ldns heap Out—-of-bound Read

1. Version:

1.7.1

2. Vulnerability detect

The fuzz info is as follow:

INFO: Seed: 499159114

INFO: Loaded 2 modules (7085 inline 8-bit counters): 6823 [0x7f28727f5d60,
0x7f28727f7807), 262 [0x374d20, 0x374e26),

INFO: Loaded 2 PC tables (7085 PCs): 6823 [0x7f28727f7808,0x7f2872812278),
262 [0x374e28,0x375€88),

../ldns-verify-zone: Running 1 inputs 1 time(s) each.

Running: ./wl6wcrash-b6944107c6d8af77d22189cdb7f2b18e7ef8a188

==18590==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x616000001192 at pc 0x7f287278a0ae bp 0x7fff1aa7ef90 sp 0x7ffflaa7ef88
READ of size 1 at 0x616000001192 thread TO

#0 0x7f287278a0ad in ldns_rr new_frm_str_internal
/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:368:11

#1 0x7f2872788973 in ldns_rr new_frm_str
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /rr.c:669:9

#2 0x7f287278c605 in ldns_rr_new_frm_fp_l
/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:780:8

#3 0x7f28727d59b7 in ldns_zone_new_frm_fp_l
/home/work/build-ldns171-with-clang/../ldns-1.7.1/zone.c:227:7

#4 0x7f2872725093 in ldns_dnssec_zone_new_frm_fp_l
/home/work/build-ldns171-with-clang/../ldns-1.7.1/dnssec_zone.c:645:11

#5 0x36637a in real_main
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /examples/ldns-verify-zon
e.c:790:6

#6 0x367c87 in LLVMFuzzerTestOnelnput
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /examples/ldns-verify-zon

e.c:879:13

#7 0x26f44a in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,
unsigned long)
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x26f44a)

#8 0x25e737 in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const* unsigned
long)
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25e737)

#9 0x264661 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char

const*, unsigned long))
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x264661)

#10 0x28afe2 in main
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x28afe2)

#11 0x7f2870b69b96 in _libc_start_main
(/lib/x86_64-linux-gnu/libc.s0.6+0x21b96)

#12 0x25d029 in _start

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25d029)

0x616000001192 is located 0 bytes to the right of 530-byte region
[0x616000000f80,0x616000001192)
allocated by thread TO here:

#0 0x3368d3 in malloc
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x3368d3)

#1 0x7f28726f47db in ldns_buffer new_frm_data
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /buffer.c:48:18

#2 0x7f287278954d in ldns_rr new_frm_str_internal
/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:260:2

#3 0x7f2872788973 in ldns_rr new_frm_str
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /rr.c:669:9

#4 0x7f287278c605 in ldns_rr_new_frm_fp_l
/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:780:8

#5 0x7f28727d59b7 in ldns_zone_new_frm_fp_l
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /zone.c:227:7

#6 0x7f2872725093 in ldns_dnssec_zone_new_frm_fp_l

/home/work/build-ldns171-with-clang/../ldns-1.7.1 /dnssec_zone.c:645:11

#7 0x36637a in real_main
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /examples/ldns-verify-zon
e.c:790:6

#8 0x367c87 in LLVMFuzzerTestOnelnput
/home/work/build-ldns171-with-clang/../ldns-1.7.1 /examples/ldns-verify-zon
e.c:879:13

#9 0x26f44a in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,
unsigned long)
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x26f44a)

#10 0x25e737 in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const*, unsigned
long)
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25e737)

#11 0x264661 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char
const*, unsigned long))
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x264661)

#12 0x28afe2 in main
(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x28afe2)

#13 0x7f2870b69b96 in _libc_start_main
(/lib/x86_64-linux-gnu/libc.s0.6+0x21b96)

SUMMARY: AddressSanitizer: heap-buffer-overflow
/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:368:11 in
ldns_rr new_frm_str_internal
Shadow bytes around the buggy address:
0x0c2c7fft81e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c2c7fff81f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c2c7ftf8200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c2c7fff8210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c2c7ftf8220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0c2c7fff8230: 00 00[02]fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c2c7fft8240: fafafafafafafafafafafafafafafafa
0x0c2c7ftf8250: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

0x0c2c7ftf8260: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c2c7ftf8270: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c2c7ftf8280: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07

Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: 3
Stack after return: f5

Stack use after scope: 8

Global redzone: f9
Global init order: f6
Poisoned by user: 7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
Shadow gap: cc

==18590==ABORTING
3. Analysis:

From the log of libfuzzer, the problem lies in the
ldns rr new frm str internal function of rr.c, offset by 368 lines, as

follows:

while (%(ldns_buffer_current(rd_buf)) == "' ') {

ldns_buftfer_skip(rd_buf, 1);

l

Here, when the rd buf is read, an out—of-bounds access occurs. As long
as rd buf reads out ’’, the ldns buffer skip is called to perform the

postion offset 1. The definition of ldns buffer skip is as follows:

buffer.h X Ir.c server.c ldns-testns.c ldns-verify-2Z

ldns ¢ C buffer.h » @ ldns_buffer_skip(ldns_buffer *, ssize_t)

INLINE v
ldns_buffer_set_position(ldns_bu
{

b ldns_rr_new_frm_str

assert(mark <= buffer->_limit);
buffer->_position = mark;

INLINE v

Lldns_buffer_skip(ldns_buffer xbuffer, Z count)

{
assert(buffer->_position + count <= buffer->_limit);
buffer->_position += count;

Can see that the offset of position 1is count Follow the
ldns buffer current function and find the following definition in line
293 of buffer. h:

INLINE uir *
ldns_buffer_current(cor ldns_buffer xbuffer)

Hl

return ldns_buffer_at(buffer, buffer->_position);

b

It can be parsed by calling ldns buffer at, which is located in line 257
of buffer. h:

INLINE uint8_t *
ldns_buffer_at(ldns_buffer xbuffer,
{

assert(at <= buffer—>_limit);
return buffer->_data + at;

Here we see a problem when checking the boundary, comparing at with
buffer—> limit, throwing an exception if it is greater, or returning the
offset byte if it is less than or equal to Leading to a 1 byte access,
we continue to return to the ldns rr new frm str internal function to see
how the buffer is initialized. Here we find the initialization part of

rd buf, in line 260 of rr.c:

status = LDNS_STATUS_SYNTAX_TYPE_ERR;
goto error;

}

if (ldns_bget_token(rr_buf, rdata, "\@", LDNS_MAX_PACKETLEN) == -1) {

1
ldns_buffer_new_frm_data(rd_buf, rdata, strlen(rdata));

See here is to read rdata into rd buf, follow up the function, in line

41 of buffer.c:

Lldns_buffer_new_frm_data(ldns_buffer xbuffer, r void size_t size)

{
assert(data != NULL);

buffer->_position = 0;
buffer->_limit = buffer->_capacity = size;
vbuffer=>_Tixed = 9;
buffer->_data = LDNS_XMALLOC(uint8_t, size);
if(Tbuffer->_data) {
buffer->_status = LDNS_STATUS_MEM_ERR;
return;
}
memcpy (buffer—>_data, data, size);
buffer->_status = LDNS_STATUS_UK;

ldns_buffer_invariant(buffer);

Here we see that the limit parameter is the size of the buffer, so it

goes back to the vulnerability location.

INLINE uint8_t *
ldns_buffer_at(ldns_buffer xbuffer,
{

assert(at <= buffer—>_limit);
return buffer->_data + at;

Here, when at ==puffer-> limit, the returned value is
buffer[buffer-> limit], that is, reading one byte out of bounds Continue
to find the source of the variable rdata in ldns rr new frm str internal,

the source is as follows:

if (ldns_bget_token(rr_buf, rdata, "\@", LDNS_MAX_PACKETLEN) == -1) {

It is read by rr buf through the ldns bget token function, which is an

analytic function, and rr buf is assigned as follows:

ldns_buffer_new_frm_data(rr_buf, (charx)str, strlen(str));

if (ldns_bget_token(rr_buf, owner, "\t\n ", LDNS_MAX_DOMAINLEN) == -1){

status = LDNS_STATUS_SYNTAX_ERR;
goto error;

It 1is assigned by str, and str 1is the second parameter of

ldns rr new frm str internal as follows:

ldns_status
113 ldns_rr_new_frm_str_internal(ldns_rr sknewrr, r ar xstr,
default_ttl, lans_rdf *origin,
ldns_rdf skprev, | question

ldns_rr *new;

ldns_rr_descriptor *xdesc;
ldns_rr_type rr_type;
ldns_buffer xrr_buf =
ldns_buffer xrd_buf

ttl_val;

*xowner = |

*ttl = NULL;
ldns_rr_class clas_val;

View the caller of this function:
buffer.h 4 parse.c dnssec.c © buffer.c

Je 1 -

return status; b rr_buf

ldns_status
ldns_rr_new_frm_str(ldns_rr sknewrr, r har xstr,
default_ttl, ldns_rdf *origin,
ldns_rdf sekprev)

return ldns_rr_new_frm_str_internal(newrr,
ey
default_ttl,
origin,
prev,

);

ldns_status
ldns_rr_new_question_frm_str(ldns_rr ssknewrr, ar xstr,
ldns_rdf *origin, ldns_rdf sekprev)

{

return ldns_rr_new_frm_str_internal(newrr,
ey
9,
origin,
prev,

1e);

Look at the caller ldns rr new frm str function, in ldns-verify—zon.c:

server.c ldns-testns.c Idns-verify-zone.c ¢ / dnssec.c

LanNs_sturip_v
} b ldns_rr_new_frm_str
s = LDNS_STATUS_SYNTAX_TiL;
} else if (strncmp(line, "$INCLUDE", 8) == 0) {
s = LDNS_STATUS_SYNTAX_INCLUDE;
} else if (!xldns_strip_ws(line)) {
LDNS_FREE(line);
return LDNS_STATUS_SYNTAX_EMPTY;
} else {
if (origin && *xorigin) {
s = ldns_rr_new_frm_str(&rr, (*) line, ttl, *xorigin, prev);
} else {
s = ldns_rr_new_frm_str(&rr, (arx) line, ttl, NULL, prev);

Its caller is: ldns rr new frm fp 1, which is called in

ldns—verify-zone. ¢ as follows:

Ir.c server.c ldns-testns.c ldns-verify-zone.c X
Users b qulewei b Desktop » C ldns-verify-zone.c b ...

b ldns_rr_new_frm_str Aa Abl % No Results

ldns_rr_new_frm_fp_1

That is, the final payload is the zone file. In summary: the process is
as follows:
a) ldns rr new frm fp 1 read into the zone file for parsing;

b) the parameter is passed to the ldns rr new frm str function;

c) The parameter is assigned to str by the ldns rr new frm str internal
function;

d) assign str to rr buf via the ldns buffer new frm data function;

e) assign rr buf to rdata via the ldns bget token function;

f) Use ldns buffer new frm data again to assign rdata to rd buf

g) Finally, the ldns buffer current is called in the loop, and the
out—of-bounds access occurs when ldns buffer skip is performed.

5. Repair plan

The judgment is made in ldns rr new frm str internal as follows:

/% skip spaces */

ldns buffer skip(rd buf, 1);

delimiters = 7"\”\0”;
ldns buffer skip(rd buf, 1);

quoted = true;

} else if (ldns rr descriptor field type(desc, r cnt)
== LDNS_RDF TYPE LONG STR) {

status = LDNS_STATUS SYNTAX RDATA ERR;

goto error;

}

If you want to solve the remaining problems, it is recommended to modify

the constraint relationship of position, limit, capacity in buffer. h.

