Digital Signal Processing

College of Communication & Information Engineew : P

Nanjing University of Posts and Telecommunicatica: : ®

Fall Semester, 2019 o0

JI Wei




Chapter 3
Discrete-Time Signals

in the Frequency-Domain




Review of DTFT and IDTFT
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Effect of Sampling In the
Frequency Domain

What is the relationship between
G.(JQ) and G(el®)?




3.8 Sampling of Continuous-time Signals\\{¥;

e The frequency-domain representation of g (t) |
Is given by CTFT:

Ga(j) =" ga(He dt

* The frequency-domain representation of g[n] is
given by DTFT:

G(el*)=3" _ g[n]e Jer



Review of Sampling

g,(t) = g,(t) p(t) p(t)= 38(t—nT)

N=—00

0,(t) = ga®)p(t) = X ga(NT)5(t—nT)

N=—0o0
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G,(jQ) ey G (JQ) mmmm G (e)?)

g,(t)=g,(t)p(t)



3.8.1 Effect of Sampling in the
Frequency Domain

e There are two different forms of G,(J€2) :

1) One form is given by the weighted sum of the
CTFTs of 8(t-nT):

G,(jQ)=]" g,(t)e ™ dt
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3.8.1 Effect of Sampling in the
Frequency Domain

(2) note that p(t) can be expressed as a Fourier
series:
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where Qr =27/T

e The impulse train g (t) therefore can be expressed
as

gp(t)=| L 2l L ga(®) | s
T

K=—c0




3.8.1 Effect of Sampling in the
Frequency Domain

igital Signal Processing

* From the frequency-shifting property of
the CTFT, an alternative form of the CTFT
of g,(t) Is given by

Gp(i) =1 Y6, (j(@-ka))

K=—00

* G,(JQ2) I1s a periodic function of Q consisting
of a sum of shifted and scaled replicas of
G.(JQ), shifted by integer multiples of Q+
and scaled by 1/T



3.8.1 Effect of Sampling in the

Frequency Domain

e The term on the RHS of the previous equatlén

for k =0 Is the basebanc
of G,(JQ2) , and each of t
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Is called the baseband or Nyquist band
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3.8.1 Effect of Sampling in the
Frequency Domain

o Assume g,(t) is a band-limited signal with a'
CTFT G,(JQQ) as shown below

G,(j®)

Q

* The spectrum P(JQ2) of p(t) having a sampling
period T=2n/Q Is Indicated below

P(IJ'Q) & ET
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Sampling theorem

Let g,(t) be a band-limited signal with CTFT
G,(€2)=0 for | Q> Q,

Then g,(t) is uniquely determined by its
samples g,(nT) , -co<n<oo, If

Qr>22Q,
where Q=2n/T
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3.8.1 Effect of Sampling in the
Frequency Domain

e The condition Q. >2 Q. Is often referred
to as the Nyqguist condition

e The frequency /2 Is usually referred to
as the folding frequency

18



3.8.1 Effect of Sampling in the
Frequency Domain

e The highest frequency Q. contained in g.(t) Is
usually called the Nyquist frequency since it
determines the minimum sampling frequency
Q- =20 that must be used to fully recover
g,(t) from its sampled version

e The frequency 2Q Is called the Nyquist rate
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3.8.1 Effect of Sampling in the
Frequency Domain

e Oversampling - The sampling frequency Is
higher than the Nyquist rate

e Undersampling-The sampling frequency Is
lower than the Nyquist rate

e Critical sampling (a5t HFE) - The sampling
frequency Is equal to the Nyquist rate

e Note: A pure sinusoid may not be recoverable
from its critically sampled version
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3.8.1 Aliasing In the Frequency
Domain

e Example - Consider the three continuous-
time sinusoidal signals:

g1 (t) = cos(bmt)
g, (t) = cos(14mnt)
g3 (t) = cos(26mt)
* Their corresponding CTFTs are:
G, (jQ) = n[8(Q2— 67) + &(Q+ 67)]

G, (JQ2) =7m[d(2—147) + 3(Q2+147)]
G3(JQ) = t[3(Q2 — 267T) + O(2 + 2671)]
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§ 3.8.1 Aliasing in the Frequency
Domain

e These three transforms are plotted below |

G,(/)

-14n 0 l4xn
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§ 3.8.1 Aliasing in the Frequency
Domain

e These continuous-time signals sampled at a
rate of T = 0.1 sec, I.e., with a sampling
frequency Q; =20x rad/sec

e The sampling process generates the
continuous-time impulse trains, g ,(t), g,,(t) ,

and ng(t)
e Their corresponding CTFTs are given by

G () =103, G/(j(Q-kQr)), 1</<3
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§ 3.8.1 Aliasing in the Frequency
Domain

Digital Signal Processing

|
e Plots of the 3 CTFTs are shown below
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§ 3.8.1 Aliasing in the Frequency
Domain

e Dotted lines indicate the frequency response of an
Ideal lowpass filter with a cutoff at Q.=Q/2=10n

and a gain T=0.1

e In the case of g,(t), the sampling rate satisfies the
Nyquist condition, hence no aliasing. Moreover,
the reconstructed output is precisely the original
continuous-time signal
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§ 3.8.1 Aliasing in the Frequency

Domain
Gy p(/€2)
I ] [ ...... { o1 i I |
.._2.031: V—Qc 61 0 6}! QCV 265 : Q
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e In the other two cases, the sampling rate does not
satisfy the Nyquist condition, resulting in aliasing
and the filter outputs are all equal to cos(6pt)

Digital Signal Processing
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3.8.2 Recovery of the Analog Signal

8p(t) )
8,(8) —(x) g,

p(®)

G, (jQ)=G,(iQH, (iQ)
0, (1) = g, (t)®¥h, (t)
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3.8.2 Recovery of the Analog Signal

: T, Q<O
Hr(JQ):{O Q>QC
’ C

e The impulse response h (t) of the lowpass
reconstruction filter is obtained by taking the
iInverse DTFT of H (JQ2)

00 : . QC .
he(t) = Zlnj_oo H, (jQ)el?tdO = ZTRj_QC e KAdOy
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3.8.2 Recovery of the Analog Signal

 The input to the lowpass filter is the |
Impulse train g (t):

gp(t) =2, . 9[n]3(t—nT)

G2 =h()® gy = 3 gnIh,(t—nT)

N=—o0

Substituting h (t)=sin(€2.t)/(Q2t/2) in the above
and assuming for simplicity Q.= Q./2==/T ,
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3.8.2 Recovery of the Analog Signal

we get

sin[r(t—nT)/T]
n(t—nT)/T

0a(t) = i g[n]

which is called Poisson sum formula
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3.8.2 Recovery of the Analog Signal

Digital Signal Processing

|
e The ideal bandlimited interpolation process Is

Hlustrated below

Hlustration of Poisson sum formula
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§ 3.8 Digital Processing of
Continuous-Time Signals

Digital processing of a continuous-time signal involves
the following basic steps:

(1) Conversion of the continuous-time signal into a
discrete-time signal (A/D converter)

(2) Processing of the discrete-time signal

(3) Conversion of the processed discrete-time signal back
into a continuous-time signal (D/A converter)
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§ 3.8 Digital Processing of
Continuous-Time Signals

Complete block-diagram

Anti- .
— aliasing —1S/H — A/D DSP — DIA —| Recemsiruetion;
filter

e Both the anti-aliasing filter and the reconstruction
filter are analog lowpass filters

e Also, the most widely used IIR digital filter design
method is based on the conversion of an analog
lowpass prototype
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Homework

e Read textbook from p.81 to 107

e Problems

3.16 (b)(c) , 3.21(a)(b)(d), 3.23(a), 3.29, 3.30,
3.31(c), 3.46, 3.48(a)(b)(c)(d), 3.60, 3.61

e MATLAB Exercise M 3.3
o RIGHZEHL (LBIEF 1) p26to 35




