
Doxygen Documentation for the UPP

By: Gillian Petro

Background

● EPIC (and, previously, the DTC) has been working to fully document UPP code.
○ Thank you to Tracy Hertnecky and Kate Fossell from DTC for a smooth

documentation transition to EPIC.
○ Thank you to Ed Hartnett at EMC for his ongoing assistance.

● Goal: Automate documentation testing and enforce standards around
documentation.
○ Ultimately, this will make working with code easier/faster!

Progress

● EPIC is documenting existing code as thoroughly as possible.
● Issue #392: https://github.com/NOAA-EMC/UPP/issues/392
● Pull Requests:

○ PR #630 & PR #659 (CALGUST.f and CALHEL.f)
○ PR #663 & PR #665 (GFSPOSTSIG.f)
○ PR #681 & PR #689 (MSFPS.f, NGMFLD.f, OTLFT.f, OTLIFT.f, and

ZENSUN.f)
○ PR #696 & PR #697 (updates to 23 files)
○ PR #698 & PR #701 (updates to 12 files)
○ PR #737 & PR #757 (updates to 28 files)

https://github.com/NOAA-EMC/UPP/issues/392
https://github.com/NOAA-EMC/UPP/pull/630
https://github.com/NOAA-EMC/UPP/pull/659
https://github.com/NOAA-EMC/UPP/pull/663
https://github.com/NOAA-EMC/UPP/pull/665
https://github.com/NOAA-EMC/UPP/pull/681
https://github.com/NOAA-EMC/UPP/pull/689
https://github.com/NOAA-EMC/UPP/pull/696
https://github.com/NOAA-EMC/UPP/pull/697
https://github.com/NOAA-EMC/UPP/pull/698
https://github.com/NOAA-EMC/UPP/pull/701
https://github.com/NOAA-EMC/UPP/pull/737
https://github.com/NOAA-EMC/UPP/pull/757

TO DO:

● Test/approve PR #932, which builds documentation with the CI
○ Will not fail for documentation warnings

● Document modules
○ Underway

● Turn on WARN_AS_ERROR flag
○ Documentation must be provided for newly added variables, functions,

subroutines, and files

https://github.com/NOAA-EMC/UPP/pull/932

What are developers responsible for?

● You are only responsible for documenting
your own code contributions! :)

● NOT responsible for other people’s code

Why document code?

● Bad (or nonexistent) documentation costs time and money!
● Good documentation saves time by:

○ Clarifying what the code is doing → no need to search the code or email
your colleague to figure it out!

○ Facilitating knowledge transfer for:
■ New team members
■ Community developers
■ User support staff & CMs

○ Improving adoption of UPP and UFS software by community developers
■ Expanding developer community → shares the work!

● More time && more developers == more science!

Why document code?

● Bad documentation can cost
millions!
○ Example courtesy of Ed Hartnett

● We are not the only ones who
use our documentation.
○ Users come from academia,

government/military, industry
● Excellence matters in science

AND in documentation of the
science!

What is Doxygen?

● A widely used documentation generator for scientific software development.
○ Pulls content directly from source code files
○ Renders it in human-friendly/human readable form

● Used in projects like HDF5, netCDF → and NCEPLIBS!
● Handles Fortran code well

Doxyfile.in

● Configures Doxygen documentation
● Located at: UPP/doc/Doxyfile.in
● Running doxygen Doxyfile.in generates warnings for

undocumented variables, functions, subroutines when
WARN_AS_ERROR = YES

● Build fails

Routines & Subroutines: Code

● Describe each subroutine
● Describe each variable
● Add yourself to History Log

Routines & Subroutines

!> @file (tells Doxygen to check for documentation)

!> @brief Describe file or subroutine here

!> @param name Description units

!> @param[in]

!> @param[out]

!> @param[inout]

!> @return varname Description (often, the return value is the same as the
subroutine name)

● For Fortran, "!>" or "!<"
starts a comment and
"!!" or "!>" can be used
to continue a one line
comment into a
multi-line comment.

Routines & Subroutines (cont’d)

● Find subroutine/function “signature” to see what variables need to be
documented.

● Find variable declarations to determine data type and in/out/inout type.

Routines & Subroutines cont’d

Example: sorc/ncep_post.fd/CALHEL.f

!> @file
!> @brief Subroutine that computes storm relative helicity.
…

!> @param[in] DEPTH Depth in meters over which helicity should be computed; allows
one to distinguish 0-3 km and 0-1 km values.
!> @param[out] UST Estimated U Component (m/s) Of Storm motion.
!> @param[out] VST Estimated V Component (m/s) Of Storm motion.
!> @param[out] HELI Storm-relative heliciry (m**2/s**2).
!> @param[out] USHR1 U Component (m/s) Of 0-1 km shear.
!> @param[out] VSHR1 V Component (m/s) Of 0-1 km shear.
…

Routines & Subroutines: Authors & History

!> @author author name

!> ### Program History Log
!> Date | Programmer | Comments
!> -----|------------|---------
!> 2019-09-24 | Y Mao | Rewritten from MISCLN.f
!> 2020-05-20 | J Meng | CALRH unification with NAM scheme
!> 2020-11-10 | J Meng | Use UPP_PHYSICS Module
!> 2021-03-11 | B Cui | Change local arrays to dimension (im,jsta:jend)
!> 2021-10-14 | J MENG | 2D DECOMPOSITION
!> YYYY-MM-DD | F Lastname | Description of additions

● Add your change to the
History Log

Routines & Subroutines: Rendering

https://noaa-emc.github.io/UPP/CALHEL_8f.html

Modules

● Not all variables in modules have documentation
● Regardless, add documentation or comments for the variables you add!
● Each variable declared on a single line (see CTLBLK.f for example)

Questions?

?

Creating a New Routine

● Begin file with !> @file to signal to Doxygen that it should read the file.
● Add !> @brief statement to describe the file.
● Add any additional description (optional)

Creating a New Routine (cont’d)

● Add history log
● Add @author and @date
● Add separator line to visually separate header info from code (not required

but helpful)

Creating a New Routine (cont’d)

● Describe purpose of subroutine using @brief
● Describe parameters using @param name Description units

Disclaimer: The
purpose of this
example is
documentation. Code
may or may not work.

Best Practices

● Use descriptive variable and function names → makes code easier to read
and understand
○ For example, compute_area_rectangle() and compute_area_circle() are

much clearer than area1() and area2().
○ radius is clearer than r
○ length and width are clearer than l or w

Generate Documentation Locally

● In UPP/doc/Doxyfile.in change @abs_top_srcdir@ and @config_srcdir@
in INPUT and USE_MDFILE_AS_MAINPAGE to the path to your local UPP clone:
○ INPUT = @abs_top_srcdir@/doc/user_guide.md \

 @abs_top_srcdir@/doc/2D-decomp.md \
 @abs_top_srcdir@/sorc/ncep_post.fd \
 @config_srcdir@

○ USE_MDFILE_AS_MAINPAGE =
@abs_top_srcdir@/docs/sp_user_guide.md

● For me, @abs_top_srcdir@ and @config_srcdir@ change to
/work/noaa/epic/gpetro/UPP on Orion or Hercules.

Generate Documentation Locally (cont’d)

● In UPP/doc run:
○ doxygen Doxyfile.in
○ If all goes well, there will be no

warnings with the
“Generating…” message. →

● This will raise warnings if there is a problem:

HTML Version

● Check UPP/doc/html
for the html files

● Do NOT add html files
to your PR!
○ They are placed in

the gh-pages
branch later in a
second PR by a CM.

Questions?

?

Will there be a CMake option to change Doxyfile.in
and build the documentation?

● This option currently exists in UPP! To enable Doxygen before running CMake:
○ In UPP/CMakeLists.txt, change ENABLE_DOCS option from OFF to ON.

○ Run compile_upp.sh as usual in the tests directory.
■ This will generate a tests/build/doc directory.

● Another option to build docs only via CMake:
○ Change tests/compile_upp.sh script to say make doc instead of make

install.
○ This will only generate the html files from source code and will not build

the UPP.

When documenting on WCOSS2 or another remote
system, what’s the cleanest way to view the html?

● Generate the HTMLs in your clone of the UPP by running doxygen
Doxyfile.in according to the instructions on previous slides.

● On some RDHPCS, it may be possible to securely copy (scp) the html
directory to your local system and open files in the browser on your local
system. (See RDHPCS documentation on Transferring Data.)

● When a file transfer is not possible, developers can add the HTMLs to the
gh-pages branch of their UPP fork and activate GitHub Pages to build
documentation from these HTMLs.

https://rdhpcs-common-docs.rdhpcs.noaa.gov/wiki/index.php?title=Transferring_Data

When documenting on WCOSS2 or another remote
system, what’s the cleanest way to view the html?
(cont’d)

● NOTE: The HTML files in UPP reside in the gh-pages branch. This keeps source
code and compiled code separate but also causes some inconvenience for
developers who want to add HTML files to the gh-pages branch in their UPP fork
and view them through GitHub Pages. There does not seem to be a “clean” way
to do this, but here are a few suggestions:

● Clone an HTML-specific copy of UPP and set remotes:
○ git clone -b gh-pages https://github.com/NOAA-EMC/UPP.git UPP-html
○ cd UPP-html
○ git remote add upstream https://github.com/NOAA-EMC/UPP.git
○ git remote set-url origin https://github.com/<your-user-name>/UPP.git

https://github.com/NOAA-EMC/UPP.git
https://github.com/NOAA-EMC/UPP.git
https://github.com/your-user-name/UPP.git

When documenting on WCOSS2 or another remote
system, what’s the cleanest way to view the html?
(cont’d)

● Optionally, users can create their own branch that tracks gh-pages. For example:
○ git checkout -b text/ghp

● Copy HTML files from the original UPP clone where you generated them to the
UPP-html clone (modify path accordingly):
○ cp /path/to/<UPP-original>/doc/html/*.html .
○ git add -u
○ git commit -m “add new htmls”
○ git push origin <branch_name>

■ <branch_name> can be gh-pages or the name of a branch that tracks
gh-pages (e.g., text/ghp).

● Once the HTML files are in the gh-pages branch of your UPP fork, you can
activate GitHub pages.

When documenting on WCOSS2 or another remote
system, what’s the cleanest way to view the html?
(cont’d)
● To activate GitHub pages:

○ Navigate to your repository.
○ Click on Settings in the repository.
○ Click on Pages in the sidebar (under “Code and automation”).
○ Under "Build and deployment" → "Source", select Deploy from a branch.
○ Use the branch dropdown menu to select “gh-pages” as the publishing

source.
○ Use the folder dropdown menu to select “/doc” as the publishing source.
○ Click “Save”.
○ To see your published site, under "GitHub Pages", click “Visit site” or

navigate to https://your-github-username.github.io/UPP.

https://docs.github.com/en/pages/getting-started-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site

Resources

● Doxygen Documentation: https://www.doxygen.nl/manual/commands.html
○ Note that “\” is replaced by “@” in our docs

● DTC Internal Guidance Document:
https://docs.google.com/document/d/1_w2yqLlV6zVU251D62SOPH-lx_Xufj6
apBHhtrvgz5A/edit

● UPP Developer Support page:
https://github.com/NOAA-EMC/UPP/wiki/UPP-Code-Development
○ Contains info on:

■ Contribution process (including resolving merge conflicts)
■ Testing
■ Doxygen Documentation

https://www.doxygen.nl/manual/commands.html
https://docs.google.com/document/d/1_w2yqLlV6zVU251D62SOPH-lx_Xufj6apBHhtrvgz5A/edit
https://docs.google.com/document/d/1_w2yqLlV6zVU251D62SOPH-lx_Xufj6apBHhtrvgz5A/edit
https://github.com/NOAA-EMC/UPP/wiki/UPP-Code-Development

