Chapter 8

Digital Filter Structures




Digital Filter Structures o

e 8.1 Block Diagram Representation

e 8.2 Equivalent Structures

e 8.3 Basic FIR Digital Filter Structures
e 8.4 Basic IIR Digital Filter Structures

e 8.5 Realization of Basic Structures Using
MATLAB

e 3.6 Allpass Filters
e 8.7 IR Tapped Cascaded Lattice Structures
e 8.8 FIR Tapped Cascaded Lattice Structures



8.1 Block Diagram Representation:

e The computational algorithm ot an LTI digital
filter can be conveniently represented 1n block
diagram form using the basic building blocks
shown below
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8.1 Block Diagram Representation:

e To illustrate what we mean by a
computational algorithm, consider the causal
first-order LTI digital filter shown below
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8.1 Block Diagram Representation

v(n)=—d,y(n-1)+ p,x(n)+ p,x(n—1)
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eNoncanonic: two delays to realize a first-order
difference equation



8.3 Basic FIR Digital Filter Structures

e Direct Form
e Cascade Form
e Linear-phase Structure



8.3 Basic FIR Digital Filter
Structures

e A causal FIR filter of order N—1 1s
characterized by a transfer function /(z)

given by N-1
H(z)= Z h(k)z™"
k=0

which is a polynomial in z™'

¢ In the time-domain the input-output relation
of the above FIR filter 1s given by

N-1
y(n) = Zi?(]c);r(ﬁ — k)
k=0



8.3 Basic FIR Digital Filter
Structures

e A direct form realization of an FIR filter can
be readily developed from the convolution
sum description as indicated below for N =5
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8.3 Basic FIR Digital Filter 41+
Structures .

e An analysis of this structure yields
y(n) =h0)x(n)+h(D)x(n -1+ h(2)x(n—-2)
+h(3)x(n—3)+ h(4d)x(n—4)

which 1s precisely of the form of the
convolution sum description
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line or a transversal filter.
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8.3 Basic FIR Digital Filter
Structures o

e A higher-order FIR transfer function can also
be realized as a cascade of second order FIR
sections and possibly a first-order section

e To this end we express H(z) as

K
H(z)=hO[(1+Buz" + Buz")
k=1

where £ =N/2 if Niseven, and k£ =(N +1)/2
1if N1s odd, with g, =0



8.3 Basic FIR Digital Filter
Structures

e A cascade realization for N = 6 1s shown below
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8.3 Basic FIR Digital Filter o
Structures

e Linear-phase FIR filter of order N Is characterized
by the symmetric impulse response

h[n]=h[N-n]
e An antisymmetric impulse response condition
h[n]= —h[N-n]
results in a constant group delay and “almost
linear-phase” property

e Symmetry of the impulse response coefficients can
be used to reduce the number of multiplications



8.3 Basic FIR Digital Filter
Structures

e Length Mi1sodd (M=7) Order N=M—1

H(z)=h0)+h(Dz" +h(2)z>+h(3)z
+h(2)z "+ h(D)z” + h(0)z°
= h(0O)1+z)+h()(z"+27)

+h2Q)(z 2 +z )+ h(3)z™



8.3 Basic FIR Digital Filter
Structures
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8.3 Basic FIR Digital Filter
Structures

e [ength M 1s even ( M=8) Order N=M—1

H(EZ)=h(0)+h()z +h(2)z +h(3)z™
+h(Q)z " +h(2)z” +h()z™° + h(0)z™
— (O)Y(1+z7)+ h()(z 7+ 27

+h(2)z2+z2)+hB)(z7 +z7)



8.3 Basic FIR Digital Filter
Structures
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8.4 Basic ITR Digital Filter
Structures

e Direct Form
e Cascade Form
e Parallel Form




8.4 Basic IIR Digital Filter o
Structures

e The causal IIR digital filters we are concerned
with In this course are characterized by a real
rational transfer function of or, equivalently by
a constant coefficient difference equation.

e From the difference equation representation, it
can be seen that the realization of the causal
IR digital filters requires some form of
feedback.



8.4 Basic IIR Digital Filter

Structures

e Direct forms -- Coetficients are directly the
transfer function coetficients

e Consider for simplicity a 3rd-order IIR filter
with a transter function (assuming d, =1)

H(z)=

D(z)

e We can implement /(z) as a cascade of two
filter sections as shown below

P(z) Dy +plz_1 +p;_.z_‘1 +p32_3

X(z)—»

H,(z)

— 7 —
1+ d,z 1+dzz “+d,z 3

7(2)

-

H,(z)

—»1(2)




8.4 Basic IIR Digital Filter
Structures

o where H,(2)=P(z)=p,+ p,z " + p,z -+ pz°
H,(z)=1/D(z)

e The filter section /,(z) can be seen to be an
FIR filter and can be realized as shown below
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8.4 Basic IIR Digital Filter
Structures

e The time-domain representation of /7,(z) 1s
given by

v(ny=w(n)—d,y(n=1)—d,y(n—=2)—d,y(n-3)
e Realization of /,(z) tollows from the above

equation and 1s shown below
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8.4 Basic IIR Digital Filter
Structures

e Considering the basic cascade realization
results in Direct form |
1

H(z)=P(z)-
(2) = P(2) Do)

x(m) - -y -—




8.4 Basic IIR Digital Filter
Structures

e Changing the order of blocks in cascade

results in Direct form 11 :

| 1
H(z)=P(z2)- — - P(2)
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8.4 Basic IIR Digital Filter
Structures

e Sharing of all delays reduces the total number
of delays to 3 resulting in a canonic
realization shown below along with 1ts
transpose structure.
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8.4 Basic IIR Digital Filter 41+
Structures °

e By expressing the numerator and the
denominator polynomuals of the transfer

function as a product of polynomuials of lower
degree, a digital filter can be realized as a
cascade of low-order filter sections

e Consider, for example, H(z)=P(z)/D(z)
expressed as
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8.4 Basic IIR Digital Filter
Structures

e Examples of cascade realizations obtamed by
different pole-zero pairings are shown below
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8.4 Basic IIR Digital Filter
Structures .

e There are altogether a total of 36 (P -P7)
different cascade realizations of

P(z) _ R(2)P(2)P(2)
D(z) D,(z2)D,(z)D,;(2)

based on pole-zero-pairings and ordering

H(z)=

e Due to finite wordlength effects, each such
cascade realization behaves differently from
Others



8.4 Basic IIR Digital Filter

Structures
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8.4 Basic IIR Digital Filter
Structures .
.TEF'?} g g .:_] - ; > _1*(;3)
a5 2™ b, *

e Usually, the polynomials are factored into a
product of Ist-order and 2nd-order
polynomials:

PRV R

l+a,z" +a,z

for a first-order factor a,, = f,, =0



8.4 Basic IIR Digital Filter
Structures :

e Realizing complex conjugate poles and zeros
with second order blocks results 1n real
coetficients

Example
e Third order transfer function

P(z) ( 1+ S,z }[ 1+ B,z + f,,27 J
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8.4 Basic IIR Digital Filter H:

Structures .

e One possible realization 1s shown below
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8.4 Basic IIR Digital Filter 4
Structures

e Parallel realizations are obtained by making
use of the partial fraction expansion of the
transfer function
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8.4 Basic IIR Digital Filter
Structures

e The two basic parallel realizations of a 3rd
order IIR transfer tunction are shown below
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8.4 Basic IIR Digital Filter
Structures

e (eneral structure:

— H(z)

> Ha() Kp—

o Hyn(2)

e Easy to realize:
No choices 1n section ordering and
No choices in pole and zero pairing



8.4 Basic IIR Digital Filter
Structures .
Example

e A partial-fraction expansion of
0.44+0.362z7% +0.002z7°

H(z)=
' .( ) 1+0.4z7"+0.1827% - 0.227
in z~' yields .
H(z)= 0.1+ 0.6 —0.5-0.2z

- T 1 -2
1-0.4z 1+0.8z7 +0.5z
o [ikewise, a partial-fraction expansion of H(z)
mzyelds g4 0221402522
H(Z) — | +- ~1 2
1-0.4z7 1+0.8z7 +0.5z




8.4 Basic IIR Digital Filter
Structures

e Their realizations are shown below
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Homework

e Problems:8.13, 8.24(a), 8.28
e Matlab Exercises: M8.2



