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Chapter 4

Discrete-Time System




£ 5]

e How to describe the input-output relationship in
a LTI Discrete Time System in time domain?

e How to describe a stable LTI Discrete Time

System?

e How to describe a causal L
System?

| Discrete Time



4.4.3 Stability Condition

BIBO Stability Condition --

e A discrete-time system is BIBO stable if the
output sequence {y(n)} remains bounded for all
bounded Input sequence {x(n)}

e An LTI discrete-time system is BIBO stable if
and only If its impulse response sequence {h(n)}
IS absolutely summable, I.e.

o0

S = Z ‘h(ﬁ)‘ < o0

n=—0o0



4.4 4 Causality Condition

Causality Condition ——

e An LTI discrete-time system is causal if and
only if its impulse response {h(n)} Is a causal
seguence, I.e., h[n]=0, for all n<O0.

o0

y[n]= 2 x[n—k]h[k]

k=—00

=..-+ X[n + 2]h[-2] + X[n +1]h[-1] + X[n]h[O]
+ X[n =1]h[1] + x[n - 2]h[2] + -




4.4 4 Causality Condition

Causality Condition ——

e A non-causal LTI discrete-time system with a
finite-length impulse response can often be
realized as a causal system by inserting an
appropriate amount of delay.

e Clipping+delaying



4.4 4 Causality Condition

» Example - The discrete-time accumulator
defined by

[=—c0
1s a causal system as 1t has a causal impulse
response given by

ED X UETT

(=—0
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S= 3 |h[n] <o

N=—00

o RHAE RMAIHIRILRFA:

h[n]=0,n<0
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§ 4.5 Simple Interconnection Schemes

e Cascade Connection

— hy[n] — hy[n]

— = — hy[n] — hy[n] —

hy[n]& hy[n]

—>

Impulse response h[n] of the cascade of two
LTI discrete-time systems with impulse
responses h,[n] and h,[n] Is given by

h[n]=hn]@hy[n]



§ 4.5 Simple Interconnection Schemes

e Parallel Connection
1 hy[n] —

1 1 hy[n] j

Impulse response h[n] of the parallel
connection of two LTI discrete-time systems

with impulse responses h,[n] and h,[n] Is given
by

— hy[n] + hy[n]—

h[n]= h,[n] + h,[n]



§ 4.5 Simple Interconnection Schemes

e Simplifying the block-diagram we obtain

j—’ h[n] —H—
' + hy[n] —@
hy[n] =
— T" h2[n]®(h3[n]+h4[n])j/
hy[n] =

h[n][+ hs[nN]® (hg[n]+h4[n]) —

|
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§ 4.6 Finite-Dimensional LTI Discrete-Time Systems'

e A linear constant coefficient difference
equation

> d yIn—Kk1=" px[n k]

e {d }and{p,} are constants characterizing the
system

e The order of the system Is given by
max(N,M)



§ 4.6 Finite-Dimensional LTI Discrete-Time Systems

e If we assume the system to be causal, then
the output y[n] can be recursively computed
using

y()=-> %y k]+2 x[n—K]

k=1 M0 kOO

Provided d,#0

e y[n] can be computed for all n>n,, knowing
X[n] and the initial conditions

y[ng-11, y[ng-21s...y[Ng-N]



§ 4.7 Classification of LTI Discrete-Time Systems

Based on Impulse Response Length -

e If the impulse response h[n] is of finite length,
then it i1s known as a finite impulse response
(FIR) discrete-time system

e The convolution sum description here Is

N
y[n]= 2 h[k]x[n—k]

k=N,



§ 4.7 Classification of LTI Discrete-Time Systems

The linear constant coefficient difference
equation of FIR system

N M
> d,yIn-k1=> pxn—k]  d, 0
k=0 k=0

yln] =

y[n] =

N
k=

> =k y[n—k]

100

+§: [n—Kk]

9

+ilk]x[n—k]




§ 4.7 Classification of LTI Discrete-Time Systems

e If the impulse response is of infinite length,
then it is known as an infinite impulse
response (I11R) discrete-time system

e The class of IIR systems we are concerned
with in this course are characterized by
linear constant coefficient difference
equations



§ 4.7 Classification of LTI Discrete-Time Systems

yInl= 3 hIKIxn K]

The linear constant coefficient difference
equation of IR system

N M
deY[n_k]:Zka[n_k] d, #0
k=0 k=0



§ 4.7 Classification of LTI Discrete-Time Systems

Based on the Output Calculation Process

e Nonrecursive System - Here the output can
ne calculated sequentially, knowing only the
oresent and past input samples

e Recursive System - Here the output
computation involves past output samples Iin
addition to the present and past input
samples




§ 4.7 Classification of LTI Discrete-Time Systems

e Example - The discrete-time accumulator
defined by

y[n]=y[n-1]+x[n]
IS seen to be an | IR system. It is also a
recursive system.
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Response to an Exponential Sequence

o LI ANMI E AP0

o WA

y[n] = Z h[k]x[n—k] = Z h[k]e™ )

k=—c0

= Z h[k]e‘j”"

=H(e')e!"

e Pagel67 Eq.(4.66-4.70)

eja)n



A signal A4e’™" (- <n<+w) is the input of a LTI system whose frequency

response 1s H(¢®) , then the response of this system is ( ). .

»»»»»»»

A. 4" B. 4e’™H(@E?) C. 22HE@A0(0—0) D. 4e/"H(e™)



§ 4.8.1 The Frequency Response oo

frequency response H (el@) = Z h[n]ei"

Complex

H(e)=H,(e")+ jH,, ("
beriodic (™) =H.(e")+ JH;, (e™)

H(e') =[H@E")|e"?
/
magnitude response 0(w)=argH (ej‘”)

real phase response
real



§ 4.8.1 The Frequency Response

® Gain function
G(w) = 20log,,| H(e'®) | dB

® Attenuation or loss function
A(o) = - G(w)




§ 4.8.1 The Frequency Response

* |f the Impulse response h[n] is real then
the magnitude function Is an even function

H(e")|=[H (e ™)

and the phase function is an odd function
0(0)=-0(-w)

H,.(e') isevenand H._(e*)is odd



4.8.2 Frequency-Domain Characterization of the
LTI Discrete-Time System

xin] —| h[n] = yin]

y[n] = h[n [n]

DTFT l DTF DTFT

Y(e®) = H(e’w)@Y (e™)

Y (™)
X ()

H(e")=




4.8.3 Frequency Response of LTI Discrete-Time Systems

® FIR systems

v[n] = ih[k]x[n—k] N, <N,

H(e”) = 3" h[kle '™

k:Nl



4.8.3 Frequency Response of LTI Discrete-Time Systems

® |IR systems

> dyyIn—kI=2 p,x[n K]

N _ _ M _ _
dee—la)kY (eja)) _ Z pke—ja)kx (eja))
k=0 k=0

| M i
H (eiw) — Y(ej_a)) _ zkzo p.e"’ ‘
X)) > de i

which is a rational function in e ¢
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4.8.4 Frequency Response Computation Using I\/Iatl%

pPp.170 Example 4.31 |
Bl — AR B A AR A A
/M, 0<n<M-1
h[n] = R
L

’ Z

H (eja))zﬁze_mn "M 1_e o




4.8.4 Frequency Response Computation Using Matlgbg

1 1-eom
()= 1—ee-1”

1 e—ja)I\/IIZ (eja)MIZ _e—ja)MIZ)

M e—ja)/Z (eja)/2 _e—ja)/Z)
_ 1 Sln(C()M /2) e—ja)(l\/l—l)/Z

M sin(w/2)

CEAX SN = L (el7 a0
wEKEAX SINW=——18€ e
2|



4.8.4 Frequency Response Computation Using Matla

B, MEFF-FHERBHEAAREH

H (&) =

AR SR R B

0(w)

1 sin(oM /2)
M sin(w/2)

(M _1)a) LM/ZJ

+7T Z u(w—
k=0

277K

)




9 4.8.4 Frequency Response Computation Using MATLAB

« The function freqz(h,w) can be used to
determine the values of the frequency
response vector h at a set of given frequency
points w

« From h, the real and imaginary parts can be
computed using the functions real and imag,
and the magnitude and phase functions
using the functions abs and angle
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Response to an Exponential Sequence

e Pagel67 Eq.(4.66-4.70)
LI N AL B HBE 7
x[n]=e’"

o WA
yIn] = H(e*)el”

How about the response to a Causal
Exponential Sequence?




4.8.6 Response to a Causal Exponential
Sequence

e From the input-output relation

yln]= 2 x[n—KkJh[k]

k=—00

we observe that for an input

x[n] =" u[n]
The output Is

yIn= 3 hiKle ) uln K] = [Z h[k]e"”““ju[n]



4.8.6 Response to a Causal Exponential oo
Sequence

Or, y[n]= (. hlke ") u(n)
k=0

The output forn<0isy[n] =0

The output for n>0 is given by:

yIn= (3 hikle *)e "

— (i h[k]e—ka)ejwn _( i h[k]e—jcok)ejcon

k=n+1

- H (eja))eja)n _( i h[k]e—ja)k)eja)n

k=n+1



4.8.6 Response to a Causal Exponential | ssss

Sequence E

yln]=H (ej“))ej”n —( i h[k]e‘j“"‘)eiwn

k=n+1

steady-state response: y..[n]=H(e'”)e!"

transient response: Y, [n]=—( ), hlkle"*)e’"

k=n+1



4.8.6 Response to a Causal Exponential oo
Sequence

Y [T 1= Z h[ke "™ |< Zlh[k]|<2|h[k]|

k=n+1 k=n+1
e For a causal, stable LTI IIR discrete-time
system, h[n] is absolutely summable

e As a result, the transient response Is a
bounded sequence

® AS n— o, » |h[k]|->0,

k=n+1



4.8.6 Response to a Causal Exponential oo
Sequence

e For a causal FIR LTI discrete-time system
with an impulse response h[n] of length N + 1,
and h[n] =0, forn>N

e Hence, y,[n]=0, forn >N

e Here the output reaches the steady-state
value y_ [n]=H(e?)e!” atn=N



§ 4.8.7 The Concept of Filtering

e One application of an LTI discrete-time
system Is to pass certain frequency
components in an input sequence without
any distortion (if possible) and to block
other frequency components

e Such systems are called digital filters and
one of the main subjects of discussion In
this course
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§ 4.8.7 The Concept of Filtering

e The key to the filtering process Is
x[n]_—jX(e“")e’“’”dw

e It expresses an arbltrary Input as a
linear weighted sum of an infinite number
of exponential sequences, or equivalently,
as a linear weighted sum of sinusoidal
seguences



§ 4.8.7 The Concept of Filtering

xin] — h[n] > yin]

yln] = h[njex[n]

Y(*)=H(E")X (")




§ 4.8.7 The Concept of Filtering +3-

Y(ejw) _ ‘|_ (ejw) pard(H (™)) [y (ejW) parg(xX(e™))

=[H(e¥)||X(e")e

arg(H (e!))+arg(X(e™))

Y (e*)|=|HE™)||X (")
By appropriately choosing the values of \H (e™)
at certain frequencies, some of these

components can be selectively heavily
attenuated or filtered with respect to the

others




§ 4.8.7 The Concept of Filtering

Consider a real-coefficient LTI discrete-
time system characterized by a magnitude

function

(

1, |o<o,

H ja"z
‘ ) 10, w, <|lo <7




§ 4.8.7 The Concept of Filtering

e We apply an input x[n] to this system
x[n] = Acos(ew,n)+ B cos(w,n),
where, O<w, <@, <@, <7

e Because of linearity, the output of this
system Is of the form

y[n]= A‘ H(el*) cos(wln + H(a)l))

+ B‘ H (e'*)|cos(w,n + O(w,))




§ 4.8.7 The Concept of Filtering

o As [H(e') =1, [H(e') =0
the output reduces to
y[n]= AlH (e'*) cos(a)ln + 0(0)1))

e Thus, the system acts like a lowpass filter
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§ 4.9 Phase and Group Delays

Y (e*)=|H(e")

=|H(e")

arg Y (e™) =arg(

pd9(H (e})) X (ej”)

earg(X(ejw ))

X (ej‘*’) p9(H (e}))+arg(X(e!))

H (e")) +arg(X(e™))

e The output y[n] exhibits some delay
relative to the input x[n] caused by the
nonzero phase response 0(m)=arg{H(e)®)}

of the system



§ 4.9 Phase and Group Delays

e For an input
X[n]= Acos(wn+¢), —oco<nN<oo
the output Is

y[n]= AH (el®)
e The output lags in phase by 8(w,) radians

cos[ooo[n + 0(®0) ] + q)j
Wo

cos(won +0(my) + ¢)

y[n] = AH (el®)




§ 4.9 Phase and Group Delays

e This expression indicates a time delay;,
known as phase delay, at = w, given by

Tp(mo) = _6(0(;:30)

e The output y[n] is a time-delayed
version of the input x[n] when z_(,)

IS an Integer




§ 4.9 Phase and Group Delays

When the Input Is composed of many sinusoidal
components with different frequencies that are
not harmonically related, each component will go
through different phase delays.

The signal delay Is defined as group delay
do(w)

dw

7 (w)=-
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Homework

Problems:

4.3(b), 4.20(a), 4.23(a)(fB-E), 4.30(a)(HERS
#)), 4.67 (B—Ja)

Matlab Exercises: M4.1



