
ldns heap Out-of-bound Read

1. Version:
1.7.1

2. Vulnerability detect
The fuzz info is as follow:

INFO:	Seed:	499159114	

INFO:	Loaded	2	modules	 	 	 (7085	inline	8-bit	counters):	6823	[0x7f28727f5d60,	

0x7f28727f7807),	262	[0x374d20,	0x374e26),	 	

INFO:	Loaded	2	PC	tables	(7085	PCs):	6823	[0x7f28727f7808,0x7f2872812278),	

262	[0x374e28,0x375e88),	 	

../ldns-verify-zone:	Running	1	inputs	1	time(s)	each.	

Running:	./w16wcrash-b6944107c6d8af77d22189cdb7f2b18e7ef8a188	

==

===	

==18590==ERROR:	 AddressSanitizer:	 heap-buffer-overflow	 on	 address	

0x616000001192	at	pc	0x7f287278a0ae	bp	0x7fff1aa7ef90	sp	0x7fff1aa7ef88	

READ	of	size	1	at	0x616000001192	thread	T0	

	 	 	 	 #0	 0x7f287278a0ad	 in	 ldns_rr_new_frm_str_internal	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:368:11	

	 	 	 	 #1	 0x7f2872788973	 in	 ldns_rr_new_frm_str	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:669:9	

	 	 	 	 #2	 0x7f287278c605	 in	 ldns_rr_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:780:8	

	 	 	 	 #3	 0x7f28727d59b7	 in	 ldns_zone_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/zone.c:227:7	

	 	 	 	 #4	 0x7f2872725093	 in	 ldns_dnssec_zone_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/dnssec_zone.c:645:11	

	 	 	 	 #5	 0x36637a	 in	 real_main	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/examples/ldns-verify-zon

e.c:790:6	

	 	 	 	 #6	 0x367c87	 in	 LLVMFuzzerTestOneInput	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/examples/ldns-verify-zon

e.c:879:13	

	 	 	 	 #7	 0x26f44a	 in	 fuzzer::Fuzzer::ExecuteCallback(unsigned	 char	 const*,	

unsigned	 long)	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x26f44a)	

	 	 	 	 #8	0x25e737	 in	 fuzzer::RunOneTest(fuzzer::Fuzzer*,	 char	const*,	unsigned	

long)	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25e737)	

	 	 	 	 #9	 0x264661	 in	 fuzzer::FuzzerDriver(int*,	 char***,	 int	 (*)(unsigned	 char	

const*,	 unsigned	 long))	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x264661)	

	 	 	 	 #10	 0x28afe2	 in	 main	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x28afe2)	

	 	 	 	 #11	 0x7f2870b69b96	 in	 __libc_start_main	

(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)	

	 	 	 	 #12	 0x25d029	 in	 _start	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25d029)	

	

0x616000001192	 is	 located	 0	 bytes	 to	 the	 right	 of	 530-byte	 region	

[0x616000000f80,0x616000001192)	

allocated	by	thread	T0	here:	

	 	 	 	 #0	 0x3368d3	 in	 malloc	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x3368d3)	

	 	 	 	 #1	 0x7f28726f47db	 in	 ldns_buffer_new_frm_data	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/buffer.c:48:18	

	 	 	 	 #2	 0x7f287278954d	 in	 ldns_rr_new_frm_str_internal	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:260:2	

	 	 	 	 #3	 0x7f2872788973	 in	 ldns_rr_new_frm_str	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:669:9	

	 	 	 	 #4	 0x7f287278c605	 in	 ldns_rr_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:780:8	

	 	 	 	 #5	 0x7f28727d59b7	 in	 ldns_zone_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/zone.c:227:7	

	 	 	 	 #6	 0x7f2872725093	 in	 ldns_dnssec_zone_new_frm_fp_l	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/dnssec_zone.c:645:11	

	 	 	 	 #7	 0x36637a	 in	 real_main	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/examples/ldns-verify-zon

e.c:790:6	

	 	 	 	 #8	 0x367c87	 in	 LLVMFuzzerTestOneInput	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/examples/ldns-verify-zon

e.c:879:13	

	 	 	 	 #9	 0x26f44a	 in	 fuzzer::Fuzzer::ExecuteCallback(unsigned	 char	 const*,	

unsigned	 long)	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x26f44a)	

	 	 	 	 #10	0x25e737	in	fuzzer::RunOneTest(fuzzer::Fuzzer*,	char	const*,	unsigned	

long)	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x25e737)	

	 	 	 	 #11	 0x264661	 in	 fuzzer::FuzzerDriver(int*,	 char***,	 int	 (*)(unsigned	 char	

const*,	 unsigned	 long))	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x264661)	

	 	 	 	 #12	 0x28afe2	 in	 main	

(/home/work/build-ldns171-with-clang/fuzz/ldns-verify-zone+0x28afe2)	

	 	 	 	 #13	 0x7f2870b69b96	 in	 __libc_start_main	

(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)	

	

SUMMARY:	 AddressSanitizer:	 heap-buffer-overflow	

/home/work/build-ldns171-with-clang/../ldns-1.7.1/rr.c:368:11	 in	

ldns_rr_new_frm_str_internal	

Shadow	bytes	around	the	buggy	address:	

	 	 0x0c2c7fff81e0:	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	

	 	 0x0c2c7fff81f0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

	 	 0x0c2c7fff8200:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

	 	 0x0c2c7fff8210:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

	 	 0x0c2c7fff8220:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

=>0x0c2c7fff8230:	00	00[02]fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	

	 	 0x0c2c7fff8240:	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	fa	

	 	 0x0c2c7fff8250:	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	

	 	 0x0c2c7fff8260:	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	

	 	 0x0c2c7fff8270:	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	

	 	 0x0c2c7fff8280:	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	fd	

Shadow	byte	legend	(one	shadow	byte	represents	8	application	bytes):	

	 	 Addressable:	 	 	 	 	 	 	 	 	 	 	 00	

	 	 Partially	addressable:	01	02	03	04	05	06	07	 	

	 	 Heap	left	redzone:	 	 	 	 	 	 	 fa	

	 	 Freed	heap	region:	 	 	 	 	 	 	 fd	

	 	 Stack	left	redzone:	 	 	 	 	 	 f1	

	 	 Stack	mid	redzone:	 	 	 	 	 	 	 f2	

	 	 Stack	right	redzone:	 	 	 	 	 f3	

	 	 Stack	after	return:	 	 	 	 	 	 f5	

	 	 Stack	use	after	scope:	 	 	 f8	

	 	 Global	redzone:	 	 	 	 	 	 	 	 	 	 f9	

	 	 Global	init	order:	 	 	 	 	 	 	 f6	

	 	 Poisoned	by	user:	 	 	 	 	 	 	 	 f7	

	 	 Container	overflow:	 	 	 	 	 	 fc	

	 	 Array	cookie:	 	 	 	 	 	 	 	 	 	 	 	 ac	

	 	 Intra	object	redzone:	 	 	 	 bb	

	 	 ASan	internal:	 	 	 	 	 	 	 	 	 	 	 fe	

	 	 Left	alloca	redzone:	 	 	 	 	 ca	

	 	 Right	alloca	redzone:	 	 	 	 cb	

	 	 Shadow	gap:	 	 	 	 	 	 	 	 	 	 	 	 	 	 cc	

==18590==ABORTING	

3. Analysis：

From the log of libfuzzer, the problem lies in the

ldns_rr_new_frm_str_internal function of rr.c, offset by 368 lines, as

follows:

Here, when the rd_buf is read, an out-of-bounds access occurs. As long

as rd_buf reads out '', the ldns_buffer_skip is called to perform the

postion offset 1. The definition of ldns_buffer_skip is as follows:

Can see that the offset of position is count Follow the

ldns_buffer_current function and find the following definition in line

293 of buffer.h:

It can be parsed by calling ldns_buffer_at, which is located in line 257

of buffer.h:

Here we see a problem when checking the boundary, comparing at with

buffer->_limit, throwing an exception if it is greater, or returning the

offset byte if it is less than or equal to Leading to a 1 byte access,

we continue to return to the ldns_rr_new_frm_str_internal function to see

how the buffer is initialized. Here we find the initialization part of

rd_buf, in line 260 of rr.c:

See here is to read rdata into rd_buf, follow up the function, in line

41 of buffer.c:

Here we see that the _limit parameter is the size of the buffer, so it

goes back to the vulnerability location.

Here, when at ==buffer->_limit, the returned value is

buffer[buffer->_limit], that is, reading one byte out of bounds Continue

to find the source of the variable rdata in ldns_rr_new_frm_str_internal,

the source is as follows:

It is read by rr_buf through the ldns_bget_token function, which is an

analytic function, and rr_buf is assigned as follows:

It is assigned by str, and str is the second parameter of

ldns_rr_new_frm_str_internal as follows:

View the caller of this function:

Look at the caller ldns_rr_new_frm_str function, in ldns-verify-zon.c:

Its caller is: ldns_rr_new_frm_fp_l, which is called in

ldns-verify-zone.c as follows:

That is, the final payload is the zone file. In summary: the process is

as follows:

a) ldns_rr_new_frm_fp_l read into the zone file for parsing;

b) the parameter is passed to the ldns_rr_new_frm_str function;

c) The parameter is assigned to str by the ldns_rr_new_frm_str_internal

function;

d) assign str to rr_buf via the ldns_buffer_new_frm_data function;

e) assign rr_buf to rdata via the ldns_bget_token function;

f) Use ldns_buffer_new_frm_data again to assign rdata to rd_buf

g) Finally, the ldns_buffer_current is called in the loop, and the

out-of-bounds access occurs when ldns_buffer_skip is performed.

5. Repair plan

The judgment is made in ldns_rr_new_frm_str_internal as follows:

/* skip spaces */

while (ldns_buffer_position(rd_buf) < ldns_buffer_limit(rd_buf) &&

*(ldns_buffer_current(rd_buf)) == ' ') {

ldns_buffer_skip(rd_buf, 1);

}

if (ldns_buffer_position(rd_buf) < ldns_buffer_limit(rd_buf) &&

*(ldns_buffer_current(rd_buf)) == '\"') {

delimiters = "\"\0";

ldns_buffer_skip(rd_buf, 1);

quoted = true;

} else if (ldns_rr_descriptor_field_type(desc, r_cnt)

== LDNS_RDF_TYPE_LONG_STR) {

status = LDNS_STATUS_SYNTAX_RDATA_ERR;

goto error;

}

If you want to solve the remaining problems, it is recommended to modify

the constraint relationship of _position, _limit, _capacity in buffer.h.

