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S 4.1 Discrete-Time Systems
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§ 4.1 Discrete-Time Systems $ss
e Accumulator:
yinl= 3 X[ = 3 x[7]+ x[n] = y[n— 1]+ x[n]
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S 4.1 Discrete-Time Systems

e M-point Moving-Average System-
1 M-1

yln]=-+ 2 x[n—kK]

k=0

e Use: smoothing random variations in data

e In most applications, the data x[n] is a bounded
seguence, so M-point average y[n] Is also bounded

e If there is no bias in the measurements, an
Improved estimate of the noisy data is obtained by
simply increasing M



S 4.1 Discrete-Time Systems

1

Y[n]_ﬁk >

e A more efficient implementation
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§ 4.2 Classification of Discrete-Time Systems

e LIinear System

e Shift-Invariant System

e Linear Time-Invariant System
e Causal System

e Stable System

e Passive and Lossless Systems(JoygE 1 T5iR)




§ 4.2.1 Linear Systems

e Definition - If y,[n] is the output due to an input
X,[n] and y,[n] Is the output due to an input x,[n]
then for an input

x[n]=ax,[n]+bx;[n]
the output is given by
y[n]=ay,[n]+by,[n]
e Above property must hold for any arbitrary

constants a and b and for all possible inputs x,[n]
and x,[n]



§ 4.2.1 Linear Systems

Example 4.3-Property of the Accumu!]ator
n

y,[n]= Z X, [4] y,[n]= Z X, [/]

f:—a) f=—w

X[n] — axl[n] + ,sz[n]
yinl= Y (ax,[71+ A, [0])

f=—00

—a Y [+ B %,[1=ay,[n]+ By, [n]

f=—00 {=—00

—L Inear system



§ 4.2.1 Linear Systems

Example 4.3-For Accumulator with a causal input
Vi[nl= y,[=11+ D x,[] Vo[l = Y, [=11+ D %, [4]
(=0 (=0

X[n] = axl[n] + ,sz[n]
y[n]= y[-11+ ) (@x,[(1+ Bx,[/])

=0

= yI-U+a Y X[+ 3 X[

?=ay,[n]+ pY,[n]



§ 4.2.1 Linear Systems

ay,[n]+ By.[n]
- a[ y,[-1]+ Z X, [f]] + ﬂ( y,[-1]+ Z XZM]

= (oy,[-11+ By,[-1])+ [aZ X, [(]+ ﬂi Xz[f]]
Thus,
y[n]=ay,[n]+ By,[n] |if y[-1]=ay,[-1]+ BY,[-1]

This condition cannot be satisfied unless accumulator
Is initially at rest with zero initial condition



S 4.2.2 Shift-Invariant System

e For a shift-invariant system, if y,[n] is the
response to an input x,[n] , then the response to
an input

X[n]=x4[n-n]
IS simply
y[n]=yi[n-ng]
where n, Is any positive or negative integer

e The above relation must hold for any arbitrary
Input and Its corresponding output

e The above property is called time-invariance
property, or shift-invariant proterty



§ 4.2.2 Shift-Invariant System

e Time-invariance property ensures that for a
specified input, the output Is independent of
the time the input is being applied

« Example - Consider the up-sampler

X[p]|—— 1L —x,[n]

with an input-output relation given by

= lil= x[n/L], n=0,xL,x2L,.....
T 0, otherwise



Amplitude

e An example of the up-sampling operation
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000
* For an mput x[n]=x[n—n,] the output oo

1 » ' o000
Xy, [n] 1s given by T
v = dal/ Ll n=0xLE2L, .
I ) otherwise

_[xl(n—Ln,)/L], n=0,+L+2L,...

- 0, otherwise

« However from the definition of the up-sampler

X, [n—n,]
_|xl(n=n,)/L), n=n,n,*Ln,£2L1,.....
Bl 0, otherwise
% X, 1]

* Hence, the up-sampler 1s a time-varying system



B A 7 e P AR e A AR A

e y(n)=2x(n)+5 Jegkik. NAZ
o y(n)=x*(n) Jegkts. NAZE
e y(n)=nx(n) it BER

e y(n)=x(n-no) R BPARAR




y(n)=x(n—no)

x[n]= yy[n]=x[n-ny];

X,[n]= y,[n]=X,[n—n,];

ax,[n]+bx,[n]= y[n]=ax[n—n,]+bx,[n—n,]
y[n] — ayl[n] + byz[n]

X[n]= y[n]=x[n-ny],
X[n—-1] = y'[n]=x[n—n, 1],
y[n-1]=x[(n—1)—n,]
y'In]=y[n-1]




y(n)=ax(n)+b

X[n
X,[n

X[n

= y,[n]=ax[n]+Db,
= Yy,[n]=ax,[n]+Db,
+X,[n]= y[n]=ax[n]+ax,[n]+Db

yln]# y;[n]+y,[n]=ax [n]+ax,[n]+2b

X[n]= y[n] =ax[n]+Db,
X[n—n,]= y'[n]=ax[n—n,]+b,
y[n—n,] = y'[n];
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y(n) = x(2n)

w. Y(n—D)=x[2(n-D)|=x(2n—-2D)
Yb (n) =T

—

y(

X(n—D)|=x(2n-D)

ﬂ—D)¢ yD(n)



§ 4.2.3 Causal System

Definition
e In a causal system, the n,-th output sample y(n,)

depends only on input samples x(n) for n<n,
and does not depend on input samples for n>n,

e For a causal system, changes in output samples
do not precede changes In the input samples



S 4.2.3 Causal System ot

« Examples of causal systems:

yln]=ox|n]

y[n] = byx[n]+ byx[n —1]+byx[n—2]

+ o x[n =1+ osx[n—2]+oyx[n—3]

+ayy[n—1]+a,y[n—-2]

yin]=yln—1]+ x[n]
» Examples of noncausal systems:
] | |
yin]=x,[n]+ 5(:{” [n—1]+x,[n+1])



§ 4.2.4 Stable System

Definition
e There are various definitions of stability. We

consider here the bounded-input, bounded-
output (BIBO) stability

e If y(n) Is the response to an input x(n) and if
X(n) iIs bounded, I.e.

IX(n)|<B,, for all values of n
then y(n) is bounded, I.e
y(n)|<B,, for all values of n



§ 4.2.4 Stable System

Example: M-point Moving-Average filter

x[n] < B,

y[n] =

ﬁl\:z::x[n—k]

\x[n k]\<ﬁ-|\/| *B, <B,



§ 4.2.5 Passive and Lossless Systems

e A discrete-time system is defined to be
passive If, for every finite-energy input x[n],
the output y[n] has, at most, the same
energy, I.e.

> Iyinlf < 3 Ixn]f <oo

N=—o00 N=—00

e For a lossless system, the above inequality
Is satisfied with an equal sign for every input



§ 4.2.5 Passive and Lossless Systems

e Example - Consider the discrete-time
system defined by y[n]=ax[n-N] with N a
positive integer

e Its output energy Is given by

S yinl? =lo? S/x[n]?

N=—0o0 N=—00

e Hence, it Is a passive system if |a| <1
and Is a lossless system if |a| =1
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§ 4.3 Impulse and Step Responses 43

e The response of a discrete-time system to a
unit sample sequence {5nl} is called the unit
Impulse response or simply, the impulse
response, and Is denoted by {h[n]}

e The response of a discrete-time system to a
unit step sequence {u[n}} is called the unit
step response or simply, the step response,
and is denoted by {s[n]}



§ 4.3 Impulse and Step Responses

« Example - The impulse response of the
system

v[n]=ax[n]+ o, x[n—1]+ozx[n—2]+ o x[n—3]
1s obtained by setting x[n] = o[n] resulting
n
hin]= o o[n]+ o,o[n—1]1+030[n—2]+ oy0[n —3]
e The impulse response 1s thus a finite-length
sequence of length 4 given by

{h[n]}:{(?\], Oy, O3, Oy}




§ 4.3 Impulse and Step Responses

e Example - The impulse response of the
discrete-time accumulator

y[n]= > x[/]

f=—00

IS obtained by setting x[n]= &[n] resulting In

h[n]= > &[¢]= uln]
{=—00
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§ 4.4 Time-Domain Characterization of
LTI Discrete-Time System

e Linear Time-Invariant (LTI) System -

A system satisfying both the linearity and
the time-invariance property

e LTI systems are mathematically easy to
analyze and characterize, and consequently,
easy to design

e Highly useful signal processing algorithms
have been developed utilizing this class of
systems over the last several decades



§ 4.4.1 Input-Output Relationship

e A conseguence of the linear, time invariance
property is that a LTI discrete time system is
completely characterized by its impulse
response

e Knowing the impulse response one can
compute the output of the system for any
arbitrary input



§ 4.4.1 Input-Output Relationship

e Since h(n) is the response of input 6(n) and the
system Is time invariant, we have

o(n—k) —h(n—Kk)
e Likewise, as the system is linear
X(K)o(n—k) — x(k)h(n—Kk)

e Note that, x(k) Is considered as a constant in
this case



§ 4.4.1 Input-Output Relationship | <¢

e Taking advantage of the property of linear,
we have

Z x(k)S(n—k)— Z x(kYh(n—k)

k——o0 =

e Eventually, the I-O relationship of an LTI
system can be written as follows

y(n) = Z x(KYh(n—k) = Z h(k)x(n—k)

k=—x F=—



4.4.3 Stability Condition

BIBO Stability Condition --

e A discrete-time system is BIBO stable if the
output sequence {y(n)} remains bounded for all
bounded Input sequence {x(n)}

e An LTI discrete-time system is BIBO stable if
and only If its impulse response sequence {h(n)}
IS absolutely summable, I.e.

o0

S = Z ‘h(ﬁ)‘ < o0

n=—0o0
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« Example - Consider an LTI discrete-time
system with an impulse response

hln] = ()" pln]
 For this system

Lu[n] = \a\ L if o<1
n=—0c0 n=0 _‘a‘
» Therefore S <« if || <1 for which the

system 1s BIBO stable
o If|a|=1, the system is not BIBO stable




4.4 4 Causality Condition

Causality Condition ——

e An LTI discrete-time system is causal if and
only if its impulse response {h(n)} Is a causal
seguence, I.e., h[n]=0, for all n<O0.

o0

y[n]= 2 x[n—k]h[k]

k=—00

=..-+ X[n + 2]h[-2] + X[n +1]h[-1] + X[n]h[O]
+ X[n =1]h[1] + x[n - 2]h[2] + -




4.4 4 Causality Condition

Causality Condition ——

e A non-causal LTI discrete-time system with a
finite-length impulse response can often be
realized as a causal system by inserting an
appropriate amount of delay.

e Clipping+delaying



4.4 4 Causality Condition

» Example - The discrete-time accumulator
defined by

[=—c0
1s a causal system as 1t has a causal impulse
response given by

ED X UETT

(=—0
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S= 3 |h[n] <o

N=—00

o RHAE RMAIHIRILRFA:

h[n]=0,n<0



Homework

Problems:

4.3(b), 4.20(a), 4.23(a)(fB-E), 4.30(a)(HERS
#)), 4.67 (B—Ja)

Matlab Exercises: M4.1



