The GSI Minimization Code Structure

Kristen Bathmann

January 11, 2021

1 General Conjugate Gradient Code Structure

At each inner loop iteration ¢, the current estimate of the state x; is updated as
X; = Xj—1 + oj1d;_q. (1)

This requires the computation of a search direction, d;_; (a vector), and step size, a;_; (a scalar).
In the GSI, the subroutine pcgsoi performs the inner loop iterations. This subroutine will apply
preconditioning through the array vprecond, an estimate of the Hessian that does not change during
the inner loop iterations. Then pcgsoi computes the search direction. It accounts for nonlinearity
by using the Polak-Ribiere method to compute d;_;. This means that the search direction is updated
as

d, =r; + Bid;_1, (2)
I‘T r, —r,_
/Bi:max{%,0}> (3)

where r; is the gradient of the cost function at iteration ¢. This value of 3 is computed in pcgsoi as
b=gnorm(2) /gsave. The values of the gradients are in gradx%values and grady%values, which
ultimately are computed in stpcalc and stored in xhatsave%values and yhatsave%values (the
x and y gradients are averaged in pcgsoi to give the actual gradient). Gradient r; is updated in
stpcalc as

ri=r;_1 —a;_1d;_;. (4)

Next, pcgsoi calls the subroutine stpcalc to calculate the step size. This subroutine estimates
«; iteratively, using a maximum of five iterations (istp_iter=>5). It will loop though all the terms
that contribute to the cost function (background, moisture constraint, dry pressure constraint, all
types of observations, etc). For the observation terms, stpcalc will call subroutine stpjo, which
will call the stp routine associated with each observation type, for example stpt for temperature,
stprad for radiance, and so on. Once the computation of the step size «; is complete, pcgsoi can
move on to the next inner iteration, assuming that there are no minimization issues.



2 Step Size Calculation

At each inner loop iteration i, the subroutine stpcalc will perform a maximum five iterations
) = 1:5 to calculate the step size «;. For simplicity, drop the subscript 7. A quadratic function is
fitted to the penalty associated with each term of the cost function,

q(a) = ca® + 2ba + a. (5)

The idea is to find the step size that minimizes the cost function along the search direction d.
This will occur at &« = —b/c. The penalty is computed for three different step sizes, a, (1 — )«
and (1 4 0)a, where 6 = 0.1. In stpcalc, these three values are stored in sges, ¢ is dels and
a at iteration j is stp(ii). The three values of g(a) are computed in the the appropriate stp
routines, for example stpt for temperature. Subroutine stpt will loop over all of the temperature
observations passing quality control, and sum up the total temperature penalties with respect to
these three step sizes. This penalty is a summation over all observations,

Z é[[—[(x + ad)]?, (6)

assuming no correlated error (z is actually OMB). If variational quality control is turned on, it is
applied here. The output of the stp routines is the array out, which stores

[q(a), q((1 = d)a) — q(a), q((1 + 0)a) — g(a)]. (7)

In stpcalc this ultimately ends up in the array pbc. The individual types of observations and
terms are kept separate in pbc. Read the comments at the beginning of stpcalc to know what
these components are.

Once the three values of g(a) are computed, the new step size can be computed. Search for
bcoef to see where this computation is done. Here pbc(2,1)-pbc(3,i) simplifies to —4cda? —4bdor

q((1 = 6)a) — qla) — [g((1 + )a) —q(a)] = c(1—0)*a®+2b(1 —)a+a— [c(1+6)*a” +2b(1 4 0)a +
c(1 =26 +6%)a? — (1 + 28 + 6%)a? — 4bda
= —4cda® — 4bda.

Also, pbc(2,1i)+pbc(3,1i) simplifies to 2cd%a?

q((1 = 6)a) — qla) + (q((1 + d)a) — g(a)) = c[(1—-0)*—1]a® —2bda + (c[(1+ 0)* — 1]a® + 2bda)
c(—26 + 0%)a? + ¢(26 + 6%)a?

2c6%a’.

These are multiplied by 1/46c and 1/2a26%, respectively (bcoef and ccoef). Then the step size
is updated stp(ii)=stp(ii)+bx/cx, which simplifies to & = —b/c. This calculation is repeated at
most four more times before moving onto the next inner loop iteration. If two consecutive estimates
of o are very close, the iterative calculation of o will terminate.



3 Minimization Issues

Because the penalty is being approximated by the quadratic ¢(a) = ca® + 2ba + a, ¢ is an ap-
proximation of the Hessian. The values of ¢ for each term contributing to the cost function are
stored in csum in stpcalc, and their sum is stored in the scalar cx. If cx is negative, the Hessian is
not positive definite, most likely a result of the variational quality control. The minimization will
not automatically terminate if this happens; stpcalc will look at all estimates of the cost function
during the five iterations of a and if there is a step size that does produce a cost function that is
smaller than what it was at inner loop 7 — 1, it will go with that step size. But if all five iterations
increase the cost, the minimization will terminate. The minimization will only terminate if cx is
negative; an individual component of csum can be negative and not cause cx to be negative. It is
easy to determine which term has caused the termination. Look at fort.220 or the gsistat and
search for cx. There will be a printout of ¢. Find the negative term, and consult the comments on
pbc in stpcalc to see which type of observation this is.

Sometimes resets can occur. This happens when the cost function gradient norm at iteration ¢
is much larger than it was at iteration ¢ — 1. Usually this indicates a problem with a forward model.
Determining which term causes a reset can be difficult, but it requires running the GSI in verbose
mode. This will print out the ¢ terms in fort.220 and the gsistat file. After running the GSI in
verbose mode, look at the components of ¢ right before and after the reset. If one term is blowing
up right after the reset, this is the likely culprit. Consult the comments on pbc in stpcalc to see
what this term actually is.



