.1 Digital Filters with Ideal Magnitude Responses

* One common classification 1s based on an
1deal magnitude response

» A digital filter designed to pass signal
components of certain frequencies without
distortion should have a magnitude response
equal to one at these frequencies, and
should have a magnitude response equal to
zero at all other frequencies



ldeal Filters

* Freqguency responses of the four popular types of ideal
digital filters with real impulse response coefficients:
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ldeal Filters

* The frequencies ®, , m,; ,
the cutoff frequencies

and o, are called

* An 1deal filter has a magnitude response
equal to one 1n the passband and zero 1n the
stopband, and has a zero phase everywhere



ldeal Filters

» Earlier in the course we derived the mverse
DTFT of the frequency response H; p(e’/?)
of the 1deal lowpass filter:

SN .71 .
hLP (1] = C —_ o< <o DEHERRER)

wm PRI

« We have also shown that the above impulse
response 1s not absolutely summable, and

hence, the corresponding transfer function
1s not BIBO stable
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ldeal Filters

* To develop stable and realizable transfer
functions, the ideal frequency response
specifications are relaxed by including a

T transition band between the passband and
the stopband

e This permits the magnitude response to
decay slowly from 1ts maximum value 1n
the passband to the zero value 1n the
stopband



ldeal Filters

» Morcover, the magnitude response 1s
allowed to vary by a small amount both in
the passband and the stopband

« Typical magnitude response specifications
of a lowpass filter are shown below

|G[fﬁ‘:' ) |

| +




Chapter 7 LTI Discrete-Time Systems in the
Transform-Domain

7.1 Transfer Function Classification Based on
Magnitude Characteristics

7.2 Transfer Function Classification Based on
Phase Characteristics

7.3 Types of Linear-Phase FIR Transfer Functions

7.4 Simple Digital Filters

7.5 Inverse Systems



7.2 Transfer Function Classification Based
on Phase Characteristics

o A second classification of a transfer
function 1s with respect to its phase
characteristics

» In many applications, it 1s necessary that the
digital filter designed does not distort the
phase of the mput signal components with
frequencies in the passband



Zero-Phase Transfer Function

« For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

* One zero-phase filtering scheme 1s sketched
below

x[n] — H() > v[n] uln] ——| H(z) > wln]

u|n

=v{-nl.  y{n]=wi-n]

AX[N] S y[n)Z B B m sz, THMAER




Linear-Phase Transfer Function

 In the case of a causal transfer function with
a nonzero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and a linear-phase characteristic in the
frequency band of interest



Linear-Phase Transfer Function

« The most general type of a filter with a
linear phase has a frequency response given
by

H(e/®)=¢e /@D
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Linear-Phase Transfer Function

* The output y[n] of this filter to an mnput
x[n]= Ae/®" is then given by
y[n] — Ag_ijejm” — Agfﬁ)(”_D)

 If x_ (7) and y,(¥) represent the continuous-
time signals whose sampled versions,
sampled at # =nT, are x[n] and y[n] given
above, then the delay between x,,(f) and y,, ()
1s precisely the group delay of amount D



h[n] < H(e'?)

U U
S[n—-D] e P
y[n]= x[n]*h[n]
= Ae'"*5[n- D]
— Agi@(n-D)



Linear-Phase Transfer Function

 If1t1s desired to pass input signal
components 1n a certain frequency range
undistorted in both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response 1n the band of interest



Linear-Phase Transfer Function

The frequency response of a lowpass filter with a
linear-phase in the passbanc

‘HLP(ejm)




Linear-Phase Transfer Function

« Example - Determine the impulse response
of an 1deal lowpass filter with a linear phase
response:

HLP((‘*’]@)_{

e/ (<o <o,
0, . <\co\<n

» The impulse response

ZRAEARALPE R IIA
7 _ S ~(n (\ )
rpln| , —0<N<w

n(n—n,)

» As before, the above filter 1s noncausal and
of doubly infinite length, and hence,
unrealizable




Linear-Phase Transfer Function

« By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed

* The truncated approximation may or may
not exhibit linear phase, depending on the
value of n, chosen



Linear-Phase Transfer Function

o If we choose n,= N/2 with N a positive
integer, the truncated and shifted
approximation

sinw,.(n—N/2)
hLP[ |=
n(n—N/2)

will be a length N+1 causal linear-phase
FIR filter

, 0<n<N
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/.3 Types of Linear-Phase FIR Transfer
Functions

Linear-Phase FIR Transfer Functions

 It1s impossible to design an IIR transfer
function with an exact linear-phase
It 1s always possible to design an FIR

transfer function with an exact linear-phase
response

 We now develop the forms of the linear-
phase FIR transfer function H(z) with real
impulse response h[n]




H(e!?) = I\Iz_fh(n)e"""” = H (w)e'”
n=0
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Linear-Phase FIR Transfer Functions

N
* Let H(z)= Yhnlz™"
n=0

 If H(2) 1s to have a linear-phase, its
frequency response must be of the form
H(e'®)=e/“"*PH(o)
where ¢ and [ are constants, and H(®) ,
called the amplitude response, also called

the zero-phase response, 1s a real function
of ®



Linear-Phase FIR Transfer Functions

» For areal impulse response, the magnitude
response |H(e’®)| is an even function of o,
1e., | |

[H(e!)|=|H(e™ ™)
e Since |H(e/®)|=|H(o)| . the amplitude

response 1S then either an even function or
an odd function of m, 1.e.

H(—o0)=*+H(m)




Linear-Phase FIR Transfer Functions

« The frequency response satisfies the relation
H(e!®)= H*(e™/®)
or, equivalently, the relation
€J(€m+B)E((O) — €_j(_Cm+B)H(—(O) (7.44)



Linear-Phase FIR Transfer Functions

o If A(w) is an even function H(—o»)=H(®),
then the above relation leads to

ej((‘(;)+[3)H((D) _ e—j(—(mo.)+B)H(_®) )

:>ﬂ=

H((;’jm) _ €j(_(?0)+[3)l_“-‘1(m)

H (o) =:

0,7

e H (e1?) =-

N .
SIG)
n=0

(7.42)

n)
(7.45)



Linear-Phase FIR Transfer Functions

H () = e H(e*) =3 hn)h e s,
n=0"

H (-w) = ii h(f)ejw(cw) (7.46)
n=0

= ZN: h(N - n)gleter-m> 74D
n=0

>{ hin]=h|N —n], 0<n<N
(c=-N/2)



Linear-Phase FIR Transfer Functions

o If A(w) is an even function H(—o»)=H(®),
then the above relation leads to

hin]l=h[N —n], 0<n<N
(c=-N/2)

e Thus, the FIR filter with an even amplitude
response will have a linear phase 1f it has a
symmetric impulse response



Linear-Phase FIR Transfer Functions

o If H(m)is an odd function of ®, then
hinl]=—-h[N—-n], 0<n<N
(c=-N/2)

* Therefore, a FIR filter with an odd
amplitude response will have linear-phase
response 1f 1t has an antisymmetric impulse
response
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Linear-Phase FIR Transfer Functions

Four types of linear-phase FIR transfer functions:

h[n]

] h[n]
CE S E A1 I A P
SRS W
h e I.\ Center of
Lype 1. ;n;mgw Type 2: N :Sy-jrn ew
h[n] -
I[ | | ]
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Linear-Phase FIR Transfer Functions

Type 1: Symmetric Impulse Response with
Odd Length

* In this case, the degree NV is even
* The frequency response 1s of the form
H(e!®)=e N2 f(w)
where the amplitude response H(o) is

of the form
~ _ N/2
H(o) =h[%]+2 > h[%—n]cos(con)

n=1



Linear-Phase FIR Transfer Functions

Type 2: Symmetric Impulse Response with
Even Length

o In this case, the degree N 1s odd

« The expression for the frequency response
in the general case for Type 2 FIR filters 1s
of the form

where the amplitude response i1s given by

_ (N+1)/2 o |
H(w) =2 ¥ h&H—n]cos(a(n—2))

n=I



Linear-Phase FIR Transfer Functions

Type 3: Antiymmetric Impulse Response
with Odd Length

* In this case, t

e degree NV 1s even

* In the general case
H(e'®) = je N2 F(w)

where the amplitude response 1s of the form

H(o)

N/2
=2 ¥ h[5 —n]sin(on)

n=1



Linear-Phase FIR Transfer Functions

Type 4: Antiymmetric Impulse Response
with Even Length

* In this case, the degree N 1s even
* In the general case we have
H(e'")= je " H (o)
where now the amplitude response 1s of the
form
~ (N+D)/2 |
Ho) =2 ¥ h* —n]sin(o® -1))

n=I



Linear-Phase FIR Transfer Functions

General Form of Frequency Response

* In each of the four types of linear-phase FIR
filters, the frequency response 1s of the form

H(e!®)=e N"26IP F ()
o The amplitude response H(w) for each of
the four types of linear-phase FIR filters can

become negative over certain frequency
ranges, typically in the stopband



Linear-Phase FIR Transfer Functions

« Example — Consider the causal Type 1 FIR
transfer function

Hi(z2)=-1+27"-372+6773-377%+277° -7
o Its amplitude and phase responses are given
by
H(®)=6—-6c0s(®) +4cos(2m) — 2 cos(3m)

0,(®)=-3m



Linear-Phase FIR Transfer Functions

« Next, consider the causal Type 1 FIR
transfer function

Hy(z)=1-27"143272 =677 +374 277 +77°
o Its amplitude and phase responses are given
by
ﬁz(ﬁ)) = —E?]((;))
0,(®)=-30+T
. NO’[GZ |HI(€J!0))|:|H2(€JU))|



Linear-Phase FIR Transfer Functions

 Hence, H{(z) and H,(z) have 1dentical
magnitude responses but phase responses
differing by 7 as shown below

Amplitude response of H,(z) Phase responses of H,(z) and Hy(z)




PR ZEPERAALF IRBUC IS A NG

1. FANLAFE R BURTFh(n) BT AR TE, TS5 h(n)K
EK

2. BB Th(N),
3. WITFIREIFIRIE AT, FELRIEN(N) X FRAY SR
HT, RESERIEEREREIZRIT .

FE: ZH(o)HA |Ho) | #xl, ZH(e)NEX
FRET, FAHSREE IR B —A B A n

N

\




7.3.1 Zero Locations of Linear-Phase Transfer Functions

Zero Locations of Linear-
Phase FIR Transfer Functions

» Consider first an FIR filter with a symmetric
impulse response: A[n]=h[N —n]

o [ts transfer function can be written as

N
H(z)= Zh[n]z_” S hWN—-nlz™"
n=0 n=0

o Y h(m)zm zh(m)( M= VHE Y



Zero Locations of Linear-
Phase FIR Transfer Functions

* Hence for an FIR filter with a symmetric
impulse response of length N+1 we have

H(z=z"HE™

» A real-coefficient polynomial H(2)
satisfying the above condition 1s called a
mirror-image polynomial (MIP)



Zero Locations of Linear-
Phase FIR Transfer Functions

« Now consider first an FIR filter with an
antisymmetric impulse response:

hinl=—hIN —nl
e Hence, the transfer function H(z)
H(z)=—zVH(z ™Y
A real-coefficient polynomial H(z)
satisfying the above condition 1s called a
antimirror-image polynomial (AIP)
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Zero Locations of Linear-
Phase FIR Transfer Functions

o Typlcal ZEr0 locations shown below

Type 1 i Type 2
8]
f i Rez
—1 & i
o
m Type 3 Type 4




Zero Locations of Linear-
Phase FIR Transfer Functions

Type 1

Type 2

Type 3

Type 4

No restriction
Can design
any type

Zeroatom =T

Cannot design
highpass and

bandstop

Cannot design

lowpass,
highpass, and
bandstop
Zero at ® =0
and ® =T

Cannot design
lowpass, and
bandstop
Zero at® =0
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/7.4.1 Simple FIR Digital Filters

Simple FIR Digital Filters

Lowpass FIR Digital Filters

» The simplest lowpass FIR digital filter 1s the
2-point moving-average filter given by

Ho(z)= 0+ =2
* The above transfer function has a zero at
z=—landapoleatz=0
* Note that here the pole vector has a unity
magnitude for all values of ®



Simple FIR Digital Filters
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Simple FIR Digital Filters

* The frequency response

Hy(e'®)=e"'""? cos(/2)
* The magnitude response

First-order FIR. lowpass filter

] I ! l l
[Ho(e/P)=cos(@0/2) p
AN
Eﬂ.ﬁ ——————————————————— i ___________________________
EDM ------------------
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Simple FIR Digital Filters

The frequency ® =®, at which
1

H(e’")

H,, (3‘]-0)‘

{
f
'\ﬂ."l

is of practical interest since here the gain G(®,)

in dB 1s given by

G(®.)=20log, o H (/)
= 20log, o |H(e’®) —2010g;, /2 = -3 dB

since the de gain G(0)=20log H(e’ ") =0




Simple FIR Digital Filters

 Thus, the gain G(w) at ®=®, 1s
approximately 3 dB less than the gain at ®
=0
» Asaresult, o, 1s called the 3-dB cutoff
frequency
e To determine the value of ®. we set
Hy(e'%)"=cos™ (0, /2) =1

which yields ®, =m/2



Simple FIR Digital Filters

* The 3-dB cutoff frequency ®, can be
considered as the passband edge frequency
 As aresult, for the filter Hy(z) the passband
width 1s approximately /2
e The stopband 1s from /2 to «



Simple FIR Digital Filters
A cascade of the simple FIR filter
Hy(z)=1(1+z7)
results in an improved lowpass frequency

response as illustrated below for a cascade
of 3 sections

First-order FIR lowpass filter cascade
1 T

Magnitude
= =
=} oo

=
e

o
]

=
=

0.2 0.4 0.6 0.8 |
o/



Simple FIR Digital Filters

The 3-dB cutoff frequency of a cascade of
M sections 1s given by

O, = 2cos~H (271
For M = 3, the above yields ®, =0.302n

Thus, the cascade of first-order sections
yields a sharper magnitude response but at
the expense of a decrease in the width of the
passband

A better approximation to the ideal lowpass
filter 1s given by a higher-order moving-
average filter



Simple FIR Digital Filters

Highpass FIR Digital Filters

e The simplest highpass FIR filter 1s obtained
from the stmplest lowpass FIR filter by
replacing z with —z

 This results in

Hy(2)=1(1-z")



Simple FIR Digital Filters

» Corresponding frequency response is given

by | |
H,(e’®)= je™/® *sin(w/2)

whose magnitude response 1s plotted below

First-order FIR highpass filter

=
B

=
o

Magnitude
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7.4.2 Simple lIR Digital Filters

Simple IR Digital Filters

Lowpass IIR Digital Filters

« We have shown earlier that the first-order
causal IIR transfer function

H(z)= K O<a<l

| — ocz_]

has a lowpass magnitude response for oo > 0



Simple IIR Digital Filters

An 1improved lowpass magnitude response
1s obtained by adding a factor (1+z ) to
the numerator of transfer function

—|
(=20t )

O<a<l

|—az
This forces the magnitude response to have
a zero at o = 1 1n the stopband of the filter



Simple IIR Digital Filters

* On the other hand, the first-order causal IIR
transfer function

H(z)= —l<a<0
| —az

has a highpass magnitude response for
o <0



Simple IIR Digital Filters

 However, the modified transfer function
obtained with the addition of a factor
(1+ z_l) to the numerator

—1
H(z=RU*E D

: . —l<a<0

l—az

cxhibits a lowpass magnitude response



Simple IIR Digital Filters

« The modified first-order lowpass transfer
function for both positive and negative

values of a 1s then given by
Kl+z"
HLP(Z): ( Z_l), O<‘(I‘<1
l—oz

o |H;p(e’®)| is a monotonically decreasing
function of ® fromo®=0toow=m



Simple |IR Digital Filters

e To this end, we choose K=(1-a)/2

resulting in the first-order IIR lowpass
transfer function

l—af 147
H;p(z)= (x[ < _1], 0<lal<1
2 {1-az
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Simple IR Digital Filters

* To determine the 3-dB cutoff frequency

we set 1

Hypp(e!)| = 5
* The solution resulting 1n a stable transfer

function H;p(z)is given by
l-sin o,
COS M,

( Thus, we can design a first-order lowpass IR
digital filter with a specified 3-dB cutoff frequency.)



Simple IIR Digital Filters

Highpass IIR Digital Filters

o A first-order causal highpass IIR digital filter

has a transfer function gwen by
—1

l+af 1-2
Hpyp(z)= I
2 \1-az
where |a| <1 for stability



Simple IIR Digital Filters

+ Magnitude and gain responses of Hzp(2)
are shown below
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Simple IIR Digital Filters

Bandpass IIR Digital Filters
* A 2nd-order bandpass digital transfer
function 1s given by

|- ]—z72
H _
5p(2) 2 {l —Bl+a)z  +az™ ]




Simple IIR Digital Filters

+ Plots of |Hzp(e’®)| are shown below
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Simple IIR Digital Filters

o [t assumes a maximum value of 1 at o=, ,
called the center frequency of the bandpass
filter

» The frequencies ®,; and ®,,where [Hzp(e/®)]
becomes 1/2 are called the 3-dB cutoff
frequencies

e The difference between the two cutoff

frequencies, assuming ®,., > o 1s called
the 3-dB bandwidth

2



Simple IIR Digital Filters

Bandstop IIR Digital Filters
* A 2nd-order bandstop digital filter has a
transfer function given by

l+a 1-2Bz7'+ 272

2 (1-B+a)z ' +az™



Simple |IR Digital Filters

o Its magmtude response 1s plotted below

[y

=
=

Magnitude
o
Ch
Magnitude

=
4:.

N

4 '| 1 i
-II|I|I|I.-'r — a0 =05

=
[

0

0 0.2 0.4 0.6 0.8 |
i w1

* It goes to 0 at = , where m_, called the
notch frequency

» The digital transfer function H g¢(2) 1s more
commonly called a notch filter



Homework

o 7.7 GEBHHE), 7.8 C(HEIEV:284H FI3m )
o 7.39. 7.45 (linear phase FIR filter)
 7.55(simple filter and cutoff)




