Skip to content
Computational workflow engine, making distributed computing in Python easy!
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
doc
examples fix flake8 errors Apr 4, 2018
noodles
notebooks
test
.coveragerc
.editorconfig
.gitignore
.travis.yml
.zenodo.json
CHANGELOG.md
Dockerfile
LICENSE
README.rst
readthedocs.yml
requirements.txt
setup.py
tox.ini

README.rst

Documentation Status Travis DOI codecov

Noodles - easy parallel programming for Python

Often, a computer program can be sped up by executing parts of its code in parallel (simultaneously), as opposed to synchronously (one part after another).

A simple example may be where you assign two variables, as follows a = 2 * i and b = 3 * i. Either statement is only dependent on i, but whether you assign a before b or vice versa, does not matter for how your program works. Whenever this is the case, there is potential to speed up a program, because the assignment of a and b could be done in parallel, using multiple cores on your computer's CPU. Obviously, for simple assignments like a = 2 * i, there is not much time to be gained, but what if a is the result of a time-consuming function, e.g. a = very_difficult_function(i)? And what if your program makes many calls to that function, e.g. list_of_a = [very_difficult_function(i) for i in list_of_i]? The potential speed-up could be tremendous.

So, parallel execution of computer programs is great for improving performance, but how do you tell the computer which parts should be executed in parallel, and which parts should be executed synchronously? How do you identify the order in which to execute each part, since the optimal order may be different from the order in which the parts appear in your program. These questions quickly become nearly impossible to answer as your program grows and changes during development. Because of this, many developers accept the slow execution of their program only because it saves them from the headaches associated with keeping track of which parts of their program depend on which other parts.

Enter Noodles.

Noodles is a Python package that can automatically construct a callgraph for a given Python program, listing exactly which parts depend on which parts. Moreover, Noodles can subsequently use the callgraph to execute code in parallel on your local machine using multiple cores. If you so choose, you can even configure Noodles such that it will execute the code remotely, for example on a big compute node in a cluster computer.

Installation

Install the latest version from PyPI:

pip install noodles

Or, if you clone this repository,

git clone git@github.com:NLeSC/noodles.git
cd noodles
pip install .

To enable Xenon for remote execution, Java must be installed, and Xenon can be installed with

pip install '.[xenon]'

If Java cannot be found (needed by Xenon), run

export JAVA_HOME="/usr/lib/jvm/default-java"  # or similar...

in your shell initialization script (like ~/.bashrc).

To enable the TinyDB based job database, run

pip install '.[prov]'

This is needed if you want to interrupt a running workflow and resume where you left of, or to reuse results over multiple runs.

To run unit tests, run

pip install '.[test]'
tox

Some tests depend on the optional modules being installed. Those are skipped if if imports fail. If you want to test everything, make sure you have NumPy installed as well.

Documentation

All the latest documentation is available on Read the Docs.

You can’t perform that action at this time.