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Chapter 4 

Discrete-Time  System



上讲回顾

 How to describe the input-output relationship in 

a LTI Discrete Time System in time domain?

 How to describe a stable LTI Discrete Time 

System？

 How to describe a causal LTI Discrete Time 

System？



4.4.3 Stability Condition

BIBO Stability Condition --

 A discrete-time system is BIBO stable if the 

output sequence {y(n)} remains bounded for all 

bounded input sequence {x(n)}

 An LTI discrete-time system is BIBO stable if 

and only if its impulse response sequence {h(n)} 

is absolutely summable, i.e.



4.4.4 Causality Condition
Causality Condition ——

 An LTI discrete-time system is causal if and 

only if its impulse response {h(n)} is a causal 

sequence, i.e., h[n]=0, for all n<0.
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4.4.4 Causality Condition

Causality Condition ——

 A non-causal LTI discrete-time system with a 

finite-length impulse response can often be 

realized as a causal system by inserting an 

appropriate amount of delay.

 Clipping+delaying



4.4.4 Causality Condition



 系统稳定性的时域充要条件：h(n)绝对可和，
即

 系统因果性的时域充要条件：
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§4.5 Simple Interconnection Schemes

 Cascade Connection

][nh1][nh2][nh1 ][nh2

][][ nhnh 1 ][nh2][nh1 *

Impulse response h[n] of the cascade of two 

LTI discrete-time systems with impulse 

responses h1[n] and h2[n] is given by

][nh2][][ nhnh 1 *



§ 4.5 Simple Interconnection Schemes

 Parallel Connection

][nh2

][nh1

 ][][ nhnh 1 ][nh2][nh1 

•Impulse response h[n] of the parallel 

connection of two LTI discrete-time systems 

with impulse responses h1[n] and h2[n] is given 

by

h[n]= h2[n] + h1[n]



§4.5 Simple Interconnection Schemes

 Simplifying the block-diagram we obtain

][nh2

][nh1 
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])[][(][ 432 nhnhnh 



])[][(][ 432 nhnhnh h1[n]+
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§4.6 Finite-Dimensional LTI Discrete-Time Systems

 A linear constant coefficient difference 

equation

 {dk}and{pk} are constants characterizing the 

system

 The order of the system is given by 

max(N,M)
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 If we assume the system to be causal, then 

the output y[n] can be recursively computed

using

Provided  d0≠0

 y[n] can be computed for all n≥n0, knowing 

x[n] and the initial conditions

y[n0-1], y[n0-2],…y[n0-N]
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§4.6 Finite-Dimensional LTI Discrete-Time Systems



§4.7 Classification of LTI Discrete-Time Systems

Based on Impulse Response Length -

 If the impulse response h[n] is of finite length, 

then it is known as a finite impulse response 

(FIR) discrete-time system

 The convolution sum description here is
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The linear constant coefficient difference 

equation of FIR system

§4.7 Classification of LTI Discrete-Time Systems
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§4.7 Classification of LTI Discrete-Time Systems

 If the impulse response is of infinite length, 

then it is known as an infinite impulse 

response (IIR) discrete-time system

 The class of IIR systems we are concerned 

with in this course are characterized by 

linear constant coefficient difference 

equations
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The linear constant coefficient difference 

equation of IIR system

§4.7 Classification of LTI Discrete-Time Systems
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§4.7 Classification of LTI Discrete-Time Systems

Based on the Output Calculation Process 

 Nonrecursive System - Here the output can 
be calculated sequentially, knowing only the 
present and past input samples

 Recursive System - Here the output 
computation involves past output samples in 
addition to the present and past input 
samples



§4.7 Classification of LTI Discrete-Time Systems

 Example - The discrete-time accumulator 

defined by

y[n]=y[n-1]+x[n]

is seen to be an IIR system. It is also a 

recursive system. 
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 当输入为双边复指数序列时

 输出为

 Page167 Eq.(4.66-4.70)
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[ ] j nx n e 

Response to an Exponential Sequence 





§4.8.1 The Frequency Response
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§ 4.8.1 The Frequency Response

 Gain function

G() = 20log10| H(ej) |   dB

 Attenuation or loss function

A() = - G() 



§ 4.8.1 The Frequency Response

• If the impulse response h[n] is real then 

the magnitude function is an even function

and the phase function is an odd function

is even and is odd)( j
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4.8.2 Frequency-Domain Characterization of the 

LTI Discrete-Time System



4.8.3 Frequency Response of LTI Discrete-Time Systems

 FIR systems
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which is a rational function in 
je

 

 

 IIR systems

4.8.3 Frequency Response of LTI Discrete-Time Systems



例: 一个滑动平均滤波器的单位脉冲响应为

其频率响应为
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根据有限项等比级数求和公式可得  0 1
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4.8.4 Frequency Response Computation Using Matlab

pp.170 Example 4.31
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根据欧拉公式  
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4.8.4 Frequency Response Computation Using Matlab



因此，M点滑动平均滤波器的幅频响应为

相频响应为
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4.8.4 Frequency Response Computation Using Matlab



§4.8.4 Frequency Response Computation Using MATLAB

• The function freqz(h,w) can be used to 

determine the values of the frequency 

response vector h at a set of given frequency 

points w

• From h, the real and imaginary parts can be 

computed using the functions real and imag, 

and the magnitude and phase functions 

using the functions abs and angle
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 Page167 Eq.(4.66-4.70)

当输入为双边复指数序列时

 输出为
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Response to an Exponential Sequence 

How about the response to a Causal 

Exponential Sequence?



4.8.6 Response to a Causal Exponential 

Sequence 

 From the input-output relation
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we observe that for an input

The output is
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4.8.6 Response to a Causal Exponential 

Sequence 

Or,

The output for n < 0 is y[n] = 0

The output for n≥0 is given by:
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4.8.6 Response to a Causal Exponential 

Sequence 

steady-state response:
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transient response：



4.8.6 Response to a Causal Exponential 

Sequence 

 For a causal, stable LTI IIR discrete-time 

system, h[n] is absolutely summable

 As a result, the transient response is a 

bounded sequence

 As ,0|][|,
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4.8.6 Response to a Causal Exponential 

Sequence 

 For a causal FIR LTI discrete-time system 

with an impulse response h[n] of length N + 1, 

and h[n] = 0, for n > N

 Hence, ytr[n]=0, for n > N

 Here the output reaches the steady-state 

value at n = Nnjj

sr eeHny


)(][ 



§4.8.7 The Concept of Filtering

 One application of an LTI discrete-time 

system is to pass certain frequency 

components in an input sequence without 

any distortion (if possible) and to block 

other frequency components

 Such systems are called digital filters and 

one of the main subjects of discussion in 

this course





§ 4.8.7 The Concept of Filtering

 The key to the filtering process is
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 It expresses an arbitrary input as a 
linear weighted sum of an infinite number 
of exponential sequences, or equivalently, 
as a linear weighted sum of sinusoidal 
sequences



§ 4.8.7 The Concept of Filtering
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§ 4.8.7 The Concept of Filtering

By appropriately choosing the values of

at certain frequencies, some of these

components can be selectively heavily

attenuated or filtered with respect to the

others
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§ 4.8.7 The Concept of Filtering

Consider a real-coefficient LTI discrete-

time system characterized by a magnitude

function
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§ 4.8.7 The Concept of Filtering

 We apply an input x[n] to this system

 Because of linearity, the output of this 

system is of the form

 )(cos)(][ 11
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§ 4.8.7 The Concept of Filtering

 As              0)(,1)( 21 
 jj

eHeH

 )(cos)(][ 11
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 neHAny
j

 Thus, the system acts like a lowpass filter

the output reduces to
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§4.9 Phase and Group Delays

 The output y[n] exhibits some delay

relative to the input x[n] caused by the

nonzero phase response ()=arg{H(ej)}

of the system
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§4.9 Phase and Group Delays

 For an input

 nnAnx o ),cos(][

))(cos()(][  
oo
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the output is

 The output lags in phase by (0) radians
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§4.9 Phase and Group Delays

 This expression indicates a time delay, 

known as phase delay, at = 0 given by

 The output y[n] is a time-delayed 

version of the input x[n] when

is an integer
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op 
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When the input is composed of many sinusoidal

components with different frequencies that are

not harmonically related, each component will go

through different phase delays.

The signal delay is defined as group delay

§4.9 Phase and Group Delays
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本章重点

 四个性质:线性，移不变性，因果性，稳定性

 掌握上述性质的定义与时域判决方法

 简单的系统互连方法

 FIR和IIR系统的时域表示

 频率响应的求解方法



Homework

Problems: 

4.3(b), 4.20(a), 4.23(a)(解卷积)，4.30(a)(互联结
构), 4.67（第一问）

Matlab Exercises:   M4.1


